/* * This file is part of the coreboot project. * * Copyright (C) 2005 Nick Barker * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* Automatically detect and set up ddr dram on the CLE266 chipset. Assumes DDR memory, though chipset also supports SDRAM Assumes at least 266Mhz memory as no attempt is made to clock the chipset down if slower memory is installed. So far tested on: 256 Mb 266Mhz 1 Bank (i.e. single sided) 256 Mb 266Mhz 2 Bank (i.e. double sided) 512 Mb 266Mhz 2 Bank (i.e. double sided) */ /* ported and enhanced from assembler level code in coreboot v1 */ #include #include "raminit.h" void dimm_read(unsigned long bank,unsigned long x) { //unsigned long eax; volatile unsigned long y; //eax = x; y = * (volatile unsigned long *) (x+ bank) ; } void dumpnorth(device_t north) { uint16_t r, c; for(r = 0; r < 256; r += 16) { print_debug_hex8(r); print_debug(":"); for(c = 0; c < 16; c++) { print_debug_hex8(pci_read_config8(north, r+c)); print_debug(" "); } print_debug("\r\n"); } } void print_val(char *str, int val) { print_debug(str); print_debug_hex8(val); } static void ddr_ram_setup(const struct mem_controller *ctrl) { device_t north = (device_t) 0; uint8_t b, c, bank; uint16_t i,j; unsigned long bank_address; print_debug("vt8623 init starting\r\n"); north = pci_locate_device(PCI_ID(0x1106, 0x3123), 0); north = 0; pci_write_config8(north,0x75,0x08); /* setup cpu */ pci_write_config8(north,0x50,0xc8); pci_write_config8(north,0x51,0xde); pci_write_config8(north,0x52,0xcf); pci_write_config8(north,0x53,0x88); pci_write_config8(north,0x55,0x04); /* DRAM MA Map Type Device 0 Offset 58 Determine memory addressing based on the module's memory technology and arrangement. See Table 4-9 of Intel's 82443GX datasheet for details. Bank 1/0 MA map type 58[7-5] Bank 1/0 command rate 58[4] Bank 3/2 MA map type 58[3-1] Bank 3/2 command rate 58[0] Read SPD byte 17, Number of banks on SDRAM device. */ c = 0; b = smbus_read_byte(0xa0,17); print_val("Detecting Memory\r\nNumber of Banks ",b); if( b != 2 ){ // not 16 Mb type /* Read SPD byte 3, Number of row addresses. */ b = smbus_read_byte(0xa0,3); print_val("\r\nNumber of Rows ",b); if( b >= 0x0d ){ // not 64/128Mb (rows <=12) /* Read SPD byte 13, Primary DRAM width. */ b = smbus_read_byte(0xa0,13); print_val("\r\nPriamry DRAM width",b); if( b != 4 ) // mot 64/128Mb (x4) c = 0x80; // 256Mb } /* 64/128Mb chip Read SPD byte 4, Number of column addresses. */ b = smbus_read_byte(0xa0,4); print_val("\r\nNo Columns ",b); if( b == 10 || b == 11 ) c |= 0x60; // 10/11 bit col addr if( b == 9 ) c |= 0x40; // 9 bit col addr if( b == 8 ) c |= 0x20; // 8 bit col addr } print_val("\r\nMA type ",c); pci_write_config8(north,0x58,c); /* DRAM bank size. See 4.3.1 pg 35 5a->5d set to end address for each bank. 1 bit == 16MB 5a = bank 0 5b = bank 0 + b1 5c = bank 0 + b1 + b2 5d = bank 0 + b1 + b2 + b3 */ // Read SPD byte 31 Module bank density c = 0; b = smbus_read_byte(0xa0,31); if( b & 0x02 ) c = 0x80; // 2GB else if( b & 0x01) c = 0x40; // 1GB else if( b & 0x80) c = 0x20; // 512Mb else if( b & 0x40) c = 0x10; // 256Mb else if( b & 0x20) c = 0x08; // 128Mb else if( b & 0x10) c = 0x04; // 64Mb else if( b & 0x08) c = 0x02; // 32Mb else if( b & 0x04) c = 0x01; // 16Mb / 4Gb else c = 0x01; // Error, use default print_val("\r\nBank 0 (*16 Mb) ",c); // set bank zero size pci_write_config8(north,0x5a,c); // SPD byte 5 # of physical banks b = smbus_read_byte(0xa0,5); print_val("\r\nNo Physical Banks ",b); if( b == 2) c <<=1; print_val("\r\nTotal Memory (*16 Mb) ",c); // set banks 1,2,3 pci_write_config8(north,0x5b,c); pci_write_config8(north,0x5c,c); pci_write_config8(north,0x5d,c); /* Read SPD byte 18 CAS Latency */ b = smbus_read_byte(0xa0,18); print_debug("\r\nCAS Supported "); if(b & 0x04) print_debug("2 "); if(b & 0x08) print_debug("2.5 "); if(b & 0x10) print_debug("3"); print_val("\r\nCycle time at CL X (nS)",smbus_read_byte(0xa0,9)); print_val("\r\nCycle time at CL X-0.5 (nS)",smbus_read_byte(0xa0,23)); print_val("\r\nCycle time at CL X-1 (nS)",smbus_read_byte(0xa0,25)); if( b & 0x10 ){ // DDR offering optional CAS 3 print_debug("\r\nStarting at CAS 3"); c = 0x30; /* see if we can better it */ if( b & 0x08 ){ // DDR mandatory CAS 2.5 if( smbus_read_byte(0xa0,23) <= 0x75 ){ // we can manage 133Mhz at CAS 2.5 print_debug("\r\nWe can do CAS 2.5"); c = 0x20; } } if( b & 0x04 ){ // DDR mandatory CAS 2 if( smbus_read_byte(0xa0,25) <= 0x75 ){ // we can manage 133Mhz at CAS 2 print_debug("\r\nWe can do CAS 2"); c = 0x10; } } }else{ // no optional CAS values just 2 & 2.5 print_debug("\r\nStarting at CAS 2.5"); c = 0x20; // assume CAS 2.5 if( b & 0x04){ // Should always happen if( smbus_read_byte(0xa0,23) <= 0x75){ // we can manage 133Mhz at CAS 2 print_debug("\r\nWe can do CAS 2"); c = 0x10; } } } /* DRAM Timing Device 0 Offset 64 Row pre-charge 64[7] RAS Pulse width 64[6] CAS Latency 64[5,4] SDR DDR 00 1T - 01 2T 2T 10 3T 2.5T 11 - 3T RAS/CAS delay 64[2] Bank Interleave 64[1,0] Determine row pre-charge time (tRP) T nS SPD*4 SPD 1T 7.5 0x1e 2T 15 0x3c 3T 22.5 0x5a 4T 30 0x1e 5T 37.5 0x25 .5? 6T 45 0x2d Read SPD byte 27, min row pre-charge time. */ b = smbus_read_byte(0xa0,27); print_val("\r\ntRP ",b); if( b > 0x3c ) // set tRP = 3T c |= 0x80; /* Determine RAS to CAS delay (tRCD) Read SPD byte 29, min row pre-charge time. */ b = smbus_read_byte(0xa0,29); print_val("\r\ntRCD ",b); if( b > 0x3c ) // set tRCD = 3T c |= 0x04; /* Determine RAS pulse width (tRAS) Read SPD byte 30, device min active to pre-charge time. */ b = smbus_read_byte(0xa0,30); print_val("\r\ntRAS ",b); if( b > 0x25 ) // set tRAS = 6T c |= 0x40; /* Determine bank interleave Read SPD byte 17, Number of banks on SDRAM device. */ b = smbus_read_byte(0xa0,17); if( b == 4) c |= 0x02; else if (b == 2) c |= 0x01; /* set DRAM timing for all banks */ pci_write_config8(north,0x64,c); /* set DRAM type to DDR */ pci_write_config8(north,0x60,0x02); /* DRAM arbitration timer */ pci_write_config8(north,0x65,0x32); /* CPU Frequency Device 0 Offset 54 CPU Frequency 54[7,6] bootstraps at 0xc0 (133Mhz) DRAM burst length = 8 54[5] */ pci_write_config8(north,0x54,0xe0); /* DRAM Clock Device 0 Offset 69 DRAM/CPU speed 69[7,6] (leave at default 00 == CPU) Controller que > 2 69[5] Controller que != 4 69[4] DRAM 8k page size 69[3] DRAM 4k page size 69[2] Multiple page mode 69[0] */ pci_write_config8(north,0x69,0x2d); /* Delay >= 100ns after DRAM Frequency adjust, See 4.1.1.3 pg 15 */ udelay(200); /* Enable CKE */ pci_write_config8(north,0x6b,0x10); udelay(200); /* Disable DRAM refresh */ pci_write_config8(north,0x6a,0x0); /* Set drive for 1 bank DDR (Table 4.4.2, pg 40) */ pci_write_config8(north,0x6d,0x044); pci_write_config8(north,0x67,0x3a); b = smbus_read_byte(0xa0,5); // SPD byte 5 # of physical banks if( b > 1) { // Increase drive control when there is more than 1 physical bank pci_write_config8(north,0x6c,0x84); // Drive control: MA, DQS, MD/CKE pci_write_config8(north,0x6d,0x55); // DC: Early clock select, DQM, CS#, MD } /* place frame buffer on last bank */ if( !b) b++; // make sure at least 1 bank reported pci_write_config8(north,0xe3,b-1); for( bank = 0 , bank_address=0; bank < b ; bank++){ /* DDR init described in Via BIOS Porting Guide. Pg 28 (4.2.3.1) */ /* NOP command enable */ pci_write_config8(north,0x6b,0x11); /* read a double word from any address of the dimm */ dimm_read(bank_address,0x1f000); //udelay(200); /* All bank precharge Command Enable */ pci_write_config8(north,0x6b,0x12); dimm_read(bank_address,0x1f000); /* MSR Enable */ pci_write_config8(north,0x6b,0x13); dimm_read(bank_address,0x2000); udelay(1); dimm_read(bank_address,0x800); udelay(1); /* All banks precharge Command Enable */ pci_write_config8(north,0x6b,0x12); dimm_read(bank_address,0x1f200); /* CBR Cycle Enable */ pci_write_config8(north,0x6b,0x14); /* Read 8 times */ dimm_read(bank_address,0x1f300); udelay(100); dimm_read(bank_address,0x1f400); udelay(100); dimm_read(bank_address,0x1f500); udelay(100); dimm_read(bank_address,0x1f600); udelay(100); dimm_read(bank_address,0x1f700); udelay(100); dimm_read(bank_address,0x1f800); udelay(100); dimm_read(bank_address,0x1f900); udelay(100); dimm_read(bank_address,0x1fa00); udelay(100); /* MSR Enable */ pci_write_config8(north,0x6b,0x13); /* Mode Register Definition with adjustement so that address calculation is correct - 64 bit technology, therefore a0-a2 refer to byte within a 64 bit long word, and a3 is the first address line presented to DIMM as a row or column address. MR[9-7] CAS Latency MR[6] Burst Type 0 = sequential, 1 = interleaved MR[5-3] burst length 001 = 2, 010 = 4, 011 = 8, others reserved MR[0-2] dont care CAS Latency 000 reserved 001 reserved 010 2 011 3 100 reserved 101 1.5 110 2.5 111 reserved CAS 2 0101011000 = 0x158 CAS 2.5 1101011000 = 0x358 CAS 3 0111011000 = 0x1d8 */ c = pci_read_config8(north,0x64); if( (c & 0x30) == 0x10 ) dimm_read(bank_address,0x150); else if((c & 0x30) == 0x20 ) dimm_read(bank_address,0x350); else dimm_read(bank_address,0x1d0); //dimm_read(bank_address,0x350); /* Normal SDRAM Mode */ pci_write_config8(north,0x6b,0x58 ); bank_address = pci_read_config8(north,0x5a+bank) * 0x1000000; } // end of for each bank /* Adjust DQS (data strobe output delay). See 4.2.3.2 pg 29 */ pci_write_config8(north,0x66,0x41); /* determine low bond */ if( b == 2) bank_address = pci_read_config8(north,0x5a) * 0x1000000; else bank_address = 0; for(i = 0 ; i < 0x0ff; i++){ c = i ^ (i>>1); // convert to gray code pci_write_config8(north,0x68,c); // clear *(volatile unsigned long*)(0x4000) = 0; *(volatile unsigned long*)(0x4100+bank_address) = 0; *(volatile unsigned long*)(0x4200) = 0; *(volatile unsigned long*)(0x4300+bank_address) = 0; *(volatile unsigned long*)(0x4400) = 0; *(volatile unsigned long*)(0x4500+bank_address) = 0; // fill *(volatile unsigned long*)(0x4000) = 0x12345678; *(volatile unsigned long*)(0x4100+bank_address) = 0x81234567; *(volatile unsigned long*)(0x4200) = 0x78123456; *(volatile unsigned long*)(0x4300+bank_address) = 0x67812345; *(volatile unsigned long*)(0x4400) = 0x56781234; *(volatile unsigned long*)(0x4500+bank_address) = 0x45678123; // verify if( *(volatile unsigned long*)(0x4000) != 0x12345678) continue; if( *(volatile unsigned long*)(0x4100+bank_address) != 0x81234567) continue; if( *(volatile unsigned long*)(0x4200) != 0x78123456) continue; if( *(volatile unsigned long*)(0x4300+bank_address) != 0x67812345) continue; if( *(volatile unsigned long*)(0x4400) != 0x56781234) continue; if( *(volatile unsigned long*)(0x4500+bank_address) != 0x45678123) continue; // if everything verified then found low bond break; } print_val("\r\nLow Bond ",i); if( i < 0xff ){ c = i++; for( ; i <0xff ; i++){ pci_write_config8(north,0x68,i ^ (i>>1) ); // clear *(volatile unsigned long*)(0x8000) = 0; *(volatile unsigned long*)(0x8100+bank_address) = 0; *(volatile unsigned long*)(0x8200) = 0x0; *(volatile unsigned long*)(0x8300+bank_address) = 0; *(volatile unsigned long*)(0x8400) = 0x0; *(volatile unsigned long*)(0x8500+bank_address) = 0; // fill *(volatile unsigned long*)(0x8000) = 0x12345678; *(volatile unsigned long*)(0x8100+bank_address) = 0x81234567; *(volatile unsigned long*)(0x8200) = 0x78123456; *(volatile unsigned long*)(0x8300+bank_address) = 0x67812345; *(volatile unsigned long*)(0x8400) = 0x56781234; *(volatile unsigned long*)(0x8500+bank_address) = 0x45678123; // verify if( *(volatile unsigned long*)(0x8000) != 0x12345678) break; if( *(volatile unsigned long*)(0x8100+bank_address) != 0x81234567) break; if( *(volatile unsigned long*)(0x8200) != 0x78123456) break; if( *(volatile unsigned long*)(0x8300+bank_address) != 0x67812345) break; if( *(volatile unsigned long*)(0x8400) != 0x56781234) break; if( *(volatile unsigned long*)(0x8500+bank_address) != 0x45678123) break; } print_val(" High Bond",i); c = ((i - c)<<1)/3 +c; print_val(" Setting DQS delay",c); c = c ^ (c>>1); // convert to gray code pci_write_config8(north,0x68,c); pci_write_config8(north,0x68,0x42); }else{ print_debug("Unable to determine low bond - Setting default\r\n"); pci_write_config8(north,0x68,0x59); } pci_write_config8(north,0x66,0x01); pci_write_config8(north,0x55,0x07); /* DRAM refresh rate Device 0 Offset 6a Units of 16 DRAM clock cycles. (See 4.4.1 pg 39) Rx69 (DRAM freq) Rx58 (chip tech) Rx6a 133Mhz 64/128Mb 0x86 133Mhz 256/512Mb 0x43 100Mhz 64/128Mb 0x65 100Mhz 256/512Mb 0x32 */ b = pci_read_config8(north,0x58); if( b < 0x80 ) // 256 tech pci_write_config8(north,0x6a,0x86); else pci_write_config8(north,0x6a,0x43); pci_write_config8(north,0x61,0xff); //pci_write_config8(north,0x67,0x22); /* pci */ pci_write_config8(north,0x70,0x82); pci_write_config8(north,0x73,0x01); pci_write_config8(north,0x76,0x50); pci_write_config8(north,0x71,0xc8); /* graphics aperture base */ pci_write_config8(north,0x13,0xd0); //pci_write_config8(north,0xe1,0xdf); //pci_write_config8(north,0xe2,0x42); pci_write_config8(north,0xe0,0x00); pci_write_config8(north,0x84,0x80); pci_write_config16(north,0x80,0x610f); pci_write_config32(north,0x88,0x00000002); pci_write_config8(north,0xa8,0x04); pci_write_config8(north,0xac,0x2f); pci_write_config8(north,0xae,0x04); print_debug("vt8623 done\r\n"); dumpnorth(north); print_debug("AGP\r\n"); north = pci_locate_device(PCI_ID(0x1106, 0xb091), 0); pci_write_config32(north,0x20,0xddf0dc00); pci_write_config32(north,0x24,0xdbf0d800); pci_write_config8(north,0x3e,0x0c); //dumpnorth(north); //print_err("VGA\n"); //north = pci_locate_device(PCI_ID(0x1106, 0x3122), 0); //pci_write_config32(north,0x10,0xd8000008); //pci_write_config32(north,0x14,0xdc000000); //dumpnorth(north); }