/* * This file is part of the coreboot project. * * Copyright (C) 2015 Damien Zammit * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX) #include #else #include #endif #include #include "iomap.h" #include "x4x.h" #define ME_UMA_SIZEMB 0 u32 fsb2mhz(u32 speed) { return (speed * 267) + 800; } u32 ddr2mhz(u32 speed) { static const u16 mhz[] = { 0, 0, 667, 800, 1067, 1333 }; if (speed >= ARRAY_SIZE(mhz)) return 0; return mhz[speed]; } static void program_crossclock(struct sysinfo *s) { u8 i, j; u32 reg32; MCHBAR16(0xc1c) = MCHBAR16(0xc1c) | (1 << 15); static const u32 clkxtab[6][3][13] = { /* MEMCLK 400 N/A */ {{}, {}, {} }, /* MEMCLK 533 N/A */ {{}, {}, {} }, /* MEMCLK 667 * FSB 800 */ {{0x1f1f1f1f, 0x0d07070b, 0x00000000, 0x10000000, 0x20010208, 0x04080000, 0x10010002, 0x00000000, 0x00000000, 0x02000000, 0x04000100, 0x08000000, 0x10200204}, /* FSB 1067 */ {0x6d5b1f1f, 0x0f0f0f0f, 0x00000000, 0x20000000, 0x80020410, 0x02040008, 0x10000100, 0x00000000, 0x00000000, 0x04000000, 0x08000102, 0x20000000, 0x40010208}, /* FSB 1333 */ {0x05050303, 0xffffffff, 0xffff0000, 0x00000000, 0x08020000, 0x00000000, 0x00020001, 0x00000000, 0x00000000, 0x00000000, 0x08010204, 0x00000000, 0x04010000} }, /* MEMCLK 800 * FSB 800 */ {{0xffffffff, 0x05030305, 0x0000ffff, 0x0000000, 0x08010204, 0x00000000, 0x08010204, 0x0000000, 0x00000000, 0x00000000, 0x00020001, 0x0000000, 0x04080102}, /* FSB 1067 */ {0x07070707, 0x06030303, 0x00000000, 0x00000000, 0x08010200, 0x00000000, 0x04000102, 0x00000000, 0x00000000, 0x00000000, 0x00020100, 0x00000000, 0x04080100}, /* FSB 1333 */ {0x0d0b0707, 0x3e1f1f2f, 0x01010000, 0x00000000, 0x10020400, 0x02000000, 0x00040100, 0x00000000, 0x00000000, 0x04080000, 0x00100102, 0x00000000, 0x08100200} }, /* MEMCLK 1067 */ {{}, /* FSB 1067 */ {0xffffffff, 0x05030305, 0x0000ffff, 0x00000000, 0x04080102, 0x00000000, 0x08010204, 0x00000000, 0x00000000, 0x00000000, 0x00020001, 0x00000000, 0x02040801}, /* FSB 1333 */ {0x0f0f0f0f, 0x5b1f1f6d, 0x00000000, 0x00000000, 0x08010204, 0x04000000, 0x00080102, 0x00000000, 0x00000000, 0x02000408, 0x00100001, 0x00000000, 0x04080102} }, /* MEMCLK 1333 */ {{}, {}, /* FSB 1333 */ {0xffffffff, 0x05030305, 0x0000ffff, 0x00000000, 0x04080102, 0x00000000, 0x04080102, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02040801} } }; i = (u8)s->selected_timings.mem_clk; j = (u8)s->selected_timings.fsb_clk; MCHBAR32(0xc04) = clkxtab[i][j][0]; reg32 = clkxtab[i][j][1]; if (s->spd_type == DDR3 && s->max_fsb == FSB_CLOCK_1333MHz && s->selected_timings.mem_clk == MEM_CLOCK_800MHz) { reg32 &= ~(0xff << 24); reg32 |= 0x3d << 24; } MCHBAR32(0xc50) = reg32; MCHBAR32(0xc54) = clkxtab[i][j][2]; MCHBAR8(0xc08) = MCHBAR8(0xc08) | (1 << 7); MCHBAR32(0x6d8) = clkxtab[i][j][3]; MCHBAR32(0x6e0) = clkxtab[i][j][3]; MCHBAR32(0x6dc) = clkxtab[i][j][4]; MCHBAR32(0x6e4) = clkxtab[i][j][4]; MCHBAR32(0x6e8) = clkxtab[i][j][5]; MCHBAR32(0x6f0) = clkxtab[i][j][5]; MCHBAR32(0x6ec) = clkxtab[i][j][6]; MCHBAR32(0x6f4) = clkxtab[i][j][6]; MCHBAR32(0x6f8) = clkxtab[i][j][7]; MCHBAR32(0x6fc) = clkxtab[i][j][8]; MCHBAR32(0x708) = clkxtab[i][j][11]; MCHBAR32(0x70c) = clkxtab[i][j][12]; } static void setioclk_dram(struct sysinfo *s) { MCHBAR32(0x1bc) = 0x08060402; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x200; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x100; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x20; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) & ~1; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_800MHz: case MEM_CLOCK_1066MHz: MCHBAR8(0x5d9) = (MCHBAR8(0x5d9) & ~0x2) | 0x2; MCHBAR8(0x9d9) = (MCHBAR8(0x9d9) & ~0x2) | 0x2; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xc0; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xe0; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xa0; break; case MEM_CLOCK_667MHz: case MEM_CLOCK_1333MHz: MCHBAR8(0x5d9) = MCHBAR8(0x5d9) & ~0x2; MCHBAR8(0x9d9) = MCHBAR8(0x9d9) & ~0x2; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0x40; break; } MCHBAR32(0x594) = MCHBAR32(0x594) | (1 << 31); MCHBAR32(0x994) = MCHBAR32(0x994) | (1 << 31); } static void launch_dram(struct sysinfo *s) { u8 i; u32 launch1; u32 launch2 = 0; static const u32 ddr3_launch1_tab[2][3] = { /* 1N */ {0x58000007, /* DDR3 800 */ 0x58000007, /* DDR3 1067 */ 0x58100107}, /* DDR3 1333 */ /* 2N */ {0x58001117, /* DDR3 800 */ 0x58001117, /* DDR3 1067 */ 0x58001117} /* DDR3 1333 */ }; static const u32 ddr3_launch2_tab[2][3][6] = { { /* 1N */ /* DDR3 800 */ {0x08030000, /* CL = 5 */ 0x0C040100}, /* CL = 6 */ /* DDR3 1066 */ {0x00000000, /* CL = 5 */ 0x00000000, /* CL = 6 */ 0x10050100, /* CL = 7 */ 0x14260200}, /* CL = 8 */ /* DDR3 1333 */ {0x00000000, /* CL = 5 */ 0x00000000, /* CL = 6 */ 0x00000000, /* CL = 7 */ 0x14060000, /* CL = 8 */ 0x18070100, /* CL = 9 */ 0x1C280200}, /* CL = 10 */ }, { /* 2N */ /* DDR3 800 */ {0x00040101, /* CL = 5 */ 0x00250201}, /* CL = 6 */ /* DDR3 1066 */ {0x00000000, /* CL = 5 */ 0x00050101, /* CL = 6 */ 0x04260201, /* CL = 7 */ 0x08470301}, /* CL = 8 */ /* DDR3 1333 */ {0x00000000, /* CL = 5 */ 0x00000000, /* CL = 6 */ 0x00000000, /* CL = 7 */ 0x08070100, /* CL = 8 */ 0x0C280200, /* CL = 9 */ 0x10490300} /* CL = 10 */ } }; if (s->spd_type == DDR2) { launch1 = 0x58001117; if (s->selected_timings.CAS == 5) launch2 = 0x00220201; else if (s->selected_timings.CAS == 6) launch2 = 0x00230302; else die("Unsupported CAS\n"); } else { /* DDR3 */ /* Default 2N mode */ s->nmode = 2; if (s->selected_timings.mem_clk <= MEM_CLOCK_1066MHz) s->nmode = 1; /* 2N on DDR3 1066 with with 2 dimms per channel */ if ((s->selected_timings.mem_clk == MEM_CLOCK_1066MHz) && (BOTH_DIMMS_ARE_POPULATED(s->dimms, 0) || BOTH_DIMMS_ARE_POPULATED(s->dimms, 1))) s->nmode = 2; launch1 = ddr3_launch1_tab[s->nmode - 1] [s->selected_timings.mem_clk - MEM_CLOCK_800MHz]; launch2 = ddr3_launch2_tab[s->nmode - 1] [s->selected_timings.mem_clk - MEM_CLOCK_800MHz] [s->selected_timings.CAS - 5]; } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR32(0x400*i + 0x220) = launch1; MCHBAR32(0x400*i + 0x224) = launch2; MCHBAR32(0x400*i + 0x21c) = 0; MCHBAR32(0x400*i + 0x248) = MCHBAR32(0x400*i + 0x248) | (1 << 23); } MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0x58000000) | 0x48000000; MCHBAR32(0x2c0) = MCHBAR32(0x2c0) | 0x1e0; MCHBAR32(0x2c4) = (MCHBAR32(0x2c4) & ~0xf) | 0xc; if (s->spd_type == DDR3) MCHBAR32(0x2c4) = MCHBAR32(0x2c4) | 0x100; } static void clkset0(u8 ch, const struct dll_setting *setting) { MCHBAR16(0x400*ch + 0x5a0) = (MCHBAR16(0x400*ch + 0x5a0) & ~0xc440) | (setting->clk_delay << 14) | (setting->db_sel << 6) | (setting->db_en << 10); MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0xf) | setting->tap; } static void clkset1(u8 ch, const struct dll_setting *setting) { MCHBAR32(0x400*ch + 0x5a0) = (MCHBAR32(0x400*ch + 0x5a0) & ~0x30880) | (setting->clk_delay << 16) | (setting->db_sel << 7) | (setting->db_en << 11); MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0xf) | setting->tap; } static void ctrlset0(u8 ch, const struct dll_setting *setting) { MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x3300000) | (setting->clk_delay << 24) | (setting->db_sel << 20) | (setting->db_en << 21); MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0xf) | setting->tap; } static void ctrlset1(u8 ch, const struct dll_setting *setting) { MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x18c00000) | (setting->clk_delay << 27) | (setting->db_sel << 22) | (setting->db_en << 23); MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0xf) | setting->tap; } static void ctrlset2(u8 ch, const struct dll_setting *setting) { MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) | (setting->clk_delay << 14) | (setting->db_sel << 12) | (setting->db_en << 13); MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0xf) | setting->tap; } static void ctrlset3(u8 ch, const struct dll_setting *setting) { MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) | (setting->clk_delay << 10) | (setting->db_sel << 8) | (setting->db_en << 9); MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0xf) | setting->tap; } static void cmdset(u8 ch, const struct dll_setting *setting) { MCHBAR8(0x400*ch + 0x598) = (MCHBAR8(0x400*ch + 0x598) & ~0x30) | (setting->clk_delay << 4); MCHBAR8(0x400*ch + 0x594) = (MCHBAR8(0x400*ch + 0x594) & ~0x60) | (setting->db_sel << 5) | (setting->db_en << 6); MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0x70) | (setting->pi << 4); MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0xf) | setting->tap; } /** * All finer DQ and DQS DLL settings are set to the same value * for each rank in a channel, while coarse is common. */ void dqsset(u8 ch, u8 lane, const struct dll_setting *setting) { int rank; MCHBAR32(0x400 * ch + 0x5fc) = (MCHBAR32(0x400 * ch + 0x5fc) & ~(1 << (lane * 4 + 1))) | (setting->coarse << (lane * 4 + 1)); for (rank = 0; rank < 4; rank++) { MCHBAR32(0x400 * ch + 0x5b4 + rank * 4) = (MCHBAR32(0x400 * ch + 0x5b4 + rank * 4) & ~(0x201 << lane)) | (setting->db_en << (9 + lane)) | (setting->db_sel << lane); MCHBAR32(0x400*ch + 0x5c8 + rank * 4) = (MCHBAR32(0x400 * ch + 0x5c8 + rank * 4) & ~(0x3 << (16 + lane * 2))) | (setting->clk_delay << (16+lane * 2)); MCHBAR8(0x400*ch + 0x520 + lane * 4 + rank) = (MCHBAR8(0x400*ch + 0x520 + lane*4) & ~0x7f) | (setting->pi << 4) | setting->tap; } } void dqset(u8 ch, u8 lane, const struct dll_setting *setting) { int rank; MCHBAR32(0x400 * ch + 0x5fc) = (MCHBAR32(0x400 * ch + 0x5fc) & ~(1 << (lane * 4))) | (setting->coarse << (lane * 4)); for (rank = 0; rank < 4; rank++) { MCHBAR32(0x400 * ch + 0x5a4 + rank * 4) = (MCHBAR32(0x400 * ch + 0x5a4 + rank * 4) & ~(0x201 << lane)) | (setting->db_en << (9 + lane)) | (setting->db_sel << lane); MCHBAR32(0x400 * ch + 0x5c8 + rank * 4) = (MCHBAR32(0x400 * ch + 0x5c8 + rank * 4) & ~(0x3 << (lane * 2))) | (setting->clk_delay << (2 * lane)); MCHBAR8(0x400*ch + 0x500 + lane * 4 + rank) = (MCHBAR8(0x400 * ch + 0x500 + lane * 4 + rank) & ~0x7f) | (setting->pi << 4) | setting->tap; } } void rt_set_dqs(u8 channel, u8 lane, u8 rank, struct rt_dqs_setting *dqs_setting) { u16 saved_tap = MCHBAR16(0x540 + 0x400 * channel + lane * 4); u16 saved_pi = MCHBAR16(0x542 + 0x400 * channel + lane * 4); printk(RAM_SPEW, "RT DQS: ch%d, r%d, L%d: %d.%d\n", channel, rank, lane, dqs_setting->tap, dqs_setting->pi); saved_tap &= ~(0xf << (rank * 4)); saved_tap |= dqs_setting->tap << (rank * 4); MCHBAR16(0x540 + 0x400 * channel + lane * 4) = saved_tap; saved_pi &= ~(0x7 << (rank * 3)); saved_pi |= dqs_setting->pi << (rank * 3); MCHBAR16(0x542 + 0x400 * channel + lane * 4) = saved_pi; } static void program_timings(struct sysinfo *s) { u8 i; u8 twl, ta1, ta2, ta3, ta4; u8 reg8; u8 flag1 = 0; u8 flag2 = 0; u16 reg16; u32 reg32; u16 ddr, fsb; u8 trpmod = 0; u8 bankmod = 1; u8 pagemod = 0; u8 adjusted_cas; adjusted_cas = s->selected_timings.CAS - 3; u16 fsb2ps[3] = { 5000, // 800 3750, // 1067 3000 // 1333 }; u16 ddr2ps[6] = { 5000, // 400 3750, // 533 3000, // 667 2500, // 800 1875, // 1067 1500 // 1333 }; u16 lut1[6] = { 0, 0, 2600, 3120, 4171, 5200 }; ta1 = 6; ta2 = 6; ta3 = 5; ta4 = 8; twl = s->selected_timings.CAS - 1; FOR_EACH_POPULATED_DIMM(s->dimms, i) { if (s->dimms[i].n_banks == N_BANKS_8) { trpmod = 1; bankmod = 0; } if (s->dimms[i].page_size == 2048) pagemod = 1; } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR8(0x400*i + 0x26f) = MCHBAR8(0x400*i + 0x26f) | 0x3; MCHBAR8(0x400*i + 0x228) = (MCHBAR8(0x400*i + 0x228) & ~0x7) | 0x2; MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf0) | (0 << 4); /* tWL - x ?? */ MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf) | adjusted_cas; MCHBAR16(0x400*i + 0x265) = (MCHBAR16(0x400*i + 0x265) & ~0x3f00) | ((adjusted_cas + 9) << 8); reg16 = (s->selected_timings.tRAS << 11) | ((twl + 4 + s->selected_timings.tWR) << 6) | ((2 + MAX(s->selected_timings.tRTP, 2)) << 2) | 1; MCHBAR16(0x400*i + 0x250) = reg16; reg32 = (bankmod << 21) | (s->selected_timings.tRRD << 17) | (s->selected_timings.tRP << 13) | ((s->selected_timings.tRP + trpmod) << 9) | s->selected_timings.tRFC; reg8 = (MCHBAR8(0x400*i + 0x26f) >> 1) & 1; if (bankmod) { switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: if (reg8) { if (pagemod) reg32 |= 16 << 22; else reg32 |= 12 << 22; } else { if (pagemod) reg32 |= 18 << 22; else reg32 |= 14 << 22; } break; case MEM_CLOCK_800MHz: if (reg8) { if (pagemod) reg32 |= 18 << 22; else reg32 |= 14 << 22; } else { if (pagemod) reg32 |= 20 << 22; else reg32 |= 16 << 22; } break; } } MCHBAR32(0x400*i + 0x252) = reg32; MCHBAR16(0x400*i + 0x256) = (s->selected_timings.tRCD << 12) | (0x4 << 8) | (ta2 << 4) | ta4; MCHBAR32(0x400*i + 0x258) = (s->selected_timings.tRCD << 17) | ((twl + 4 + s->selected_timings.tWTR) << 12) | (ta3 << 8) | (4 << 4) | ta1; MCHBAR16(0x400*i + 0x25b) = ((s->selected_timings.tRP + trpmod) << 9) | s->selected_timings.tRFC; MCHBAR16(0x400*i + 0x260) = (MCHBAR16(0x400*i + 0x260) & ~0x3fe) | (100 << 1); MCHBAR8(0x400*i + 0x264) = 0xff; MCHBAR8(0x400*i + 0x25d) = (MCHBAR8(0x400*i + 0x25d) & ~0x3f) | s->selected_timings.tRAS; MCHBAR16(0x400*i + 0x244) = 0x2310; switch (s->selected_timings.mem_clk) { case MEM_CLOCK_667MHz: reg8 = 0; break; default: reg8 = 1; break; } MCHBAR8(0x400*i + 0x246) = (MCHBAR8(0x400*i + 0x246) & ~0x1f) | (reg8 << 2) | 1; fsb = fsb2ps[s->selected_timings.fsb_clk]; ddr = ddr2ps[s->selected_timings.mem_clk]; reg32 = (u32)((adjusted_cas + 7 + reg8) * ddr); reg32 = (u32)((reg32 / fsb) << 8); reg32 |= 0x0e000000; if ((fsb2mhz(s->selected_timings.fsb_clk) / ddr2mhz(s->selected_timings.mem_clk)) > 2) { reg32 |= 1 << 24; } MCHBAR32(0x400*i + 0x248) = (MCHBAR32(0x400*i + 0x248) & ~0x0f001f00) | reg32; if (twl > 2) flag1 = 1; if (s->selected_timings.mem_clk >= MEM_CLOCK_800MHz) flag2 = 1; reg16 = (u8)(twl - 1 - flag1 - flag2); reg16 |= reg16 << 4; if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) { if (reg16) reg16--; } reg16 |= flag1 << 8; reg16 |= flag2 << 9; MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x1ff) | reg16; MCHBAR16(0x400*i + 0x25e) = 0x15a5; MCHBAR32(0x400*i + 0x265) = MCHBAR32(0x400*i + 0x265) & ~0x1f; MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0x000fffff) | (0x3f << 14) | lut1[s->selected_timings.mem_clk]; MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) | 1; MCHBAR8(0x400*i + 0x24c) = MCHBAR8(0x400*i + 0x24c) & ~0x3; reg16 = 0; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg16 = 0x99; break; case MEM_CLOCK_800MHz: if (s->selected_timings.CAS == 5) reg16 = 0x19a; else if (s->selected_timings.CAS == 6) reg16 = 0x9a; break; } reg16 &= 0x7; reg16 += twl + 9; reg16 <<= 10; MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x7c00) | reg16; MCHBAR8(0x400*i + 0x267) = (MCHBAR8(0x400*i + 0x267) & ~0x3f) | 0x13; MCHBAR8(0x400*i + 0x268) = (MCHBAR8(0x400*i + 0x268) & ~0xff) | 0x4a; reg16 = (MCHBAR16(0x400*i + 0x269) & 0xc000) >> 2; reg16 += 2 << 12; reg16 |= (0x15 << 6) | 0x1f; MCHBAR16(0x400*i + 0x26d) = (MCHBAR16(0x400*i + 0x26d) & ~0x7fff) | reg16; reg32 = (1 << 25) | (6 << 27); MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0xfa300000) | reg32; MCHBAR8(0x400*i + 0x271) = MCHBAR8(0x400*i + 0x271) & ~0x80; MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) & ~0x6; } // END EACH POPULATED CHANNEL reg16 = 0x1f << 5; reg16 |= 0xe << 10; MCHBAR16(0x125) = (MCHBAR16(0x125) & ~0x3fe0) | reg16; MCHBAR16(0x127) = (MCHBAR16(0x127) & ~0x7ff) | 0x540; MCHBAR8(0x129) = MCHBAR8(0x129) | 0x1f; MCHBAR8(0x12c) = MCHBAR8(0x12c) | 0xa0; MCHBAR32(0x241) = (MCHBAR32(0x241) & ~0x1ffff) | 0x11; MCHBAR32(0x641) = (MCHBAR32(0x641) & ~0x1ffff) | 0x11; MCHBAR8(0x246) = MCHBAR8(0x246) & ~0x10; MCHBAR8(0x646) = MCHBAR8(0x646) & ~0x10; MCHBAR32(0x120) = (2 << 29) | (1 << 28) | (1 << 23) | 0xd7f5f; reg8 = (u8)((MCHBAR32(0x252) & 0x1e000) >> 13); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf0) | (reg8 << 4); reg8 = (u8)((MCHBAR32(0x258) & 0x1e0000) >> 17); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf) | reg8; MCHBAR8(0x12f) = 0x4c; reg32 = (1 << 31) | (0x80 << 14) | (1 << 13) | (0xa << 9); MCHBAR32(0x6c0) = (MCHBAR32(0x6c0) & ~0xffffff00) | reg32; MCHBAR8(0x6c4) = (MCHBAR8(0x6c4) & ~0x7) | 0x2; } static void program_dll(struct sysinfo *s) { u8 i, j, r, reg8, clk, async = 0; u16 reg16 = 0; u32 reg32 = 0; MCHBAR16(0x180) = (MCHBAR16(0x180) & ~0x7e06) | 0xc04; MCHBAR16(0x182) = (MCHBAR16(0x182) & ~0x3ff) | 0xc8; MCHBAR16(0x18a) = (MCHBAR16(0x18a) & ~0x1f1f) | 0x0f0f; MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x8020) | 0x100; MCHBAR8(0x194) = (MCHBAR8(0x194) & ~0x77) | 0x33; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg16 = (0xa << 9) | 0xa; break; case MEM_CLOCK_800MHz: reg16 = (0x9 << 9) | 0x9; break; } MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x1e0f) | reg16; MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x2030) | 0x2010; udelay(1); MCHBAR16(0x198) = MCHBAR16(0x198) & ~0x100; MCHBAR16(0x1c8) = (MCHBAR16(0x1c8) & ~0x1f) | 0xd; udelay(1); MCHBAR8(0x190) = MCHBAR8(0x190) & ~1; udelay(1); // 533ns MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x11554000; udelay(1); MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x1455; udelay(1); MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x1c; MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x1c; udelay(1); // 533ns MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x3; MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x3; udelay(1); // 533ns // ME related MCHBAR32(0x1a0) = (MCHBAR32(0x1a0) & ~0x7ffffff) | 0x551803; MCHBAR16(0x1b4) = MCHBAR16(0x1b4) & ~0x800; MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 0xf0; FOR_EACH_CHANNEL(i) { reg16 = 0; MCHBAR16(0x400*i + 0x59c) = MCHBAR16(0x400*i + 0x59c) & ~0x3000; reg32 = 0; FOR_EACH_RANK_IN_CHANNEL(r) { if (!RANK_IS_POPULATED(s->dimms, i, r)) reg32 |= 0x111 << r; } MCHBAR32(0x400*i + 0x59c) = (MCHBAR32(0x400*i + 0x59c) & ~0xfff) | reg32; MCHBAR8(0x400*i + 0x594) = MCHBAR8(0x400*i + 0x594) & ~1; if (!CHANNEL_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "No dimms in channel %d\n", i); reg8 = 0x3f; } else if (ONLY_DIMMA_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "DimmA populated only in channel %d\n", i); reg8 = 0x38; } else if (ONLY_DIMMB_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "DimmB populated only in channel %d\n", i); reg8 = 0x7; } else if (BOTH_DIMMS_ARE_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "Both dimms populated in channel %d\n", i); reg8 = 0; } else { die("Unhandled case\n"); } //reg8 = 0x00; // FIXME don't switch on all clocks anyway MCHBAR32(0x400*i + 0x5a0) = (MCHBAR32(0x400*i + 0x5a0) & ~0x3f000000) | ((u32)(reg8 << 24)); } // END EACH CHANNEL MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 1; MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4; // Update DLL timing MCHBAR8(0x1a4) = MCHBAR8(0x1a4) & ~0x80; MCHBAR8(0x1a4) = MCHBAR8(0x1a4) | 0x40; MCHBAR16(0x5f0) = (MCHBAR16(0x5f0) & ~0x400) | 0x400; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR16(0x400*i + 0x5f0) = (MCHBAR16(0x400*i + 0x5f0) & ~0x3fc) | 0x3fc; MCHBAR32(0x400*i + 0x5fc) = MCHBAR32(0x400*i + 0x5fc) & ~0xcccccccc; MCHBAR8(0x400*i + 0x5d9) = (MCHBAR8(0x400*i + 0x5d9) & ~0xf0) | 0x70; MCHBAR16(0x400*i + 0x590) = (MCHBAR16(0x400*i + 0x590) & ~0xffff) | 0x5555; } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { const struct dll_setting *setting; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) setting = default_ddr2_667_ctrl; else setting = default_ddr2_800_ctrl; clkset0(i, &setting[CLKSET0]); clkset1(i, &setting[CLKSET1]); ctrlset0(i, &setting[CTRL0]); ctrlset1(i, &setting[CTRL1]); ctrlset2(i, &setting[CTRL2]); ctrlset3(i, &setting[CTRL3]); cmdset(i, &setting[CMD]); } // XXX if not async mode MCHBAR16(0x180) = MCHBAR16(0x180) & ~0x8200; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4; j = 0; for (i = 0; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10) ; if (MCHBAR32(0x184) == 0xffffffff) { j++; if (j >= 2) break; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { j = 2; break; } } else { j = 0; } } if (i == 1 || ((i == 0) && s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) { j = 0; i++; for (; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4; while (MCHBAR8(0x180) & 0x10) ; if (MCHBAR32(0x184) == 0) { i++; break; } } for (; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10) ; if (MCHBAR32(0x184) == 0xffffffff) { j++; if (j >= 2) break; } else { j = 0; } } if (j < 2) { MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10) ; j = 2; } } if (j < 2) { MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f; async = 1; } clk = 0x1a; if (async != 1) { reg8 = MCHBAR8(0x188) & 0x1e; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz && s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) { clk = 0x10; } else if (s->selected_timings.mem_clk == MEM_CLOCK_800MHz) { clk = 0x10; } else { clk = 0x1a; } } MCHBAR8(0x180) = MCHBAR8(0x180) & ~0x80; if ((s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) && (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) { i = MCHBAR8(0x1c8) & 0xf; i = (i + 10) % 14; MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10) ; } reg8 = MCHBAR8(0x188) & ~1; MCHBAR8(0x188) = reg8; reg8 &= ~0x3e; reg8 |= clk; MCHBAR8(0x188) = reg8; reg8 |= 1; MCHBAR8(0x188) = reg8; if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) MCHBAR8(0x18c) = MCHBAR8(0x18c) | 1; } static void select_default_dq_dqs_settings(struct sysinfo *s) { int ch, lane; FOR_EACH_POPULATED_CHANNEL_AND_BYTELANE(s->dimms, ch, lane) { switch (s->selected_timings.mem_clk) { case MEM_CLOCK_667MHz: memcpy(s->dqs_settings[ch], default_ddr2_667_dqs, sizeof(s->dqs_settings[ch])); memcpy(s->dq_settings[ch], default_ddr2_667_dq, sizeof(s->dq_settings[ch])); s->rt_dqs[ch][lane].tap = 7; s->rt_dqs[ch][lane].pi = 2; break; case MEM_CLOCK_800MHz: if (s->spd_type == DDR2) { memcpy(s->dqs_settings[ch], default_ddr2_800_dqs, sizeof(s->dqs_settings[ch])); memcpy(s->dq_settings[ch], default_ddr2_800_dq, sizeof(s->dq_settings[ch])); s->rt_dqs[ch][lane].tap = 7; s->rt_dqs[ch][lane].pi = 0; } else { /* DDR3 */ /* TODO: DDR3 write DQ-DQS */ s->rt_dqs[ch][lane].tap = 6; s->rt_dqs[ch][lane].pi = 2; } break; case MEM_CLOCK_1066MHz: /* TODO: DDR3 write DQ-DQS */ s->rt_dqs[ch][lane].tap = 5; s->rt_dqs[ch][lane].pi = 2; break; case MEM_CLOCK_1333MHz: /* TODO: DDR3 write DQ-DQS */ s->rt_dqs[ch][lane].tap = 7; s->rt_dqs[ch][lane].pi = 0; break; default: /* not supported */ break; } } } /* * It looks like only the RT DQS register for the first rank * is used for all ranks. Just set all the 'unused' RT DQS registers * to the same as rank 0, out of precaution. */ static void set_all_dq_dqs_dll_settings(struct sysinfo *s) { // Program DQ/DQS dll settings int ch, lane, rank; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { FOR_EACH_BYTELANE(lane) { FOR_EACH_RANK_IN_CHANNEL(rank) { rt_set_dqs(ch, lane, rank, &s->rt_dqs[ch][lane]); } dqsset(ch, lane, &s->dqs_settings[ch][lane]); dqset(ch, lane, &s->dq_settings[ch][lane]); } } } static void prog_rcomp(struct sysinfo *s) { u8 i, j, k; u32 x32a[8] = { 0x04040404, 0x06050505, 0x09090807, 0x0D0C0B0A, 0x04040404, 0x08070605, 0x0C0B0A09, 0x100F0E0D }; u16 x378[6] = { 0, 0xAAAA, 0x7777, 0x7777, 0x7777, 0x7777 }; u32 x382[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x04030303, 0x04030303 }; u32 x386[6] = { 0, 0x03020202, 0x03020202, 0x03020202, 0x05040404, 0x05040404 }; u32 x38a[6] = { 0, 0x04040303, 0x04040303, 0x04040303, 0x07070605, 0x07070605 }; u32 x38e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x09090808, 0x09090808 }; u32 x392[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x03030202, 0x03030202 }; u32 x396[6] = { 0, 0x03030202, 0x03030202, 0x03030202, 0x05040303, 0x05040303 }; u32 x39a[6] = { 0, 0x04040403, 0x04040403, 0x04040403, 0x07070605, 0x07070605 }; u32 x39e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x08080808, 0x08080808 }; u16 addr[6] = { 0x31c, 0x374, 0x3a2, 0x3d0, 0x3fe, 0x42c }; u8 bit[6] = { 0, 0, 1, 1, 0, 0 }; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { for (j = 0; j < 6; j++) { if (j == 0) { MCHBAR32(0x400*i + addr[j]) = (MCHBAR32(0x400*i + addr[j]) & ~0xff000) | 0xaa000; MCHBAR16(0x400*i + 0x320) = (MCHBAR16(0x400*i + 0x320) & ~0xffff) | 0x6666; for (k = 0; k < 8; k++) { MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) = (MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) & ~0x3f3f3f3f) | x32a[k]; MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) = (MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) & ~0x3f3f3f3f) | x32a[k]; } } else { MCHBAR16(0x400*i + addr[j]) = (MCHBAR16(0x400*i + addr[j]) & ~0xf000) | 0xa000; MCHBAR16(0x400*i + addr[j] + 4) = (MCHBAR16(0x400*i + addr[j] + 4) & ~0xffff) | x378[j]; MCHBAR32(0x400*i + addr[j] + 0xe) = (MCHBAR32(0x400*i + addr[j] + 0xe) & ~0x3f3f3f3f) | x382[j]; MCHBAR32(0x400*i + addr[j] + 0x12) = (MCHBAR32(0x400*i + addr[j] + 0x12) & ~0x3f3f3f3f) | x386[j]; MCHBAR32(0x400*i + addr[j] + 0x16) = (MCHBAR32(0x400*i + addr[j] + 0x16) & ~0x3f3f3f3f) | x38a[j]; MCHBAR32(0x400*i + addr[j] + 0x1a) = (MCHBAR32(0x400*i + addr[j] + 0x1a) & ~0x3f3f3f3f) | x38e[j]; MCHBAR32(0x400*i + addr[j] + 0x1e) = (MCHBAR32(0x400*i + addr[j] + 0x1e) & ~0x3f3f3f3f) | x392[j]; MCHBAR32(0x400*i + addr[j] + 0x22) = (MCHBAR32(0x400*i + addr[j] + 0x22) & ~0x3f3f3f3f) | x396[j]; MCHBAR32(0x400*i + addr[j] + 0x26) = (MCHBAR32(0x400*i + addr[j] + 0x26) & ~0x3f3f3f3f) | x39a[j]; MCHBAR32(0x400*i + addr[j] + 0x2a) = (MCHBAR32(0x400*i + addr[j] + 0x2a) & ~0x3f3f3f3f) | x39e[j]; } MCHBAR8(0x400*i + addr[j]) = (MCHBAR8(0x400*i + addr[j]) & ~1) | bit[j]; } MCHBAR8(0x400*i + 0x45a) = (MCHBAR8(0x400*i + 0x45a) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x45e) = (MCHBAR8(0x400*i + 0x45e) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x462) = (MCHBAR8(0x400*i + 0x462) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x466) = (MCHBAR8(0x400*i + 0x466) & ~0x3f) | 0x12; } // END EACH POPULATED CHANNEL MCHBAR32(0x134) = (MCHBAR32(0x134) & ~0x63c00) | 0x63c00; MCHBAR16(0x174) = (MCHBAR16(0x174) & ~0x63ff) | 0x63ff; MCHBAR16(0x178) = 0x0135; MCHBAR32(0x130) = (MCHBAR32(0x130) & ~0x7bdffe0) | 0x7a9ffa0; if (!CHANNEL_IS_POPULATED(s->dimms, 0)) MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 27); if (!CHANNEL_IS_POPULATED(s->dimms, 1)) MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 28); MCHBAR8(0x130) = MCHBAR8(0x130) | 1; } static void program_odt(struct sysinfo *s) { u8 i; u16 odt[16][2] = { { 0x0000, 0x0000 }, // NC_NC { 0x0000, 0x0001 }, // x8SS_NC { 0x0000, 0x0011 }, // x8DS_NC { 0x0000, 0x0001 }, // x16SS_NC { 0x0004, 0x0000 }, // NC_x8SS { 0x0101, 0x0404 }, // x8SS_x8SS { 0x0101, 0x4444 }, // x8DS_x8SS { 0x0101, 0x0404 }, // x16SS_x8SS { 0x0044, 0x0000 }, // NC_x8DS { 0x1111, 0x0404 }, // x8SS_x8DS { 0x1111, 0x4444 }, // x8DS_x8DS { 0x1111, 0x0404 }, // x16SS_x8DS { 0x0004, 0x0000 }, // NC_x16SS { 0x0101, 0x0404 }, // x8SS_x16SS { 0x0101, 0x4444 }, // x8DS_x16SS { 0x0101, 0x0404 }, // x16SS_x16SS }; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR16(0x400*i + 0x298) = odt[s->dimm_config[i]][1]; MCHBAR16(0x400*i + 0x294) = odt[s->dimm_config[i]][0]; MCHBAR16(0x400*i + 0x29c) = (MCHBAR16(0x400*i + 0x29c) & ~0xfff) | 0x66b; MCHBAR32(0x400*i + 0x260) = (MCHBAR32(0x400*i + 0x260) & ~0x70e3c00) | 0x3063c00; } } static void pre_jedec_memory_map(void) { /* * Configure the memory mapping in stacked mode (channel 1 being mapped * above channel 0) and with 128M per rank. * This simplifies dram trainings a lot since those need a test address. * * +-------------+ => 0 * | ch 0, rank 0| * +-------------+ => 0x8000000 (128M) * | ch 0, rank 1| * +-------------+ => 0x10000000 (256M) * | ch 0, rank 2| * +-------------+ => 0x18000000 (384M) * | ch 0, rank 3| * +-------------+ => 0x20000000 (512M) * | ch 1, rank 0| * +-------------+ => 0x28000000 (640M) * | ch 1, rank 1| * +-------------+ => 0x30000000 (768M) * | ch 1, rank 2| * +-------------+ => 0x38000000 (896M) * | ch 1, rank 3| * +-------------+ * * After all trainings are done this is set to the real values specified * by the SPD. */ /* Set rank 0-3 populated */ MCHBAR32(C0CKECTRL) = (MCHBAR32(C0CKECTRL) & ~1) | 0xf00000; MCHBAR32(C1CKECTRL) = (MCHBAR32(C1CKECTRL) & ~1) | 0xf00000; /* Set size of each rank to 128M */ MCHBAR16(C0DRA01) = 0x0101; MCHBAR16(C0DRA23) = 0x0101; MCHBAR16(C1DRA01) = 0x0101; MCHBAR16(C1DRA23) = 0x0101; MCHBAR16(C0DRB0) = 0x0002; MCHBAR16(C0DRB1) = 0x0004; MCHBAR16(C0DRB2) = 0x0006; MCHBAR16(C0DRB3) = 0x0008; MCHBAR16(C1DRB0) = 0x0002; MCHBAR16(C1DRB1) = 0x0004; MCHBAR16(C1DRB2) = 0x0006; /* * For some reason the boundary needs to be 0x10 instead of 0x8 here. * Vendor does this too... */ MCHBAR16(C1DRB3) = 0x0010; MCHBAR8(0x111) = MCHBAR8(0x111) | STACKED_MEM; MCHBAR32(0x104) = 0; MCHBAR16(0x102) = 0x400; MCHBAR8(0x110) = (2 << 5) | (3 << 3); MCHBAR16(0x10e) = 0; MCHBAR32(0x108) = 0; pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOLUD, 0x4000); /* TOM(64M unit) = 1G = TOTAL_CHANNELS * RANKS_PER_CHANNEL * 128M */ pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOM, 0x10); /* TOUUD(1M unit) = 1G = TOTAL_CHANNELS * RANKS_PER_CHANNEL * 128M */ pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOUUD, 0x0400); pci_write_config32(PCI_DEV(0, 0, 0), D0F0_GBSM, 0x40000000); pci_write_config32(PCI_DEV(0, 0, 0), D0F0_BGSM, 0x40000000); pci_write_config32(PCI_DEV(0, 0, 0), D0F0_TSEG, 0x40000000); } u32 test_address(int channel, int rank) { ASSERT(channel <= 1 && rank < 4); return channel * 512 * MiB + rank * 128 * MiB; } static void dojedec_ddr2(u8 r, u8 ch, u8 cmd, u16 val) { u32 addr = test_address(ch, r); volatile u32 rubbish; MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | cmd; MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | cmd; rubbish = read32((void *)((val<<3) | addr)); udelay(10); MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | NORMALOP_CMD; MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | NORMALOP_CMD; } static void jedec_ddr2(struct sysinfo *s) { u8 i; u16 mrsval, ch, r, v; u8 odt[16][4] = { {0x00, 0x00, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x01, 0x01, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x01, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x11, 0x11, 0x11, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x00, 0x00, 0x01, 0x01}, {0x11, 0x00, 0x11, 0x11}, {0x11, 0x11, 0x11, 0x11}, {0x11, 0x00, 0x11, 0x11}, {0x00, 0x00, 0x01, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x11, 0x11, 0x11, 0x00}, {0x11, 0x00, 0x11, 0x00} }; u16 jedec[12][2] = { {NOP_CMD, 0x0}, {PRECHARGE_CMD, 0x0}, {EMRS2_CMD, 0x0}, {EMRS3_CMD, 0x0}, {EMRS1_CMD, 0x0}, {MRS_CMD, 0x100}, // DLL Reset {PRECHARGE_CMD, 0x0}, {CBR_CMD, 0x0}, {CBR_CMD, 0x0}, {MRS_CMD, 0x0}, // DLL out of reset {EMRS1_CMD, 0x380}, // OCD calib default {EMRS1_CMD, 0x0} }; mrsval = (s->selected_timings.CAS << 4) | ((s->selected_timings.tWR - 1) << 9) | 0xb; printk(BIOS_DEBUG, "MRS...\n"); udelay(200); FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { printk(BIOS_DEBUG, "CH%d: Found Rank %d\n", ch, r); for (i = 0; i < 12; i++) { v = jedec[i][1]; switch (jedec[i][0]) { case EMRS1_CMD: v |= (odt[s->dimm_config[ch]][r] << 2); break; case MRS_CMD: v |= mrsval; break; default: break; } dojedec_ddr2(r, ch, jedec[i][0], v); udelay(1); printk(RAM_SPEW, "Jedec step %d\n", i); } } printk(BIOS_DEBUG, "MRS done\n"); } static void sdram_recover_receive_enable(const struct sysinfo *s) { u32 reg32; u16 medium, coarse_offset; u8 pi_tap; int lane, channel; FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) { medium = 0; coarse_offset = 0; reg32 = MCHBAR32(0x400 * channel + 0x248); reg32 &= ~0xf0000; reg32 |= s->rcven_t[channel].min_common_coarse << 16; MCHBAR32(0x400 * channel + 0x248) = reg32; FOR_EACH_BYTELANE(lane) { medium |= s->rcven_t[channel].medium[lane] << (lane * 2); coarse_offset |= (s->rcven_t[channel].coarse_offset[lane] & 0x3) << (lane * 2); pi_tap = MCHBAR8(0x400 * channel + 0x560 + lane * 4); pi_tap &= ~0x7f; pi_tap |= s->rcven_t[channel].tap[lane]; pi_tap |= s->rcven_t[channel].pi[lane] << 4; MCHBAR8(0x400 * channel + 0x560 + lane * 4) = pi_tap; } MCHBAR16(0x400 * channel + 0x58c) = medium; MCHBAR16(0x400 * channel + 0x5fa) = coarse_offset; } } static void sdram_program_receive_enable(struct sysinfo *s, int fast_boot) { /* Program Receive Enable Timings */ if (fast_boot) sdram_recover_receive_enable(s); else rcven(s); } static void set_dradrb(struct sysinfo *s) { u8 map, i, ch, r, rankpop0, rankpop1; u32 c0dra = 0; u32 c1dra = 0; u32 c0drb = 0; u32 c1drb = 0; u32 dra; u32 dra0; u32 dra1; u16 totalmemorymb; u32 dual_channel_size, single_channel_size, single_channel_offset; u32 size_ch0, size_ch1, size_me; u8 dratab[2][2][2][4] = { { { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x00, 0x02, 0xff} }, { {0xff, 0x01, 0xff, 0xff}, {0xff, 0x03, 0xff, 0xff} } }, { { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x04, 0x06, 0x08} }, { {0xff, 0xff, 0xff, 0xff}, {0x05, 0x07, 0x09, 0xff} } } }; u8 drbtab[10] = {0x04, 0x02, 0x08, 0x04, 0x08, 0x04, 0x10, 0x08, 0x20, 0x10}; // DRA rankpop0 = 0; rankpop1 = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { if (s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED && (r) < s->dimms[ch<<1].ranks) i = ch << 1; else i = (ch << 1) + 1; dra = dratab[s->dimms[i].n_banks] [s->dimms[i].width] [s->dimms[i].cols-9] [s->dimms[i].rows-12]; if (s->dimms[i].n_banks == N_BANKS_8) dra |= 0x80; if (ch == 0) { c0dra |= dra << (r*8); rankpop0 |= 1 << r; } else { c1dra |= dra << (r*8); rankpop1 |= 1 << r; } } MCHBAR32(0x208) = c0dra; MCHBAR32(0x608) = c1dra; MCHBAR8(0x262) = (MCHBAR8(0x262) & ~0xf0) | ((rankpop0 << 4) & 0xf0); MCHBAR8(0x662) = (MCHBAR8(0x662) & ~0xf0) | ((rankpop1 << 4) & 0xf0); if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0) || ONLY_DIMMB_IS_POPULATED(s->dimms, 0)) MCHBAR8(0x260) = MCHBAR8(0x260) | 1; if (ONLY_DIMMA_IS_POPULATED(s->dimms, 1) || ONLY_DIMMB_IS_POPULATED(s->dimms, 1)) MCHBAR8(0x660) = MCHBAR8(0x660) | 1; // DRB FOR_EACH_RANK(ch, r) { if (ch == 0) { if (RANK_IS_POPULATED(s->dimms, ch, r)) { dra0 = (c0dra >> (8*r)) & 0x7f; c0drb = (u16)(c0drb + drbtab[dra0]); } MCHBAR16(0x200 + 2*r) = c0drb; } else { if (RANK_IS_POPULATED(s->dimms, ch, r)) { dra1 = (c1dra >> (8*r)) & 0x7f; c1drb = (u16)(c1drb + drbtab[dra1]); } MCHBAR16(0x600 + 2*r) = c1drb; } } s->channel_capacity[0] = c0drb << 6; s->channel_capacity[1] = c1drb << 6; totalmemorymb = s->channel_capacity[0] + s->channel_capacity[1]; printk(BIOS_DEBUG, "Total memory: %d + %d = %dMiB\n", s->channel_capacity[0], s->channel_capacity[1], totalmemorymb); /* Populated channel sizes in MiB */ size_ch0 = s->channel_capacity[0]; size_ch1 = s->channel_capacity[1]; size_me = ME_UMA_SIZEMB; MCHBAR8(0x111) = MCHBAR8(0x111) & ~0x2; MCHBAR8(0x111) = MCHBAR8(0x111) | (1 << 4); if (size_me == 0) { dual_channel_size = MIN(size_ch0, size_ch1) * 2; } else { if (size_ch0 == 0) { /* ME needs ram on CH0 */ size_me = 0; /* TOTEST: bailout? */ } else { /* Set ME UMA size in MiB */ MCHBAR16(0x100) = size_me; /* Set ME UMA Present bit */ MCHBAR32(0x111) = MCHBAR32(0x111) | 1; } dual_channel_size = MIN(size_ch0 - size_me, size_ch1) * 2; } MCHBAR16(0x104) = dual_channel_size; single_channel_size = size_ch0 + size_ch1 - dual_channel_size; MCHBAR16(0x102) = single_channel_size; map = 0; if (size_ch0 == 0) map = 0; else if (size_ch1 == 0) map |= 0x20; else map |= 0x40; if (dual_channel_size == 0) map |= 0x18; /* Enable flex mode, we hardcode this everywhere */ if (size_me == 0) { map |= 0x04; if (size_ch0 <= size_ch1) map |= 0x01; } else { if (size_ch0 - size_me < size_ch1) map |= 0x04; } MCHBAR8(0x110) = map; MCHBAR16(0x10e) = 0; /* * "108h[15:0] Single Channel Offset for Ch0" * This is the 'limit' of the part on CH0 that cannot be matched * with memory on CH1. MCHBAR16(0x10a) is where the dual channel * memory on ch0s end and MCHBAR16(0x108) is the limit of the single * channel size on ch0. */ if (size_me == 0) { if (size_ch0 > size_ch1) single_channel_offset = dual_channel_size / 2 + single_channel_size; else single_channel_offset = dual_channel_size / 2; } else { if ((size_ch0 > size_ch1) && ((map & 0x7) == 4)) single_channel_offset = dual_channel_size / 2 + single_channel_size; else single_channel_offset = dual_channel_size / 2 + size_me; } MCHBAR16(0x108) = single_channel_offset; MCHBAR16(0x10a) = dual_channel_size / 2; } static void configure_mmap(struct sysinfo *s) { bool reclaim; u32 gfxsize, gttsize, tsegsize, mmiosize, tom, tolud, touud; u32 gfxbase, gttbase, tsegbase, reclaimbase, reclaimlimit; u32 mmiostart, umasizem; u16 ggc; u16 ggc2uma[] = { 0, 1, 4, 8, 16, 32, 48, 64, 128, 256, 96, 160, 224, 352 }; u8 ggc2gtt[] = { 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4}; u8 reg8; ggc = pci_read_config16(PCI_DEV(0, 0, 0), 0x52); gfxsize = ggc2uma[(ggc & 0xf0) >> 4]; gttsize = ggc2gtt[(ggc & 0xf00) >> 8]; tsegsize = 8; // 8MB TSEG mmiosize = 0x800; // 2GB MMIO umasizem = gfxsize + gttsize + tsegsize; mmiostart = 0x1000 - mmiosize + umasizem; tom = s->channel_capacity[0] + s->channel_capacity[1] - ME_UMA_SIZEMB; tolud = MIN(mmiostart, tom); reclaim = false; if ((tom - tolud) > 0x40) reclaim = true; if (reclaim) { tolud = tolud & ~0x3f; tom = tom & ~0x3f; reclaimbase = MAX(0x1000, tom); reclaimlimit = reclaimbase + (MIN(0x1000, tom) - tolud) - 0x40; } touud = tom; if (reclaim) touud = reclaimlimit + 0x40; gfxbase = tolud - gfxsize; gttbase = gfxbase - gttsize; tsegbase = gttbase - tsegsize; pci_write_config16(PCI_DEV(0, 0, 0), 0xb0, tolud << 4); pci_write_config16(PCI_DEV(0, 0, 0), 0xa0, tom >> 6); if (reclaim) { pci_write_config16(PCI_DEV(0, 0, 0), 0x98, (u16)(reclaimbase >> 6)); pci_write_config16(PCI_DEV(0, 0, 0), 0x9a, (u16)(reclaimlimit >> 6)); } pci_write_config16(PCI_DEV(0, 0, 0), 0xa2, touud); pci_write_config32(PCI_DEV(0, 0, 0), 0xa4, gfxbase << 20); pci_write_config32(PCI_DEV(0, 0, 0), 0xa8, gttbase << 20); /* Enable and set tseg size to 8M */ reg8 = pci_read_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC); reg8 &= ~0x7; reg8 |= (2 << 1) | (1 << 0); /* 8M and TSEG_Enable */ pci_write_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC, reg8); pci_write_config32(PCI_DEV(0, 0, 0), 0xac, tsegbase << 20); } static void set_enhanced_mode(struct sysinfo *s) { u8 ch, reg8; MCHBAR32(0xfb0) = 0x1000d024; MCHBAR32(0xfb4) = 0xc842; MCHBAR32(0xfbc) = 0xf; MCHBAR32(0xfc4) = 0xfe22244; MCHBAR8(0x12f) = 0x5c; MCHBAR8(0xfb0) = (MCHBAR8(0xfb0) & ~1) | 1; MCHBAR8(0x12f) = MCHBAR8(0x12f) | 0x2; MCHBAR8(0x6c0) = (MCHBAR8(0x6c0) & ~0xf0) | 0xa0; MCHBAR32(0xfa8) = 0x30d400; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1; MCHBAR32(0x400*ch + 0x278) = 0x88141881; MCHBAR16(0x400*ch + 0x27c) = 0x0041; MCHBAR8(0x400*ch + 0x292) = 0xf2; MCHBAR16(0x400*ch + 0x272) = MCHBAR16(0x400*ch + 0x272) | 0x100; MCHBAR8(0x400*ch + 0x243) = (MCHBAR8(0x400*ch + 0x243) & ~0x2) | 1; MCHBAR32(0x400*ch + 0x288) = 0x8040200; MCHBAR32(0x400*ch + 0x28c) = 0xff402010; MCHBAR32(0x400*ch + 0x290) = 0x4f2091c; } reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0); pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | 1); MCHBAR32(0xfa0) = (MCHBAR32(0xfa0) & ~0x20002) | 0x2; MCHBAR32(0xfa4) = (MCHBAR32(0xfa4) & ~0x219100c3) | 0x219100c2; MCHBAR32(0x2c) = 0x44a53; MCHBAR32(0x30) = 0x1f5a86; MCHBAR32(0x34) = 0x1902810; MCHBAR32(0x38) = 0xf7000000; MCHBAR32(0x3c) = 0x23014410; MCHBAR32(0x40) = (MCHBAR32(0x40) & ~0x8f038000) | 0x8f038000; MCHBAR32(0x20) = 0x33001; pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~1); } static void power_settings(struct sysinfo *s) { u32 reg1, reg2, reg3, reg4, clkgate, x592; u8 lane, ch; u8 twl = 0; u16 x264, x23c; twl = s->selected_timings.CAS - 1; x264 = 0x78; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg1 = 0x99; reg2 = 0x1048a9; clkgate = 0x230000; x23c = 0x7a89; break; case MEM_CLOCK_800MHz: if (s->selected_timings.CAS == 5) { reg1 = 0x19a; reg2 = 0x1048aa; } else { reg1 = 0x9a; reg2 = 0x2158aa; x264 = 0x89; } clkgate = 0x280000; x23c = 0x7b89; break; } reg3 = 0x232; reg4 = 0x2864; if (CHANNEL_IS_POPULATED(s->dimms, 0) && CHANNEL_IS_POPULATED(s->dimms, 1)) MCHBAR32(0x14) = 0x0010461f; else MCHBAR32(0x14) = 0x0010691f; MCHBAR32(0x18) = 0xdf6437f7; MCHBAR32(0x1c) = 0x0; MCHBAR32(0x24) = (MCHBAR32(0x24) & ~0xe0000000) | 0x30000000; MCHBAR32(0x44) = (MCHBAR32(0x44) & ~0x1fef0000) | 0x6b0000; MCHBAR16(0x115) = (u16) reg1; MCHBAR32(0x117) = (MCHBAR32(0x117) & ~0xffffff) | reg2; MCHBAR8(0x124) = 0x7; MCHBAR16(0x12a) = (MCHBAR16(0x12a) & 0) | 0x80; MCHBAR8(0x12c) = (MCHBAR8(0x12c) & 0) | 0xa0; MCHBAR16(0x174) = MCHBAR16(0x174) & ~(1 << 15); MCHBAR16(0x188) = (MCHBAR16(0x188) & ~0x1f00) | 0x1f00; MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0x8; MCHBAR8(0x192) = (MCHBAR8(0x192) & ~1) | 1; MCHBAR8(0x193) = (MCHBAR8(0x193) & ~0xf) | 0xf; MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x480) | 0x80; MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0x1fff) | 0x3f; // | clockgatingiii MCHBAR32(0x6d1) = (MCHBAR32(0x6d1) & ~0xff03ff) | 0x100 | clkgate; MCHBAR8(0x212) = (MCHBAR8(0x212) & ~0x7f) | 0x7f; MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0xffff0) | 0xcc5f0; MCHBAR8(0x2c4) = (MCHBAR8(0x2c4) & ~0x70) | 0x70; MCHBAR32(0x2d1) = (MCHBAR32(0x2d1) & ~0xffffff) | 0xff2831; // | clockgatingi MCHBAR32(0x2d4) = 0x40453600; MCHBAR32(0x300) = 0xc0b0a08; MCHBAR32(0x304) = 0x6040201; MCHBAR32(0x30c) = (MCHBAR32(0x30c) & ~0x43c0f) | 0x41405; MCHBAR16(0x610) = 0x232; MCHBAR16(0x612) = 0x2864; MCHBAR32(0x62c) = (MCHBAR32(0x62c) & ~0xc000000) | 0x4000000; MCHBAR32(0xae4) = 0; MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0xf0000) | 0x10000; MCHBAR32(0xf00) = 0x393a3b3c; MCHBAR32(0xf04) = 0x3d3e3f40; MCHBAR32(0xf08) = 0x393a3b3c; MCHBAR32(0xf0c) = 0x3d3e3f40; MCHBAR32(0xf18) = MCHBAR32(0xf18) & ~0xfff00001; MCHBAR32(0xf48) = 0xfff0ffe0; MCHBAR32(0xf4c) = 0xffc0ff00; MCHBAR32(0xf50) = 0xfc00f000; MCHBAR32(0xf54) = 0xc0008000; MCHBAR32(0xf6c) = (MCHBAR32(0xf6c) & ~0xffff0000) | 0xffff0000; MCHBAR32(0xfac) = MCHBAR32(0xfac) & ~0x80000000; MCHBAR32(0xfb8) = MCHBAR32(0xfb8) & ~0xff000000; MCHBAR32(0xfbc) = (MCHBAR32(0xfbc) & ~0x7f800) | 0xf000; MCHBAR32(0x1104) = 0x3003232; MCHBAR32(0x1108) = 0x74; if (s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) MCHBAR32(0x110c) = 0xaa; else MCHBAR32(0x110c) = 0x100; MCHBAR32(0x1110) = 0x10810350 & ~0x78; MCHBAR32(0x1114) = 0; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) twl = 5; else twl = 6; x592 = 0xff; if (pci_read_config8(PCI_DEV(0, 0, 0), 0x8) < 3) x592 = ~0x4; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR8(0x400*ch + 0x239) = twl + 15; MCHBAR16(0x400*ch + 0x23c) = x23c; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0x706033) | 0x406033; MCHBAR32(0x400*ch + 0x260) = (MCHBAR32(0x400*ch + 0x260) & ~(1 << 16)) | (1 << 16); MCHBAR8(0x400*ch + 0x264) = x264; MCHBAR8(0x400*ch + 0x592) = (MCHBAR8(0x400*ch + 0x592) & ~0x3f) | (0x3c & x592); MCHBAR8(0x400*ch + 0x593) = (MCHBAR8(0x400*ch + 0x593) & ~0x1f) | 0x1e; } for (lane = 0; lane < 8; lane++) MCHBAR8(0x561 + (lane << 2)) = MCHBAR8(0x561 + (lane << 2)) & ~(1 << 3); } void do_raminit(struct sysinfo *s, int fast_boot) { u8 ch; u8 r, bank; u32 reg32; if (s->boot_path != BOOT_PATH_WARM_RESET) { // Clear self refresh MCHBAR32(PMSTS_MCHBAR) = MCHBAR32(PMSTS_MCHBAR) | PMSTS_BOTH_SELFREFRESH; // Clear host clk gate reg MCHBAR32(0x1c) = MCHBAR32(0x1c) | 0xffffffff; // Select type if (s->spd_type == DDR2) MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4; else MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 0x4; // Set freq MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0x70) | (s->selected_timings.mem_clk << 4) | (1 << 10); // Overwrite freq if chipset rejects it s->selected_timings.mem_clk = (MCHBAR8(0xc00) & 0x70) >> 4; if (s->selected_timings.mem_clk > (s->max_fsb + 3)) die("Error: DDR is faster than FSB, halt\n"); } // Program clock crossing program_crossclock(s); printk(BIOS_DEBUG, "Done clk crossing\n"); if (s->boot_path != BOOT_PATH_WARM_RESET) { setioclk_dram(s); printk(BIOS_DEBUG, "Done I/O clk\n"); } // Grant to launch launch_dram(s); printk(BIOS_DEBUG, "Done launch\n"); // Program DRAM timings program_timings(s); printk(BIOS_DEBUG, "Done timings\n"); // Program DLL program_dll(s); if (!fast_boot) select_default_dq_dqs_settings(s); set_all_dq_dqs_dll_settings(s); // RCOMP if (s->boot_path != BOOT_PATH_WARM_RESET) { prog_rcomp(s); printk(BIOS_DEBUG, "RCOMP\n"); } // ODT program_odt(s); printk(BIOS_DEBUG, "Done ODT\n"); // RCOMP update if (s->boot_path != BOOT_PATH_WARM_RESET) { while ((MCHBAR8(0x130) & 1) != 0) ; printk(BIOS_DEBUG, "Done RCOMP update\n"); } pre_jedec_memory_map(); // IOBUFACT if (CHANNEL_IS_POPULATED(s->dimms, 0)) { MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x7; } if (CHANNEL_IS_POPULATED(s->dimms, 1)) { if (pci_read_config8(PCI_DEV(0, 0, 0), 0x8) < 2) { MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 1; } MCHBAR8(0x9dd) = (MCHBAR8(0x9dd) & ~0x3f) | 0x3f; MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x7; } // Pre jedec MCHBAR8(0x40) = MCHBAR8(0x40) | 0x2; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR32(0x400*ch + 0x260) = MCHBAR32(0x400*ch + 0x260) | (1 << 27); } MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf000) | 0xf000; MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf00) | 0xf00; printk(BIOS_DEBUG, "Done pre-jedec\n"); // JEDEC reset if (s->boot_path != BOOT_PATH_RESUME) jedec_ddr2(s); printk(BIOS_DEBUG, "Done jedec steps\n"); // After JEDEC reset MCHBAR8(0x40) = MCHBAR8(0x40) & ~0x2; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) reg32 = (2 << 18) | (3 << 13) | (5 << 8); else reg32 = (2 << 18) | (3 << 13) | (4 << 8); MCHBAR32(0x400*ch + 0x274) = (MCHBAR32(0x400*ch + 0x274) & ~0xfff00) | reg32; MCHBAR8(0x400*ch + 0x274) = MCHBAR8(0x400*ch + 0x274) & ~0x80; MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1; MCHBAR32(0x400*ch + 0x278) = 0x88141881; MCHBAR16(0x400*ch + 0x27c) = 0x41; MCHBAR8(0x400*ch + 0x292) = 0xf2; MCHBAR8(0x400*ch + 0x271) = (MCHBAR8(0x400*ch + 0x271) & ~0xe) | 0xe; } MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x8; MCHBAR8(0x2c3) = MCHBAR8(0x2c3) | 0x40; MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x4; printk(BIOS_DEBUG, "Done post-jedec\n"); // Set DDR init complete FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR32(0x400*ch + 0x268) = (MCHBAR32(0x400*ch + 0x268) & ~0xc0000000) | 0xc0000000; } // Receive enable sdram_program_receive_enable(s, fast_boot); printk(BIOS_DEBUG, "Done rcven\n"); // Finish rcven FOR_EACH_CHANNEL(ch) { MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) & ~0xe; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x2; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x4; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x8; } MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; // Dummy writes / reads if (s->boot_path == BOOT_PATH_NORMAL) { volatile u32 data; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { for (bank = 0; bank < 4; bank++) { reg32 = test_address(ch, r) | (bank << 12); write32((u32 *)reg32, 0xffffffff); data = read32((u32 *)reg32); printk(BIOS_DEBUG, "Wrote ones,"); printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n", reg32, data); write32((u32 *)reg32, 0x00000000); data = read32((u32 *)reg32); printk(BIOS_DEBUG, "Wrote zeros,"); printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n", reg32, data); } } } printk(BIOS_DEBUG, "Done dummy reads\n"); // XXX tRD if (!fast_boot) { if (s->selected_timings.mem_clk > MEM_CLOCK_667MHz) { if(do_write_training(s)) die("DQ write training failed!"); } if (do_read_training(s)) die("DQS read training failed!"); } // DRADRB set_dradrb(s); printk(BIOS_DEBUG, "Done DRADRB\n"); // Memory map configure_mmap(s); printk(BIOS_DEBUG, "Done memory map\n"); // Enhanced mode set_enhanced_mode(s); printk(BIOS_DEBUG, "Done enhanced mode\n"); // Periodic RCOMP MCHBAR16(0x160) = (MCHBAR16(0x160) & ~0xfff) | 0x999; MCHBAR16(0x1b4) = MCHBAR16(0x1b4) | 0x3000; MCHBAR8(0x130) = MCHBAR8(0x130) | 0x82; printk(BIOS_DEBUG, "Done PRCOMP\n"); // Power settings power_settings(s); printk(BIOS_DEBUG, "Done power settings\n"); // ME related /* * FIXME: This locks some registers like bit1 of GGC * and is only needed in case of ME being used. */ if (ME_UMA_SIZEMB != 0) { if (RANK_IS_POPULATED(s->dimms, 0, 0) || RANK_IS_POPULATED(s->dimms, 1, 0)) MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 0); if (RANK_IS_POPULATED(s->dimms, 0, 1) || RANK_IS_POPULATED(s->dimms, 1, 1)) MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 1); MCHBAR32(0xa30) = MCHBAR32(0xa30) | (1 << 26); } printk(BIOS_DEBUG, "Done raminit\n"); }