/* * This file is part of the coreboot project. * * Copyright (C) 2015 Damien Zammit * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include /* This northbridge can also occur with ICH10 */ #if IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX) #include #endif #include "iomap.h" #include "x4x.h" #define ME_UMA_SIZEMB 0 static inline void barrier(void) { asm volatile("mfence":::); } static u32 fsb2mhz(u32 speed) { return (speed * 267) + 800; } static u32 ddr2mhz(u32 speed) { static const u16 mhz[] = { 0, 0, 667, 800, 1067, 1333 }; if (speed >= ARRAY_SIZE(mhz)) return 0; return mhz[speed]; } /* Find MSB bitfield location using bit scan reverse instruction */ static u8 msbpos(u32 val) { u32 pos; if (val == 0) { printk(BIOS_WARNING, "WARNING: Input to BSR is zero\n"); return 0; } asm ("bsrl %1, %0" :"=r"(pos) :"r"(val) ); return (u8)(pos & 0xff); } static void sdram_detect_smallest_params2(struct sysinfo *s) { u16 mult[6] = { 5000, // 400 3750, // 533 3000, // 667 2500, // 800 1875, // 1066 1500, // 1333 }; u8 i; u32 tmp; u32 maxtras = 0; u32 maxtrp = 0; u32 maxtrcd = 0; u32 maxtwr = 0; u32 maxtrfc = 0; u32 maxtwtr = 0; u32 maxtrrd = 0; u32 maxtrtp = 0; FOR_EACH_POPULATED_DIMM(s->dimms, i) { maxtras = MAX(maxtras, s->dimms[i].spd_data[30] * 1000); maxtrp = MAX(maxtrp, (s->dimms[i].spd_data[27] * 1000) >> 2); maxtrcd = MAX(maxtrcd, (s->dimms[i].spd_data[29] * 1000) >> 2); maxtwr = MAX(maxtwr, (s->dimms[i].spd_data[36] * 1000) >> 2); maxtrfc = MAX(maxtrfc, s->dimms[i].spd_data[42] * 1000 + (s->dimms[i].spd_data[40] & 0xf)); maxtwtr = MAX(maxtwtr, (s->dimms[i].spd_data[37] * 1000) >> 2); maxtrrd = MAX(maxtrrd, (s->dimms[i].spd_data[28] * 1000) >> 2); maxtrtp = MAX(maxtrtp, (s->dimms[i].spd_data[38] * 1000) >> 2); } for (i = 9; i < 24; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtras) { s->selected_timings.tRAS = i; break; } } for (i = 3; i < 10; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtrp) { s->selected_timings.tRP = i; break; } } for (i = 3; i < 10; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtrcd) { s->selected_timings.tRCD = i; break; } } for (i = 3; i < 15; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtwr) { s->selected_timings.tWR = i; break; } } for (i = 15; i < 78; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtrfc) { s->selected_timings.tRFC = ((i + 16) & 0xfe) - 15; break; } } for (i = 4; i < 15; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtwtr) { s->selected_timings.tWTR = i; break; } } for (i = 2; i < 15; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtrrd) { s->selected_timings.tRRD = i; break; } } for (i = 4; i < 15; i++) { tmp = mult[s->selected_timings.mem_clk] * i; if (tmp >= maxtrtp) { s->selected_timings.tRTP = i; break; } } s->selected_timings.fsb_clk = s->max_fsb; printk(BIOS_DEBUG, "Selected timings:\n"); printk(BIOS_DEBUG, "\tFSB: %dMHz\n", fsb2mhz(s->selected_timings.fsb_clk)); printk(BIOS_DEBUG, "\tDDR: %dMHz\n", ddr2mhz(s->selected_timings.mem_clk)); printk(BIOS_DEBUG, "\tCAS: %d\n", s->selected_timings.CAS); printk(BIOS_DEBUG, "\ttRAS: %d\n", s->selected_timings.tRAS); printk(BIOS_DEBUG, "\ttRP: %d\n", s->selected_timings.tRP); printk(BIOS_DEBUG, "\ttRCD: %d\n", s->selected_timings.tRCD); printk(BIOS_DEBUG, "\ttWR: %d\n", s->selected_timings.tWR); printk(BIOS_DEBUG, "\ttRFC: %d\n", s->selected_timings.tRFC); printk(BIOS_DEBUG, "\ttWTR: %d\n", s->selected_timings.tWTR); printk(BIOS_DEBUG, "\ttRRD: %d\n", s->selected_timings.tRRD); printk(BIOS_DEBUG, "\ttRTP: %d\n", s->selected_timings.tRTP); } static void clkcross_ddr2(struct sysinfo *s) { u8 i, j; MCHBAR16(0xc1c) = MCHBAR16(0xc1c) | (1 << 15); static const u32 clkxtab[6][3][13] = { /* MEMCLK 400 N/A */ {{}, {}, {} }, /* MEMCLK 533 N/A */ {{}, {}, {} }, /* MEMCLK 667 * FSB 800 */ {{0x1f1f1f1f, 0x1a07070b, 0x00000000, 0x10000000, 0x20010208, 0x04080000, 0x10010002, 0x00000000, 0x00000000, 0x02000000, 0x04000100, 0x08000000, 0x10200204}, /* FSB 1067 */ {0x6d5b1f1f, 0x0f0f0f0f, 0x00000000, 0x20000000, 0x80020410, 0x02040008, 0x10000100, 0x00000000, 0x00000000, 0x04000000, 0x08000102, 0x20000000, 0x40010208}, /* FSB 1333 */ {0x05050303, 0xffffffff, 0xffff0000, 0x00000000, 0x08020000, 0x00000000, 0x00020001, 0x00000000, 0x00000000, 0x00000000, 0x08010204, 0x00000000, 0x04010000} }, /* MEMCLK 800 * FSB 800 */ {{0xffffffff, 0x05030305, 0x0000ffff, 0x0000000, 0x08010204, 0x00000000, 0x08010204, 0x0000000, 0x00000000, 0x00000000, 0x00020001, 0x0000000, 0x04080102}, /* FSB 1067 */ {0x07070707, 0x06030303, 0x00000000, 0x00000000, 0x08010200, 0x00000000, 0x04000102, 0x00000000, 0x00000000, 0x00000000, 0x00020001, 0x00000000, 0x02040801}, /* FSB 1333 */ {0x0d0b0707, 0x3e1f1f2f, 0x01010000, 0x00000000, 0x10020400, 0x02000000, 0x00040100, 0x00000000, 0x00000000, 0x04080000, 0x00100102, 0x00000000, 0x08100200} }, /* MEMCLK 1067 */ {{}, /* FSB 1067 */ {0xffffffff, 0x05030305, 0x0000ffff, 0x00000000, 0x04080102, 0x00000000, 0x08010204, 0x00000000, 0x00000000, 0x00000000, 0x00020001, 0x00000000, 0x02040801}, /* FSB 1333 */ {0x0f0f0f0f, 0x5b1f1f6d, 0x00000000, 0x00000000, 0x08010204, 0x04000000, 0x00080102, 0x00000000, 0x00000000, 0x02000408, 0x00100001, 0x00000000, 0x04080102} }, /* MEMCLK 1333 */ {{}, {}, /* FSB 1333 */ {0xffffffff, 0x05030305, 0x0000ffff, 0x00000000, 0x04080102, 0x00000000, 0x04080102, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02040801} } }; i = (u8)s->selected_timings.mem_clk; j = (u8)s->selected_timings.fsb_clk; MCHBAR32(0xc04) = clkxtab[i][j][0]; MCHBAR32(0xc50) = clkxtab[i][j][1]; MCHBAR32(0xc54) = clkxtab[i][j][2]; MCHBAR8(0xc08) = MCHBAR8(0xc08) | (1 << 7); MCHBAR32(0x6d8) = clkxtab[i][j][3]; MCHBAR32(0x6e0) = clkxtab[i][j][3]; MCHBAR32(0x6dc) = clkxtab[i][j][4]; MCHBAR32(0x6e4) = clkxtab[i][j][4]; MCHBAR32(0x6e8) = clkxtab[i][j][5]; MCHBAR32(0x6f0) = clkxtab[i][j][5]; MCHBAR32(0x6ec) = clkxtab[i][j][6]; MCHBAR32(0x6f4) = clkxtab[i][j][6]; MCHBAR32(0x6f8) = clkxtab[i][j][7]; MCHBAR32(0x6fc) = clkxtab[i][j][8]; MCHBAR32(0x708) = clkxtab[i][j][11]; MCHBAR32(0x70c) = clkxtab[i][j][12]; } static void checkreset_ddr2(struct sysinfo *s) { u8 pmcon2; u32 pmsts; if (s->boot_path >= 1) { pmsts = MCHBAR32(PMSTS_MCHBAR); if (!(pmsts & 1)) printk(BIOS_DEBUG, "Channel 0 possibly not in self refresh\n"); if (!(pmsts & 2)) printk(BIOS_DEBUG, "Channel 1 possibly not in self refresh\n"); } pmcon2 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2); if (pmcon2 & 0x80) { pmcon2 &= ~0x80; pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, pmcon2); /* do magic 0xf0 thing. */ u8 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0); pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~(1 << 2)); reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0); pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | (1 << 2)); printk(BIOS_DEBUG, "Reset...\n"); outb(0x6, 0xcf9); asm ("hlt"); } pmcon2 |= 0x80; pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, pmcon2); } static void setioclk_ddr2(struct sysinfo *s) { MCHBAR32(0x1bc) = 0x08060402; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x200; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x100; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) | 0x20; MCHBAR16(0x1c0) = MCHBAR16(0x1c0) & ~1; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_800MHz: case MEM_CLOCK_1066MHz: MCHBAR8(0x5d9) = (MCHBAR8(0x5d9) & ~0x2) | 0x2; MCHBAR8(0x9d9) = (MCHBAR8(0x9d9) & ~0x2) | 0x2; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xc0; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xe0; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0xa0; break; case MEM_CLOCK_667MHz: case MEM_CLOCK_1333MHz: MCHBAR8(0x5d9) = MCHBAR8(0x5d9) & ~0x2; MCHBAR8(0x9d9) = MCHBAR8(0x9d9) & ~0x2; MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xf0) | 0x40; break; } MCHBAR32(0x594) = MCHBAR32(0x594) | (1 << 31); MCHBAR32(0x994) = MCHBAR32(0x994) | (1 << 31); } static void launch_ddr2(struct sysinfo *s) { u8 i; u32 launch1 = 0x58001117; u32 launch2 = 0; u32 launch3 = 0; if (s->selected_timings.CAS == 5) { launch2 = 0x00220201; } else if (s->selected_timings.CAS == 6) { launch2 = 0x00230302; } else { die("Unsupported CAS\n"); } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR32(0x400*i + 0x220) = launch1; MCHBAR32(0x400*i + 0x224) = launch2; MCHBAR32(0x400*i + 0x21c) = launch3; MCHBAR32(0x400*i + 0x248) = MCHBAR32(0x400*i + 0x248) | (1 << 23); } MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0x58000000) | 0x48000000; MCHBAR32(0x2c0) = MCHBAR32(0x2c0) | 0x1e0; MCHBAR32(0x2c4) = (MCHBAR32(0x2c4) & ~0xf) | 0xc; } static void clkset0(u8 ch, u8 setting[5]) { MCHBAR16(0x400*ch + 0x5a0) = (MCHBAR16(0x400*ch + 0x5a0) & ~0xc440) | (setting[4] << 14) | (setting[3] << 6) | (setting[2] << 10); MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x581) = (MCHBAR8(0x400*ch + 0x581) & ~0xf) | setting[0]; } static void clkset1(u8 ch, u8 setting[5]) { MCHBAR32(0x400*ch + 0x5a0) = (MCHBAR32(0x400*ch + 0x5a0) & ~0x30880) | (setting[4] << 16) | (setting[3] << 7) | (setting[2] << 11); MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x582) = (MCHBAR8(0x400*ch + 0x582) & ~0xf) | setting[0]; } static void ctrlset0(u8 ch, u8 setting[5]) { MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x3300000) | (setting[4] << 24) | (setting[3] << 20) | (setting[2] << 21); MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x584) = (MCHBAR8(0x400*ch + 0x584) & ~0xf) | setting[0]; } static void ctrlset1(u8 ch, u8 setting[5]) { MCHBAR32(0x400*ch + 0x59c) = (MCHBAR32(0x400*ch + 0x59c) & ~0x18c00000) | (setting[4] << 27) | (setting[3] << 22) | (setting[2] << 23); MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x585) = (MCHBAR8(0x400*ch + 0x585) & ~0xf) | setting[0]; } static void ctrlset2(u8 ch, u8 setting[5]) { MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) | (setting[4] << 14) | (setting[3] << 12) | (setting[2] << 13); MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x586) = (MCHBAR8(0x400*ch + 0x586) & ~0xf) | setting[0]; } static void ctrlset3(u8 ch, u8 setting[5]) { MCHBAR32(0x400*ch + 0x598) = (MCHBAR32(0x400*ch + 0x598) & ~0x18c00000) | (setting[4] << 10) | (setting[3] << 8) | (setting[2] << 9); MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x587) = (MCHBAR8(0x400*ch + 0x587) & ~0xf) | setting[0]; } static void cmdset(u8 ch, u8 setting[5]) { MCHBAR8(0x400*ch + 0x598) = (MCHBAR8(0x400*ch + 0x598) & ~0x30) | (setting[4] << 4); MCHBAR8(0x400*ch + 0x594) = (MCHBAR8(0x400*ch + 0x594) & ~0x60) | (setting[3] << 5) | (setting[2] << 6); MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x580) = (MCHBAR8(0x400*ch + 0x580) & ~0xf) | setting[0]; } static void dqsset(u8 ch, u8 lane, u8 setting[5]) { MCHBAR32(0x400*ch + 0x5fc) = MCHBAR32(0x400*ch + 0x5fc) & ~(2 << (lane*4)); MCHBAR32(0x400*ch + 0x5b4) = (MCHBAR32(0x400*ch + 0x5b4) & ~(0x201 << lane)) | (setting[2] << (9 + lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5b8) = (MCHBAR32(0x400*ch + 0x5b8) & ~(0x201 << lane)) | (setting[2] << (9 + lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5bc) = (MCHBAR32(0x400*ch + 0x5bc) & ~(0x201 << lane)) | (setting[2] << (9 + lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5c0) = (MCHBAR32(0x400*ch + 0x5c0) & ~(0x201 << lane)) | (setting[2] << (9 + lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5c8) = (MCHBAR32(0x400*ch + 0x5c8) & ~(0x3 << (16+lane*2))) | (setting[4] << (16+lane*2)); MCHBAR32(0x400*ch + 0x5cc) = (MCHBAR32(0x400*ch + 0x5cc) & ~(0x3 << (16+lane*2))) | (setting[4] << (16+lane*2)); MCHBAR32(0x400*ch + 0x5d0) = (MCHBAR32(0x400*ch + 0x5d0) & ~(0x3 << (16+lane*2))) | (setting[4] << (16+lane*2)); MCHBAR32(0x400*ch + 0x5d4) = (MCHBAR32(0x400*ch + 0x5d4) & ~(0x3 << (16+lane*2))) | (setting[4] << (16+lane*2)); MCHBAR8(0x400*ch + 0x520 + lane*4) = (MCHBAR8(0x400*ch + 0x520 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x520 + lane*4) = (MCHBAR8(0x400*ch + 0x520 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x521 + lane*4) = (MCHBAR8(0x400*ch + 0x521 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x521 + lane*4) = (MCHBAR8(0x400*ch + 0x521 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x522 + lane*4) = (MCHBAR8(0x400*ch + 0x522 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x522 + lane*4) = (MCHBAR8(0x400*ch + 0x522 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x523 + lane*4) = (MCHBAR8(0x400*ch + 0x523 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x523 + lane*4) = (MCHBAR8(0x400*ch + 0x523 + lane*4) & ~0xf) | setting[0]; } static void dqset(u8 ch, u8 lane, u8 setting[5]) { MCHBAR32(0x400*ch + 0x5fc) = MCHBAR32(0x400*ch + 0x5fc) & ~(1 << (lane*4)); MCHBAR32(0x400*ch + 0x5a4) = (MCHBAR32(0x400*ch + 0x5a4) & ~(0x201 << lane)) | (setting[2] << (9+lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5a8) = (MCHBAR32(0x400*ch + 0x5a8) & ~(0x201 << lane)) | (setting[2] << (9+lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5ac) = (MCHBAR32(0x400*ch + 0x5ac) & ~(0x201 << lane)) | (setting[2] << (9+lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5b0) = (MCHBAR32(0x400*ch + 0x5b0) & ~(0x201 << lane)) | (setting[2] << (9+lane)) | (setting[3] << lane); MCHBAR32(0x400*ch + 0x5c8) = (MCHBAR32(0x400*ch + 0x5c8) & ~(0x3 << (lane*2))) | (setting[4] << (2*lane)); MCHBAR32(0x400*ch + 0x5cc) = (MCHBAR32(0x400*ch + 0x5cc) & ~(0x3 << (lane*2))) | (setting[4] << (2*lane)); MCHBAR32(0x400*ch + 0x5d0) = (MCHBAR32(0x400*ch + 0x5d0) & ~(0x3 << (lane*2))) | (setting[4] << (2*lane)); MCHBAR32(0x400*ch + 0x5d4) = (MCHBAR32(0x400*ch + 0x5d4) & ~(0x3 << (lane*2))) | (setting[4] << (2*lane)); MCHBAR8(0x400*ch + 0x500 + lane*4) = (MCHBAR8(0x400*ch + 0x500 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x500 + lane*4) = (MCHBAR8(0x400*ch + 0x500 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x501 + lane*4) = (MCHBAR8(0x400*ch + 0x501 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x501 + lane*4) = (MCHBAR8(0x400*ch + 0x501 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x502 + lane*4) = (MCHBAR8(0x400*ch + 0x502 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x502 + lane*4) = (MCHBAR8(0x400*ch + 0x502 + lane*4) & ~0xf) | setting[0]; MCHBAR8(0x400*ch + 0x503 + lane*4) = (MCHBAR8(0x400*ch + 0x503 + lane*4) & ~0x70) | (setting[1] << 4); MCHBAR8(0x400*ch + 0x503 + lane*4) = (MCHBAR8(0x400*ch + 0x503 + lane*4) & ~0xf) | setting[0]; } static void timings_ddr2(struct sysinfo *s) { u8 i; u8 twl, ta1, ta2, ta3, ta4; u8 reg8; u8 flag1 = 0; u8 flag2 = 0; u16 reg16; u32 reg32; u16 ddr, fsb; u8 trpmod = 0; u8 bankmod = 1; u8 pagemod = 0; u8 adjusted_cas; adjusted_cas = s->selected_timings.CAS - 3; u16 fsb2ps[3] = { 5000, // 800 3750, // 1067 3000 // 1333 }; u16 ddr2ps[6] = { 5000, // 400 3750, // 533 3000, // 667 2500, // 800 1875, // 1067 1500 // 1333 }; u16 lut1[6] = { 0, 0, 2600, 3120, 4171, 5200 }; ta1 = 6; ta2 = 6; ta3 = 5; ta4 = 8; twl = s->selected_timings.CAS - 1; FOR_EACH_POPULATED_DIMM(s->dimms, i) { if (s->dimms[i].banks == 1) { // 8 banks trpmod = 1; bankmod = 0; } if (s->dimms[i].page_size == 2048) { pagemod = 1; } } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR8(0x400*i + 0x26f) = MCHBAR8(0x400*i + 0x26f) | 0x3; MCHBAR8(0x400*i + 0x228) = (MCHBAR8(0x400*i + 0x228) & ~0x7) | 0x2; MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf0) | (0 << 4); /* tWL - x ?? */ MCHBAR8(0x400*i + 0x240) = (MCHBAR8(0x400*i + 0x240) & ~0xf) | adjusted_cas; MCHBAR16(0x400*i + 0x265) = (MCHBAR16(0x400*i + 0x265) & ~0x3f00) | ((adjusted_cas + 9) << 8); reg16 = (s->selected_timings.tRAS << 11) | ((twl + 4 + s->selected_timings.tWR) << 6) | ((2 + MAX(s->selected_timings.tRTP, 2)) << 2) | 1; MCHBAR16(0x400*i + 0x250) = reg16; reg32 = (bankmod << 21) | (s->selected_timings.tRRD << 17) | (s->selected_timings.tRP << 13) | ((s->selected_timings.tRP + trpmod) << 9) | s->selected_timings.tRFC; reg8 = (MCHBAR8(0x400*i + 0x26f) >> 1) & 1; if (bankmod) { switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: if (reg8) { if (pagemod) { reg32 |= 16 << 22; } else { reg32 |= 12 << 22; } } else { if (pagemod) { reg32 |= 18 << 22; } else { reg32 |= 14 << 22; } } break; case MEM_CLOCK_800MHz: if (reg8) { if (pagemod) { reg32 |= 18 << 22; } else { reg32 |= 14 << 22; } } else { if (pagemod) { reg32 |= 20 << 22; } else { reg32 |= 16 << 22; } } break; } } MCHBAR32(0x400*i + 0x252) = reg32; MCHBAR16(0x400*i + 0x256) = (s->selected_timings.tRCD << 12) | (0x4 << 8) | (ta2 << 4) | ta4; MCHBAR32(0x400*i + 0x258) = (s->selected_timings.tRCD << 17) | ((twl + 4 + s->selected_timings.tWTR) << 12) | (ta3 << 8) | (4 << 4) | ta1; MCHBAR16(0x400*i + 0x25b) = ((s->selected_timings.tRP + trpmod) << 9) | s->selected_timings.tRFC; MCHBAR16(0x400*i + 0x260) = (MCHBAR16(0x400*i + 0x260) & ~0x3fe) | (100 << 1); MCHBAR8(0x400*i + 0x264) = 0xff; MCHBAR8(0x400*i + 0x25d) = (MCHBAR8(0x400*i + 0x25d) & ~0x3f) | s->selected_timings.tRAS; MCHBAR16(0x400*i + 0x244) = 0x2310; switch (s->selected_timings.mem_clk) { case MEM_CLOCK_667MHz: reg8 = 0; break; default: reg8 = 1; break; } MCHBAR8(0x400*i + 0x246) = (MCHBAR8(0x400*i + 0x246) & ~0x1f) | (reg8 << 2) | 1; fsb = fsb2ps[s->selected_timings.fsb_clk]; ddr = ddr2ps[s->selected_timings.mem_clk]; reg32 = (u32)((adjusted_cas + 7 + reg8) * ddr); reg32 = (u32)((reg32 / fsb) << 8); reg32 |= 0x0e000000; if ((fsb2mhz(s->selected_timings.fsb_clk) / ddr2mhz(s->selected_timings.mem_clk)) > 2) { reg32 |= 1 << 24; } MCHBAR32(0x400*i + 0x248) = (MCHBAR32(0x400*i + 0x248) & ~0x0f001f00) | reg32; if (twl > 2) { flag1 = 1; } if (s->selected_timings.mem_clk >= MEM_CLOCK_800MHz) { flag2 = 1; } reg16 = (u8)(twl - 1 - flag1 - flag2); reg16 |= reg16 << 4; if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) { if (reg16) { reg16--; } } reg16 |= flag1 << 8; reg16 |= flag2 << 9; MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x1ff) | reg16; MCHBAR16(0x400*i + 0x25e) = 0x15a5; MCHBAR32(0x400*i + 0x265) = MCHBAR32(0x400*i + 0x265) & ~0x1f; MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0x000fffff) | (0x3f << 14) | lut1[s->selected_timings.mem_clk]; MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) | 1; MCHBAR8(0x400*i + 0x24c) = MCHBAR8(0x400*i + 0x24c) & ~0x3; reg16 = 0; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg16 = 0x99; break; case MEM_CLOCK_800MHz: if (s->selected_timings.CAS == 5) { reg16 = 0x19a; } else if (s->selected_timings.CAS == 6) { reg16 = 0x9a; } break; } reg16 &= 0x7; reg16 += twl + 9; reg16 <<= 10; MCHBAR16(0x400*i + 0x24d) = (MCHBAR16(0x400*i + 0x24d) & ~0x7c00) | reg16; MCHBAR8(0x400*i + 0x267) = (MCHBAR8(0x400*i + 0x267) & ~0x3f) | 0x13; MCHBAR8(0x400*i + 0x268) = (MCHBAR8(0x400*i + 0x268) & ~0xff) | 0x4a; reg16 = (MCHBAR16(0x400*i + 0x269) & 0xc000) >> 2; reg16 += 2 << 12; reg16 |= (0x15 << 6) | 0x1f; MCHBAR16(0x400*i + 0x26d) = (MCHBAR16(0x400*i + 0x26d) & ~0x7fff) | reg16; reg32 = (1 << 25) | (6 << 27); MCHBAR32(0x400*i + 0x269) = (MCHBAR32(0x400*i + 0x269) & ~0xfa300000) | reg32; MCHBAR8(0x400*i + 0x271) = MCHBAR8(0x400*i + 0x271) & ~0x80; MCHBAR8(0x400*i + 0x274) = MCHBAR8(0x400*i + 0x274) & ~0x6; } // END EACH POPULATED CHANNEL reg16 = 0x1f << 5; reg16 |= 0xe << 10; MCHBAR16(0x125) = (MCHBAR16(0x125) & ~0x3fe0) | reg16; MCHBAR16(0x127) = (MCHBAR16(0x127) & ~0x7ff) | 0x540; MCHBAR8(0x129) = MCHBAR8(0x129) | 0x1f; MCHBAR8(0x12c) = MCHBAR8(0x12c) | 0xa0; MCHBAR32(0x241) = (MCHBAR32(0x241) & ~0x1ffff) | 0x11; MCHBAR32(0x641) = (MCHBAR32(0x641) & ~0x1ffff) | 0x11; MCHBAR8(0x246) = MCHBAR8(0x246) & ~0x10; MCHBAR8(0x646) = MCHBAR8(0x646) & ~0x10; MCHBAR32(0x120) = (2 << 29) | (1 << 28) | (1 << 23) | 0xd7f5f; reg8 = (u8)((MCHBAR32(0x252) & 0x1e000) >> 13); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf0) | (reg8 << 4); reg8 = (u8)((MCHBAR32(0x258) & 0x1e0000) >> 17); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf) | reg8; MCHBAR8(0x12f) = 0x4c; reg32 = (1 << 31) | (0x80 << 14) | (1 << 13) | (0xa << 9); MCHBAR32(0x6c0) = (MCHBAR32(0x6c0) & ~0xffffff00) | reg32; MCHBAR8(0x6c4) = (MCHBAR8(0x6c4) & ~0x7) | 0x2; } static void dll_ddr2(struct sysinfo *s) { u8 i, j, r, reg8, clk, async; u16 reg16 = 0; u32 reg32 = 0; u8 lane; MCHBAR16(0x180) = (MCHBAR16(0x180) & ~0x7e06) | 0xc04; MCHBAR16(0x182) = (MCHBAR16(0x182) & ~0x3ff) | 0xc8; MCHBAR16(0x18a) = (MCHBAR16(0x18a) & ~0x1f1f) | 0x0f0f; MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x8020) | 0x100; MCHBAR8(0x194) = (MCHBAR8(0x194) & ~0x77) | 0x33; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg16 = (0xa << 9) | 0xa; break; case MEM_CLOCK_800MHz: reg16 = (0x9 << 9) | 0x9; break; } MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x1e0f) | reg16; MCHBAR16(0x19c) = (MCHBAR16(0x19c) & ~0x2030) | 0x2010; udelay(1); MCHBAR16(0x198) = MCHBAR16(0x198) & ~0x100; MCHBAR16(0x1c8) = (MCHBAR16(0x1c8) & ~0x1f) | 0xd; udelay(1); MCHBAR8(0x190) = MCHBAR8(0x190) & ~1; udelay(1); // 533ns MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x11554000; udelay(1); MCHBAR32(0x198) = MCHBAR32(0x198) & ~0x1455; udelay(1); MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x1c; MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x1c; udelay(1); // 533ns MCHBAR8(0x583) = MCHBAR8(0x583) & ~0x3; MCHBAR8(0x983) = MCHBAR8(0x983) & ~0x3; udelay(1); // 533ns // ME related MCHBAR32(0x1a0) = (MCHBAR32(0x1a0) & ~0x7ffffff) | 0x551803; MCHBAR16(0x1b4) = MCHBAR16(0x1b4) & ~0x800; MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 0xf0; FOR_EACH_CHANNEL(i) { reg16 = 0; MCHBAR16(0x400*i + 0x59c) = MCHBAR16(0x400*i + 0x59c) & ~0x3000; reg32 = 0; FOR_EACH_RANK_IN_CHANNEL(r) if (!RANK_IS_POPULATED(s->dimms, i, r)) { reg32 |= 0x111 << r; } MCHBAR32(0x400*i + 0x59c) = (MCHBAR32(0x400*i + 0x59c) & ~0xfff) | reg32; MCHBAR8(0x400*i + 0x594) = MCHBAR8(0x400*i + 0x594) & ~1; if (!CHANNEL_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "No dimms in channel %d\n", i); reg8 = 0x3f; } else if (ONLY_DIMMA_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "DimmA populated only in channel %d\n", i); reg8 = 0x38; } else if (ONLY_DIMMB_IS_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "DimmB populated only in channel %d\n", i); reg8 = 0x7; } else if (BOTH_DIMMS_ARE_POPULATED(s->dimms, i)) { printk(BIOS_DEBUG, "Both dimms populated in channel %d\n", i); reg8 = 0; } else { die("Unhandled case\n"); } //reg8 = 0x00; // FIXME don't switch on all clocks anyway MCHBAR32(0x400*i + 0x5a0) = (MCHBAR32(0x400*i + 0x5a0) & ~0x3f000000) | ((u32)(reg8 << 24)); } // END EACH CHANNEL MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 1; MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4; // Update DLL timing MCHBAR8(0x1a4) = MCHBAR8(0x1a4) & ~0x80; MCHBAR8(0x1a4) = MCHBAR8(0x1a4) | 0x40; MCHBAR16(0x5f0) = (MCHBAR16(0x5f0) & ~0x400) | 0x400; u8 dll_setting_667[23][5] = { // tap pi db delay {13, 0, 1,0, 0}, {4, 1, 0,0, 0}, {13, 0, 1,0, 0}, {4, 5, 0,0, 0}, {4, 1, 0,0, 0}, {4, 1, 0,0, 0}, {4, 1, 0,0, 0}, {1, 5, 1,1, 1}, {1, 6, 1,1, 1}, {2, 0, 1,1, 1}, {2, 1, 1,1, 1}, {2, 1, 1,1, 1}, {14, 6, 1,0, 0}, {14, 3, 1,0, 0}, {14, 0, 1,0, 0}, {9, 0, 0,0, 1}, {9, 1, 0,0, 1}, {9, 2, 0,0, 1}, {9, 2, 0,0, 1}, {9, 1, 0,0, 1}, {6, 4, 0,0, 1}, {6, 2, 0,0, 1}, {5, 4, 0,0, 1} }; u8 dll_setting_800[23][5] = { // tap pi db delay {11, 5, 1,0, 0}, {0, 5, 1,1, 0}, {11, 5, 1,0, 0}, {1, 4, 1,1, 0}, {0, 5, 1,1, 0}, {0, 5, 1,1, 0}, {0, 5, 1,1, 0}, {2, 5, 1,1, 1}, {2, 6, 1,1, 1}, {3, 0, 1,1, 1}, {3, 0, 1,1, 1}, {3, 3, 1,1, 1}, {2, 0, 1,1, 1}, {1, 3, 1,1, 1}, {0, 3, 1,1, 1}, {9, 3, 0,0, 1}, {9, 4, 0,0, 1}, {9, 5, 0,0, 1}, {9, 6, 0,0, 1}, {10, 0, 0,0, 1}, {8, 1, 0,0, 1}, {7, 5, 0,0, 1}, {6, 2, 0,0, 1} }; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR16(0x400*i + 0x5f0) = (MCHBAR16(0x400*i + 0x5f0) & ~0x3fc) | 0x3fc; MCHBAR32(0x400*i + 0x5fc) = MCHBAR32(0x400*i + 0x5fc) & ~0xcccccccc; MCHBAR8(0x400*i + 0x5d9) = (MCHBAR8(0x400*i + 0x5d9) & ~0xf0) | 0x70; MCHBAR16(0x400*i + 0x590) = (MCHBAR16(0x400*i + 0x590) & ~0xffff) | 0x5555; } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { clkset0(i, &dll_setting_667[CLKSET0][0]); clkset1(i, &dll_setting_667[CLKSET1][0]); ctrlset0(i, &dll_setting_667[CTRL0][0]); ctrlset1(i, &dll_setting_667[CTRL1][0]); ctrlset2(i, &dll_setting_667[CTRL2][0]); ctrlset3(i, &dll_setting_667[CTRL3][0]); cmdset(i, &dll_setting_667[CMD][0]); } else { clkset0(i, &dll_setting_800[CLKSET0][0]); clkset1(i, &dll_setting_800[CLKSET1][0]); ctrlset0(i, &dll_setting_800[CTRL0][0]); ctrlset1(i, &dll_setting_800[CTRL1][0]); ctrlset2(i, &dll_setting_800[CTRL2][0]); ctrlset3(i, &dll_setting_800[CTRL3][0]); cmdset(i, &dll_setting_800[CMD][0]); } } // XXX if not async mode MCHBAR16(0x180) = MCHBAR16(0x180) & ~0x8200; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4; j = 0; for (i = 0; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10); if (MCHBAR32(0x184) == 0xffffffff) { j++; if (j >= 2) break; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { j = 2; break; } } else { j = 0; } } if (i == 1 || ((i == 0) && s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) { j = 0; i++; for (; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x4; while (MCHBAR8(0x180) & 0x10); if (MCHBAR32(0x184) == 0) { i++; break; } } for (; i < 16; i++) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10); if (MCHBAR32(0x184) == 0xffffffff) { j++; if (j >= 2) break; } else { j = 0; } } if (j < 2) { MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10); j = 2; } } if (j < 2) { MCHBAR8(0x1c8) = MCHBAR8(0x1c8) & ~0x1f; async = 1; } clk = 0x1a; if (async != 1) { reg8 = MCHBAR8(0x188) & 0x1e; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz && s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) { clk = 0x10; } else if (s->selected_timings.mem_clk == MEM_CLOCK_800MHz) { clk = 0x10; } else { clk = 0x1a; } } MCHBAR8(0x180) = MCHBAR8(0x180) & ~0x80; if ((s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) && (s->selected_timings.mem_clk == MEM_CLOCK_667MHz)) { i = MCHBAR8(0x180) & 0xf; i = (i + 10) % 14; MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x1f) | i; MCHBAR8(0x180) = MCHBAR8(0x180) | 0x10; while (MCHBAR8(0x180) & 0x10); } reg8 = MCHBAR8(0x188) & ~1; MCHBAR8(0x188) = reg8; reg8 &= ~0x3e; reg8 |= clk; MCHBAR8(0x188) = reg8; reg8 |= 1; MCHBAR8(0x188) = reg8; if (s->selected_timings.mem_clk == MEM_CLOCK_1333MHz) { MCHBAR8(0x18c) = MCHBAR8(0x18c) | 1; } // Program DQ/DQS dll settings reg32 = 0; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { for (lane = 0; lane < 8; lane++) { if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { reg32 = 0x06db7777; } else if (s->selected_timings.mem_clk == MEM_CLOCK_800MHz) { reg32 = 0x00007777; } MCHBAR32(0x400*i + 0x540 + lane*4) = (MCHBAR32(0x400*i + 0x540 + lane*4) & 0x0fffffff) | reg32; } } FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { for (lane = 0; lane < 8; lane++) { dqsset(i, lane, &dll_setting_667[DQS1+lane][0]); } for (lane = 0; lane < 8; lane++) { dqset(i, lane, &dll_setting_667[DQ1+lane][0]); } } else { for (lane = 0; lane < 8; lane++) { dqsset(i, lane, &dll_setting_800[DQS1+lane][0]); } for (lane = 0; lane < 8; lane++) { dqset(i, lane, &dll_setting_800[DQ1+lane][0]); } } } } static void rcomp_ddr2(struct sysinfo *s) { u8 i, j, k; u32 x32a[8] = { 0x04040404, 0x06050505, 0x09090807, 0x0D0C0B0A, 0x04040404, 0x08070605, 0x0C0B0A09, 0x100F0E0D }; u16 x378[6] = { 0, 0xAAAA, 0x7777, 0x7777, 0x7777, 0x7777 }; u32 x382[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x04030303, 0x04030303 }; u32 x386[6] = { 0, 0x03020202, 0x03020202, 0x03020202, 0x05040404, 0x05040404 }; u32 x38a[6] = { 0, 0x04040303, 0x04040303, 0x04040303, 0x07070605, 0x07070605 }; u32 x38e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x09090808, 0x09090808 }; u32 x392[6] = { 0, 0x02020202, 0x02020202, 0x02020202, 0x03030202, 0x03030202 }; u32 x396[6] = { 0, 0x03030202, 0x03030202, 0x03030202, 0x05040303, 0x05040303 }; u32 x39a[6] = { 0, 0x04040403, 0x04040403, 0x04040403, 0x07070605, 0x07070605 }; u32 x39e[6] = { 0, 0x06060505, 0x06060505, 0x06060505, 0x08080808, 0x08080808 }; u16 addr[6] = { 0x31c, 0x374, 0x3a2, 0x3d0, 0x3fe, 0x42c }; u8 bit[6] = { 0, 0, 1, 1, 0, 0 }; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { for (j = 0; j < 6; j++) { if (j == 0) { MCHBAR32(0x400*i + addr[j]) = (MCHBAR32(0x400*i + addr[j]) & ~0xff000) | 0xaa000; MCHBAR16(0x400*i + 0x320) = (MCHBAR16(0x400*i + 0x320) & ~0xffff) | 0x6666; for (k = 0; k < 8; k++) { MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) = (MCHBAR32(0x400*i + addr[j] + 0xe + (k << 2)) & ~0x3f3f3f3f) | x32a[k]; MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) = (MCHBAR32(0x400*i + addr[j] + 0x2e + (k << 2)) & ~0x3f3f3f3f) | x32a[k]; } } else { MCHBAR16(0x400*i + addr[j]) = (MCHBAR16(0x400*i + addr[j]) & ~0xf000) | 0xa000; MCHBAR16(0x400*i + addr[j] + 4) = (MCHBAR16(0x400*i + addr[j] + 4) & ~0xffff) | x378[j]; MCHBAR32(0x400*i + addr[j] + 0xe) = (MCHBAR32(0x400*i + addr[j] + 0xe) & ~0x3f3f3f3f) | x382[j]; MCHBAR32(0x400*i + addr[j] + 0x12) = (MCHBAR32(0x400*i + addr[j] + 0x12) & ~0x3f3f3f3f) | x386[j]; MCHBAR32(0x400*i + addr[j] + 0x16) = (MCHBAR32(0x400*i + addr[j] + 0x16) & ~0x3f3f3f3f) | x38a[j]; MCHBAR32(0x400*i + addr[j] + 0x1a) = (MCHBAR32(0x400*i + addr[j] + 0x1a) & ~0x3f3f3f3f) | x38e[j]; MCHBAR32(0x400*i + addr[j] + 0x1e) = (MCHBAR32(0x400*i + addr[j] + 0x1e) & ~0x3f3f3f3f) | x392[j]; MCHBAR32(0x400*i + addr[j] + 0x22) = (MCHBAR32(0x400*i + addr[j] + 0x22) & ~0x3f3f3f3f) | x396[j]; MCHBAR32(0x400*i + addr[j] + 0x26) = (MCHBAR32(0x400*i + addr[j] + 0x26) & ~0x3f3f3f3f) | x39a[j]; MCHBAR32(0x400*i + addr[j] + 0x2a) = (MCHBAR32(0x400*i + addr[j] + 0x2a) & ~0x3f3f3f3f) | x39e[j]; } MCHBAR8(0x400*i + addr[j]) = (MCHBAR8(0x400*i + addr[j]) & ~1) | bit[j]; } MCHBAR8(0x400*i + 0x45a) = (MCHBAR8(0x400*i + 0x45a) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x45e) = (MCHBAR8(0x400*i + 0x45e) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x462) = (MCHBAR8(0x400*i + 0x462) & ~0x3f) | 0x12; MCHBAR8(0x400*i + 0x466) = (MCHBAR8(0x400*i + 0x466) & ~0x3f) | 0x12; } // END EACH POPULATED CHANNEL MCHBAR32(0x134) = (MCHBAR32(0x134) & ~0x63c00) | 0x63c00; MCHBAR16(0x174) = (MCHBAR16(0x174) & ~0x63ff) | 0x63ff; MCHBAR16(0x178) = 0x0135; MCHBAR32(0x130) = (MCHBAR32(0x130) & ~0x7bdffe0) | 0x7a9ffa0; if (!CHANNEL_IS_POPULATED(s->dimms, 0)) { MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 27); } if (!CHANNEL_IS_POPULATED(s->dimms, 1)) { MCHBAR32(0x130) = MCHBAR32(0x130) & ~(1 << 28); } MCHBAR8(0x130) = MCHBAR8(0x130) | 1; } static void odt_ddr2(struct sysinfo *s) { u8 i; u16 odt[16][2] = { { 0x0000,0x0000 }, // NC_NC { 0x0000,0x0001 }, // x8SS_NC { 0x0000,0x0011 }, // x8DS_NC { 0x0000,0x0001 }, // x16SS_NC { 0x0004,0x0000 }, // NC_x8SS { 0x0101,0x0404 }, // x8SS_x8SS { 0x0101,0x4444 }, // x8DS_x8SS { 0x0101,0x0404 }, // x16SS_x8SS { 0x0044,0x0000 }, // NC_x8DS { 0x1111,0x0404 }, // x8SS_x8DS { 0x1111,0x4444 }, // x8DS_x8DS { 0x1111,0x0404 }, // x16SS_x8DS { 0x0004,0x0000 }, // NC_x16SS { 0x0101,0x0404 }, // x8SS_x16SS { 0x0101,0x4444 }, // x8DS_x16SS { 0x0101,0x0404 }, // x16SS_x16SS }; FOR_EACH_POPULATED_CHANNEL(s->dimms, i) { MCHBAR16(0x400*i + 0x298) = odt[s->dimm_config[i]][1]; MCHBAR16(0x400*i + 0x294) = odt[s->dimm_config[i]][0]; MCHBAR16(0x400*i + 0x29c) = (MCHBAR16(0x400*i + 0x29c) & ~0xfff) | 0x66b; MCHBAR32(0x400*i + 0x260) = (MCHBAR32(0x400*i + 0x260) & ~0x70e3c00) | 0x3063c00; } } static void dojedec_ddr2(u8 r, u8 ch, u8 cmd, u16 val) { u32 addr = (ch << 29) | (r*0x08000000); volatile u32 rubbish; MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | cmd; MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | cmd; rubbish = read32((void*)((val<<3) | addr)); udelay(10); MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | NORMALOP_CMD; MCHBAR8(0x671) = (MCHBAR8(0x671) & ~0x3e) | NORMALOP_CMD; } static void jedec_ddr2(struct sysinfo *s) { u8 i; u16 mrsval, ch, r, v; u8 odt[16][4] = { {0x00, 0x00, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x01, 0x01, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x01, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x11, 0x11, 0x11, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x00, 0x00, 0x01, 0x01}, {0x11, 0x00, 0x11, 0x11}, {0x11, 0x11, 0x11, 0x11}, {0x11, 0x00, 0x11, 0x11}, {0x00, 0x00, 0x01, 0x00}, {0x11, 0x00, 0x11, 0x00}, {0x11, 0x11, 0x11, 0x00}, {0x11, 0x00, 0x11, 0x00} }; u16 jedec[12][2] = { {NOP_CMD, 0x0}, {PRECHARGE_CMD, 0x0}, {EMRS2_CMD, 0x0}, {EMRS3_CMD, 0x0}, {EMRS1_CMD, 0x0}, {MRS_CMD, 0x100}, // DLL Reset {PRECHARGE_CMD, 0x0}, {CBR_CMD, 0x0}, {CBR_CMD, 0x0}, {MRS_CMD, 0x0}, // DLL out of reset {EMRS1_CMD, 0x380}, // OCD calib default {EMRS1_CMD, 0x0} }; mrsval = (s->selected_timings.CAS << 4) | ((s->selected_timings.tWR - 1) << 9) | 0xb; printk(BIOS_DEBUG, "MRS...\n"); udelay(200); FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { printk(BIOS_DEBUG, "CH%d: Found Rank %d\n", ch, r); for (i = 0; i < 12; i++) { v = jedec[i][1]; switch (jedec[i][0]) { case EMRS1_CMD: v |= (odt[s->dimm_config[ch]][r] << 2); break; case MRS_CMD: v |= mrsval; break; default: break; } dojedec_ddr2(r + ch*4, ch, jedec[i][0], v); udelay(1); //printk(BIOS_DEBUG, "Jedec step %d\n", i); } } printk(BIOS_DEBUG, "MRS done\n"); } static u8 sampledqs(u16 mchloc, u32 addr, u8 hilow, u8 repeat) { u8 dqsmatch = 1; volatile u32 strobe; while (repeat-- > 0) { MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0x2; udelay(2); MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x2; udelay(2); MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0x2; udelay(2); MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x2; udelay(2); barrier(); strobe = read32((u32 *)addr); barrier(); if (((MCHBAR32(mchloc) & 0x40) >> 6) != hilow) { dqsmatch = 0; } } return dqsmatch; } static void rcven_ddr2(struct sysinfo *s) { u8 i, reg8, ch, lane; u32 addr; u8 tap = 0; u8 savecc, savemedium, savetap, coarsecommon, medium; u8 lanecoarse[8] = {0}; u8 mincoarse = 0xff; u8 pitap[2][8]; u16 coarsectrl[2]; u16 coarsedelay[2]; u16 mediumphase[2]; u16 readdelay[2]; u16 mchbar; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc; MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0xc; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { addr = (ch << 29); for (i = 0; !RANK_IS_POPULATED(s->dimms, ch, i); i++) { addr += 128*1024*1024; } for (lane = 0; lane < 8; lane++) { printk(BIOS_DEBUG, "Channel %d, Lane %d addr=0x%08x\n", ch, lane, addr); coarsecommon = (s->selected_timings.CAS - 1); switch (lane) { case 0: case 1: medium = 0; break; case 2: case 3: medium = 1; break; case 4: case 5: medium = 2; break; case 6: case 7: medium = 3; break; default: medium = 0; break; } mchbar = 0x400*ch + 0x561 + (lane << 2); tap = 0; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf; MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70; savecc = coarsecommon; savemedium = medium; savetap = 0; MCHBAR16(0x400*ch + 0x588) = (MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2))) | (1 << (lane*2)); printk(BIOS_DEBUG, "rcven 0.1 coarse=%d\n", coarsecommon); while (sampledqs(mchbar, addr, 1, 1) == 1) { if (medium < 3) { medium++; MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } else { medium = 0; coarsecommon++; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } if (coarsecommon > 16) { die("Coarse > 16: DQS tuning failed, halt\n"); break; } } printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium); savemedium = medium; savecc = coarsecommon; if (medium < 3) { medium++; MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } else { medium = 0; coarsecommon++; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } printk(BIOS_DEBUG, "rcven 0.2\n"); while (sampledqs(mchbar, addr, 0, 1) == 1) { savemedium = medium; savecc = coarsecommon; if (medium < 3) { medium++; MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } else { medium = 0; coarsecommon++; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } if (coarsecommon > 16) { die("Coarse DQS tuning 2 failed, halt\n"); break; } } printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium); coarsecommon = savecc; medium = savemedium; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); printk(BIOS_DEBUG, "rcven 0.3\n"); tap = 0; while (sampledqs(mchbar, addr, 1, 1) == 0) { savetap = tap; tap++; if (tap > 14) { break; } MCHBAR8(0x400*ch + 0x560 + (lane*4)) = (MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap; } tap = savetap; MCHBAR8(0x400*ch + 0x560 + (lane*4)) = (MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap; MCHBAR8(0x400*ch + 0x560 + (lane*4)) = (MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0x70) | 0x30; if (medium < 3) { medium++; MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } else { medium = 0; coarsecommon++; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } if (sampledqs(mchbar, addr, 1, 1) == 0) { die("Not at DQS high, doh\n"); } printk(BIOS_DEBUG, "rcven 0.4\n"); while (sampledqs(mchbar, addr, 1, 1) == 1) { coarsecommon--; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); if (coarsecommon == 0) { die("Couldn't find DQS-high 0 indicator, halt\n"); break; } } printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium); printk(BIOS_DEBUG, "rcven 0.5\n"); while (sampledqs(mchbar, addr, 0, 1) == 1) { savemedium = medium; savecc = coarsecommon; if (medium < 3) { medium++; MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } else { medium = 0; coarsecommon++; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); } if (coarsecommon > 16) { die("Coarse DQS tuning 5 failed, halt\n"); break; } } printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium); printk(BIOS_DEBUG, "rcven 0.6\n"); coarsecommon = savecc; medium = savemedium; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsecommon << 16); MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) | (medium << (lane*2)); while (sampledqs(mchbar, addr, 1, 1) == 0) { savetap = tap; tap++; if (tap > 14) { break; } MCHBAR8(0x400*ch + 0x560 + lane*4) = (MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap; } tap = savetap; MCHBAR8(0x400*ch + 0x560 + lane*4) = (MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap; MCHBAR8(0x400*ch + 0x560 + lane*4) = (MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70) | 0x70; pitap[ch][lane] = 0x70 | tap; MCHBAR16(0x400*ch + 0x588) = MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2)); lanecoarse[lane] = coarsecommon; printk(BIOS_DEBUG, "rcven 0.7\n"); } // END EACH LANE // Find minimum coarse value for (lane = 0; lane < 8; lane++) { if (mincoarse > lanecoarse[lane]) { mincoarse = lanecoarse[lane]; } } printk(BIOS_DEBUG, "Found min coarse value = %d\n", mincoarse); for (lane = 0; lane < 8; lane++) { reg8 = (lanecoarse[lane] == 0) ? 0 : lanecoarse[lane] - mincoarse; MCHBAR16(0x400*ch + 0x5fa) = (MCHBAR16(0x400*ch + 0x5fa) & ~(3 << (lane*2))) | (reg8 << (lane*2)); } MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (mincoarse << 16); coarsectrl[ch] = mincoarse; coarsedelay[ch] = MCHBAR16(0x400*ch + 0x5fa); mediumphase[ch] = MCHBAR16(0x400*ch + 0x58c); readdelay[ch] = MCHBAR16(0x400*ch + 0x588); } // END EACH POPULATED CHANNEL FOR_EACH_CHANNEL(ch) { for (lane = 0; lane < 8; lane++) { MCHBAR8(0x400*ch + 0x560 + (lane*4)) = (MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | pitap[ch][lane]; } MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (coarsectrl[ch] << 16); MCHBAR16(0x400*ch + 0x5fa) = coarsedelay[ch]; MCHBAR16(0x400*ch + 0x58c) = mediumphase[ch]; } printk(BIOS_DEBUG, "End rcven\n"); } static void sdram_save_receive_enable(void) { int i = 0; u16 reg16; u8 values[18]; u8 lane, ch; FOR_EACH_CHANNEL(ch) { lane = 0; while (lane < 8) { values[i] = (MCHBAR8(0x400*ch + 0x560 + lane++ * 4) & 0xf); values[i++] |= (MCHBAR8(0x400*ch + 0x560 + lane++ * 4) & 0xf) << 4; } values[i++] = (MCHBAR32(0x400*ch + 0x248) >> 16) & 0xf; reg16 = MCHBAR16(0x400*ch + 0x5fa); values[i++] = reg16 & 0xff; values[i++] = (reg16 >> 8) & 0xff; reg16 = MCHBAR16(0x400*ch + 0x58c); values[i++] = reg16 & 0xff; values[i++] = (reg16 >> 8) & 0xff; } for (i = 0; i < ARRAY_SIZE(values); i++) cmos_write(values[i], 128 + i); } static void sdram_recover_receive_enable(void) { u8 i; u32 reg32; u16 reg16; u8 values[18]; u8 ch, lane; for (i = 0; i < ARRAY_SIZE(values); i++) values[i] = cmos_read(128 + i); i = 0; FOR_EACH_CHANNEL(ch) { lane = 0; while (lane < 8) { MCHBAR8(0x400*ch + 0x560 + lane++ * 4) = 0x70 | (values[i] & 0xf); MCHBAR8(0x400*ch + 0x560 + lane++ * 4) = 0x70 | ((values[i++] >> 4) & 0xf); } reg32 = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | ((values[i++] & 0xf) << 16); MCHBAR32(0x400*ch + 0x248) = reg32; reg16 = values[i++]; reg16 |= values[i++] << 8; MCHBAR16(0x400*ch + 0x5fa) = reg16; reg16 = values[i++]; reg16 |= values[i++] << 8; MCHBAR16(0x400*ch + 0x58c) = reg16; } } static void sdram_program_receive_enable(struct sysinfo *s) { /* enable upper CMOS */ RCBA32(0x3400) = (1 << 2); /* Program Receive Enable Timings */ if ((s->boot_path == BOOT_PATH_WARM_RESET) || (s->boot_path == BOOT_PATH_RESUME)) { sdram_recover_receive_enable(); } else { rcven_ddr2(s); sdram_save_receive_enable(); } } static void dradrb_ddr2(struct sysinfo *s) { u8 map, i, ch, r, rankpop0, rankpop1; u32 c0dra = 0; u32 c1dra = 0; u32 c0drb = 0; u32 c1drb = 0; u32 dra; u32 dra0; u32 dra1; u16 totalmemorymb; u32 size, offset; u32 size0, size1; u8 dratab[2][2][2][4] = { { { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x00, 0x02, 0xff} }, { {0xff, 0x01, 0xff, 0xff}, {0xff, 0x03, 0xff, 0xff} } }, { { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x04, 0x06, 0x08} }, { {0xff, 0xff, 0xff, 0xff}, {0x05, 0x07, 0x09, 0xff} } } }; u8 drbtab[10] = {0x04, 0x02, 0x08, 0x04, 0x08, 0x04, 0x10, 0x08, 0x20, 0x10}; // DRA rankpop0 = 0; rankpop1 = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { if (((s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED) && ((r) < s->dimms[ch<<1].ranks))) { i = ch << 1; } else { i = (ch << 1) + 1; } dra = dratab[s->dimms[i].banks] [s->dimms[i].width] [s->dimms[i].cols-9] [s->dimms[i].rows-12]; if (s->dimms[i].banks == 1) { dra |= 0x80; } if (ch == 0) { c0dra |= dra << (r*8); rankpop0 |= 1 << r; } else { c1dra |= dra << (r*8); rankpop1 |= 1 << r; } } MCHBAR32(0x208) = c0dra; MCHBAR32(0x608) = c1dra; MCHBAR8(0x262) = (MCHBAR8(0x262) & ~0xf0) | ((rankpop0 << 4) & 0xf0); MCHBAR8(0x662) = (MCHBAR8(0x662) & ~0xf0) | ((rankpop1 << 4) & 0xf0); if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0) || ONLY_DIMMB_IS_POPULATED(s->dimms, 0)) { MCHBAR8(0x260) = MCHBAR8(0x260) | 1; } if (ONLY_DIMMA_IS_POPULATED(s->dimms, 1) || ONLY_DIMMB_IS_POPULATED(s->dimms, 1)) { MCHBAR8(0x660) = MCHBAR8(0x660) | 1; } // DRB FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { if (((s->dimms[ch<<1].card_type != RAW_CARD_UNPOPULATED) && ((r) < s->dimms[ch<<1].ranks))) { i = ch << 1; } else { i = (ch << 1) + 1; } if (ch == 0) { dra0 = (c0dra >> (8*r)) & 0x7f; c0drb = (u16)(c0drb + drbtab[dra0]); s->dimms[i].rank_capacity_mb = drbtab[dra0] << 6; MCHBAR16(0x200 + 2*r) = c0drb; } else { dra1 = (c1dra >> (8*r)) & 0x7f; c1drb = (u16)(c1drb + drbtab[dra1]); s->dimms[i].rank_capacity_mb = drbtab[dra1] << 6; MCHBAR16(0x600 + 2*r) = c1drb; } } s->channel_capacity[0] = c0drb << 6; s->channel_capacity[1] = c1drb << 6; totalmemorymb = s->channel_capacity[0] + s->channel_capacity[1]; printk(BIOS_DEBUG, "Total memory: %d + %d = %dMiB\n", s->channel_capacity[0], s->channel_capacity[1], totalmemorymb); rankpop1 >>= 4; if (rankpop1) { MCHBAR16(0x600 + 2*msbpos(rankpop1)) = c0drb + c1drb; MCHBAR16(0x602 + 2*msbpos(rankpop1)) = c0drb + c1drb; MCHBAR16(0x604 + 2*msbpos(rankpop1)) = c0drb + c1drb; MCHBAR16(0x606 + 2*msbpos(rankpop1)) = c0drb + c1drb; } /* Populated channel sizes in MiB */ size0 = s->channel_capacity[0]; size1 = s->channel_capacity[1]; MCHBAR8(0x111) = MCHBAR8(0x111) & ~0x2; MCHBAR8(0x111) = MCHBAR8(0x111) | (1 << 4); /* Set ME UMA size in MiB */ MCHBAR16(0x100) = ME_UMA_SIZEMB; /* Set ME UMA Present bit */ MCHBAR32(0x111) = MCHBAR32(0x111) | 1; size = MIN(size0 - ME_UMA_SIZEMB, size1) * 2; MCHBAR16(0x104) = size; MCHBAR16(0x102) = size0 + size1 - size; map = 0; if (size0 == 0) { map = 0; } else if (size1 == 0) { map |= 0x20; } else { map |= 0x40; } if (size == 0) { map |= 0x18; } if (size0 - ME_UMA_SIZEMB >= size1) { map |= 0x4; } MCHBAR8(0x110) = map; MCHBAR16(0x10e) = 0; if (size1 != 0) { offset = 0; } else if ((size0 > size1) && ((map & 0x7) == 0x4)) { offset = size/2 + (size0 + size1 - size); } else { offset = size/2 + ME_UMA_SIZEMB; } MCHBAR16(0x108) = offset; MCHBAR16(0x10a) = size/2; } static void mmap_ddr2(struct sysinfo *s) { bool reclaim; u32 gfxsize, gttsize, tsegsize, mmiosize, tom, tolud, touud; u32 gfxbase, gttbase, tsegbase, reclaimbase, reclaimlimit; u16 ggc; u16 ggc2uma[] = { 0, 1, 4, 8, 16, 32, 48, 64, 128, 256, 96, 160, 224, 352 }; u8 ggc2gtt[] = { 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4}; ggc = pci_read_config16(PCI_DEV(0,0,0), 0x52); gfxsize = ggc2uma[(ggc & 0xf0) >> 4]; gttsize = ggc2gtt[(ggc & 0xf00) >> 8]; tsegsize = 1; // 1MB TSEG mmiosize = 0x800; // 2GB MMIO tom = s->channel_capacity[0] + s->channel_capacity[1] - ME_UMA_SIZEMB; tolud = MIN(0x1000 - mmiosize, tom); reclaim = false; if ((tom - tolud) > 0x40) reclaim = true; if (reclaim) { tolud = tolud & ~0x3f; tom = tom & ~0x3f; reclaimbase = MAX(0x1000, tom); reclaimlimit = reclaimbase + (MIN(0x1000, tom) - tolud) - 0x40; } touud = tom; if (reclaim) touud = reclaimlimit + 0x40; gfxbase = tolud - gfxsize; gttbase = gfxbase - gttsize; tsegbase = gttbase - tsegsize; pci_write_config16(PCI_DEV(0,0,0), 0xb0, tolud << 4); pci_write_config16(PCI_DEV(0,0,0), 0xa0, tom >> 6); if (reclaim) { pci_write_config16(PCI_DEV(0,0,0), 0x98, (u16)(reclaimbase >> 6)); pci_write_config16(PCI_DEV(0,0,0), 0x9a, (u16)(reclaimlimit >> 6)); } pci_write_config16(PCI_DEV(0,0,0), 0xa2, touud); pci_write_config32(PCI_DEV(0,0,0), 0xa4, gfxbase << 20); pci_write_config32(PCI_DEV(0,0,0), 0xa8, gttbase << 20); pci_write_config32(PCI_DEV(0,0,0), 0xac, tsegbase << 20); } static void enhanced_ddr2(struct sysinfo *s) { u8 ch, reg8; MCHBAR32(0xfb0) = 0x1000d024; MCHBAR32(0xfb4) = 0xc842; MCHBAR32(0xfbc) = 0xf; MCHBAR32(0xfc4) = 0xfe22244; MCHBAR8(0x12f) = 0x5c; MCHBAR8(0xfb0) = (MCHBAR8(0xfb0) & ~1) | 1; MCHBAR8(0x12f) = MCHBAR8(0x12f) | 0x2; MCHBAR8(0x6c0) = (MCHBAR8(0x6c0) & ~0xf0) | 0xa0; MCHBAR32(0xfa8) = 0x30d400; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1; MCHBAR32(0x400*ch + 0x278) = 0x88141881; MCHBAR16(0x400*ch + 0x27c) = 0x0041; MCHBAR8(0x400*ch + 0x292) = 0xf2; MCHBAR16(0x400*ch + 0x272) = MCHBAR16(0x400*ch + 0x272) | 0x100; MCHBAR8(0x400*ch + 0x243) = (MCHBAR8(0x400*ch + 0x243) & ~0x2) | 1; MCHBAR32(0x400*ch + 0x288) = 0x8040200; MCHBAR32(0x400*ch + 0x28c) = 0xff402010; MCHBAR32(0x400*ch + 0x290) = 0x4f2091c; } reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xf0); pci_write_config8(PCI_DEV(0,0,0), 0xf0, reg8 | 1); MCHBAR32(0xfa0) = (MCHBAR32(0xfa0) & ~0x20002) | 0x2; MCHBAR32(0xfa4) = (MCHBAR32(0xfa4) & ~0x219100c3) | 0x219100c2; MCHBAR32(0x2c) = 0x44a53; MCHBAR32(0x30) = 0x1f5a86; MCHBAR32(0x34) = 0x1902810; MCHBAR32(0x38) = 0xf7000000; MCHBAR32(0x3c) = 0x23014410; MCHBAR32(0x40) = (MCHBAR32(0x40) & ~0x8f038000) | 0x8f038000; MCHBAR32(0x20) = 0x33001; pci_write_config8(PCI_DEV(0,0,0), 0xf0, reg8 & ~1); } static void power_ddr2(struct sysinfo *s) { u32 reg1, reg2, reg3, reg4, clkgate, x592; u8 lane, ch; u8 twl = 0; u16 x264, x23c; twl = s->selected_timings.CAS - 1; x264 = 0x78; switch (s->selected_timings.mem_clk) { default: case MEM_CLOCK_667MHz: reg1 = 0x99; reg2 = 0x1048a9; clkgate = 0x230000; x23c = 0x7a89; break; case MEM_CLOCK_800MHz: if (s->selected_timings.CAS == 5) { reg1 = 0x19a; reg2 = 0x1048aa; } else { reg1 = 0x9a; reg2 = 0x2158aa; x264 = 0x89; } clkgate = 0x280000; x23c = 0x7b89; break; } reg3 = 0x232; reg4 = 0x2864; if (CHANNEL_IS_POPULATED(s->dimms, 0) && CHANNEL_IS_POPULATED(s->dimms, 1)) { MCHBAR32(0x14) = 0x0010461f; } else { MCHBAR32(0x14) = 0x0010691f; } MCHBAR32(0x18) = 0xdf6437f7; MCHBAR32(0x1c) = 0x0; MCHBAR32(0x24) = (MCHBAR32(0x24) & ~0xe0000000) | 0x30000000; MCHBAR32(0x44) = (MCHBAR32(0x44) & ~0x1fef0000) | 0x6b0000; MCHBAR16(0x115) = (u16) reg1; MCHBAR32(0x117) = (MCHBAR32(0x117) & ~0xffffff) | reg2; MCHBAR8(0x124) = 0x7; MCHBAR16(0x12a) = (MCHBAR16(0x12a) & 0) | 0x80; MCHBAR8(0x12c) = (MCHBAR8(0x12c) & 0) | 0xa0; MCHBAR16(0x174) = MCHBAR16(0x174) & ~(1 << 15); MCHBAR16(0x188) = (MCHBAR16(0x188) & ~0x1f00) | 0x1f00; MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0x8; MCHBAR8(0x192) = (MCHBAR8(0x192) & ~1) | 1; MCHBAR8(0x193) = (MCHBAR8(0x193) & ~0xf) | 0xf; MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x480) | 0x80; MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0x1fff) | 0x3f; // | clockgatingiii MCHBAR32(0x6d1) = (MCHBAR32(0x6d1) & ~0xff03ff) | 0x100 | clkgate; MCHBAR8(0x212) = (MCHBAR8(0x212) & ~0x7f) | 0x7f; MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0xffff0) | 0xcc5f0; MCHBAR8(0x2c4) = (MCHBAR8(0x2c4) & ~0x70) | 0x70; MCHBAR32(0x2d1) = (MCHBAR32(0x2d1) & ~0xffffff) | 0xff2831; // | clockgatingi MCHBAR32(0x2d4) = 0x40453600; MCHBAR32(0x300) = 0xc0b0a08; MCHBAR32(0x304) = 0x6040201; MCHBAR32(0x30c) = (MCHBAR32(0x30c) & ~0x43c0f) | 0x41405; MCHBAR16(0x610) = 0x232; MCHBAR16(0x612) = 0x2864; MCHBAR32(0x62c) = (MCHBAR32(0x62c) & ~0xc000000) | 0x4000000; MCHBAR32(0xae4) = 0; MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0xf0000) | 0x10000; MCHBAR32(0xf00) = 0x393a3b3c; MCHBAR32(0xf04) = 0x3d3e3f40; MCHBAR32(0xf08) = 0x393a3b3c; MCHBAR32(0xf0c) = 0x3d3e3f40; MCHBAR32(0xf18) = MCHBAR32(0xf18) & ~0xfff00001; MCHBAR32(0xf48) = 0xfff0ffe0; MCHBAR32(0xf4c) = 0xffc0ff00; MCHBAR32(0xf50) = 0xfc00f000; MCHBAR32(0xf54) = 0xc0008000; MCHBAR32(0xf6c) = (MCHBAR32(0xf6c) & ~0xffff0000) | 0xffff0000; MCHBAR32(0xfac) = MCHBAR32(0xfac) & ~0x80000000; MCHBAR32(0xfb8) = MCHBAR32(0xfb8) & ~0xff000000; MCHBAR32(0xfbc) = (MCHBAR32(0xfbc) & ~0x7f800) | 0xf000; MCHBAR32(0x1104) = 0x3003232; MCHBAR32(0x1108) = 0x74; if (s->selected_timings.fsb_clk == FSB_CLOCK_800MHz) { MCHBAR32(0x110c) = 0xaa; } else { MCHBAR32(0x110c) = 0x100; } MCHBAR32(0x1110) = 0x10810350 & ~0x78; MCHBAR32(0x1114) = 0; if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { twl = 5; } else { twl = 6; } x592 = 0xff; if (pci_read_config8(PCI_DEV(0,0,0), 0x8) < 3) { x592 = ~0x4; } FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR8(0x400*ch + 0x239) = twl + 15; MCHBAR16(0x400*ch + 0x23c) = x23c; MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0x706033) | 0x406033; MCHBAR32(0x400*ch + 0x260) = (MCHBAR32(0x400*ch + 0x260) & ~(1 << 16)) | (1 << 16); MCHBAR8(0x400*ch + 0x264) = x264; MCHBAR8(0x400*ch + 0x592) = (MCHBAR8(0x400*ch + 0x592) & ~0x3f) | (0x3c & x592); MCHBAR8(0x400*ch + 0x593) = (MCHBAR8(0x400*ch + 0x593) & ~0x1f) | 0x1e; } for (lane = 0; lane < 8; lane++) { MCHBAR8(0x561 + (lane << 2)) = MCHBAR8(0x561 + (lane << 2)) & ~(1 << 3); } } void raminit_ddr2(struct sysinfo *s) { u8 ch; u8 r, bank; u32 reg32; // Select timings based on SPD info sdram_detect_smallest_params2(s); // Reset if required checkreset_ddr2(s); if (s->boot_path != BOOT_PATH_WARM_RESET) { // Clear self refresh MCHBAR32(PMSTS_MCHBAR) = MCHBAR32(PMSTS_MCHBAR) | PMSTS_BOTH_SELFREFRESH; // Clear host clk gate reg MCHBAR32(0x1c) = MCHBAR32(0x1c) | 0xffffffff; // Select DDR2 MCHBAR8(0x1a8) = MCHBAR8(0x1a8) & ~0x4; // Set freq MCHBAR32(0xc00) = (MCHBAR32(0xc00) & ~0x70) | (s->selected_timings.mem_clk << 4) | (1 << 10); // Overwrite freq if chipset rejects it s->selected_timings.mem_clk = (MCHBAR8(0xc00) & 0x70) >> 4; if (s->selected_timings.mem_clk > (s->max_fsb + 3)) die("Error: DDR is faster than FSB, halt\n"); } udelay(250000); // Program clock crossing clkcross_ddr2(s); printk(BIOS_DEBUG, "Done clk crossing\n"); // DDR2 IO if (s->boot_path != BOOT_PATH_WARM_RESET) { setioclk_ddr2(s); printk(BIOS_DEBUG, "Done I/O clk\n"); } // Grant to launch launch_ddr2(s); printk(BIOS_DEBUG, "Done launch\n"); // Program DDR2 timings timings_ddr2(s); printk(BIOS_DEBUG, "Done timings\n"); // Program DLL dll_ddr2(s); // RCOMP if (s->boot_path != BOOT_PATH_WARM_RESET) { rcomp_ddr2(s); printk(BIOS_DEBUG, "RCOMP\n"); } // ODT odt_ddr2(s); printk(BIOS_DEBUG, "Done ODT\n"); // RCOMP update if (s->boot_path != BOOT_PATH_WARM_RESET) { while ((MCHBAR8(0x130) & 1) != 0) ; printk(BIOS_DEBUG, "Done RCOMP update\n"); } // Set defaults MCHBAR32(0x260) = (MCHBAR32(0x260) & ~1) | 0xf00000; MCHBAR32(0x660) = (MCHBAR32(0x660) & ~1) | 0xf00000; MCHBAR32(0x208) = 0x01010101; MCHBAR32(0x608) = 0x01010101; MCHBAR32(0x200) = 0x00040002; MCHBAR32(0x204) = 0x00080006; MCHBAR32(0x600) = 0x00040002; MCHBAR32(0x604) = 0x00100006; MCHBAR8(0x111) = MCHBAR8(0x111) | 0x2; MCHBAR32(0x104) = 0; MCHBAR16(0x102) = 0x400; MCHBAR8(0x100) = (2 << 5) | (3 << 3); MCHBAR16(0x10e) = 0; MCHBAR32(0x108) = 0; pci_write_config16(PCI_DEV(0,0,0), 0xb0, 0x4000); pci_write_config16(PCI_DEV(0,0,0), 0xa0, 0x0010); pci_write_config16(PCI_DEV(0,0,0), 0xa2, 0x0400); pci_write_config32(PCI_DEV(0,0,0), 0xa4, 0x40000000); pci_write_config32(PCI_DEV(0,0,0), 0xa8, 0x40000000); pci_write_config32(PCI_DEV(0,0,0), 0xac, 0x40000000); // IOBUFACT if (CHANNEL_IS_POPULATED(s->dimms, 0)) { MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x7; } if (CHANNEL_IS_POPULATED(s->dimms, 1)) { if (pci_read_config8(PCI_DEV(0,0,0), 0x8) < 2) { MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x3f; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 1; } MCHBAR8(0x9dd) = (MCHBAR8(0x9dd) & ~0x3f) | 0x3f; MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x7; } // Pre jedec MCHBAR8(0x40) = MCHBAR8(0x40) | 0x2; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR32(0x400*ch + 0x260) = MCHBAR32(0x400*ch + 0x260) | (1 << 27); } MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf000) | 0xf000; MCHBAR16(0x212) = (MCHBAR16(0x212) & ~0xf00) | 0xf00; printk(BIOS_DEBUG, "Done pre-jedec\n"); // JEDEC reset if (s->boot_path != BOOT_PATH_RESUME) jedec_ddr2(s); printk(BIOS_DEBUG, "Done jedec steps\n"); // After JEDEC reset MCHBAR8(0x40) = MCHBAR8(0x40) & ~0x2; FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { if (s->selected_timings.mem_clk == MEM_CLOCK_667MHz) { reg32 = (2 << 18) | (3 << 13) | (5 << 8); } else { reg32 = (2 << 18) | (3 << 13) | (4 << 8); } MCHBAR32(0x400*ch + 0x274) = (MCHBAR32(0x400*ch + 0x274) & ~0xfff00) | reg32; MCHBAR8(0x400*ch + 0x274) = MCHBAR8(0x400*ch + 0x274) & ~0x80; MCHBAR8(0x400*ch + 0x26c) = MCHBAR8(0x400*ch + 0x26c) | 1; MCHBAR32(0x400*ch + 0x278) = 0x88141881; MCHBAR16(0x400*ch + 0x27c) = 0x41; MCHBAR8(0x400*ch + 0x292) = 0xf2; MCHBAR8(0x400*ch + 0x271) = (MCHBAR8(0x400*ch + 0x271) & ~0xe) | 0xe; } MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x8; MCHBAR8(0x2c3) = MCHBAR8(0x2c3) | 0x40; MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 0x4; printk(BIOS_DEBUG, "Done post-jedec\n"); // Set DDR2 init complete FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) { MCHBAR32(0x400*ch + 0x268) = (MCHBAR32(0x400*ch + 0x268) & ~0xc0000000) | 0xc0000000; } // Receive enable sdram_program_receive_enable(s); printk(BIOS_DEBUG, "Done rcven\n"); // Finish rcven FOR_EACH_CHANNEL(ch) { MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) & ~0xe; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x2; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x4; MCHBAR8(0x400*ch + 0x5d8) = MCHBAR8(0x400*ch + 0x5d8) | 0x8; } MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; // Dummy writes / reads if (s->boot_path == BOOT_PATH_NORMAL) { volatile u32 data; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { for (bank = 0; bank < 4; bank++) { reg32 = (ch << 29) | (r*0x8000000) | (bank << 12); write32((u32 *)reg32, 0xffffffff); data = read32((u32 *)reg32); printk(BIOS_DEBUG, "Wrote ones,"); printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n", reg32, data); write32((u32 *)reg32, 0x00000000); data = read32((u32 *)reg32); printk(BIOS_DEBUG, "Wrote zeros,"); printk(BIOS_DEBUG, " Read: [0x%08x]=0x%08x\n", reg32, data); } } } printk(BIOS_DEBUG, "Done dummy reads\n"); // XXX tRD // XXX Write training // XXX Read training // DRADRB dradrb_ddr2(s); printk(BIOS_DEBUG, "Done DRADRB\n"); // Memory map mmap_ddr2(s); printk(BIOS_DEBUG, "Done memory map\n"); // Enhanced mode enhanced_ddr2(s); printk(BIOS_DEBUG, "Done enhanced mode\n"); // Periodic RCOMP MCHBAR16(0x160) = (MCHBAR16(0x160) & ~0xfff) | 0x999; MCHBAR16(0x1b4) = MCHBAR16(0x1b4) | 0x3000; MCHBAR8(0x130) = MCHBAR8(0x130) | 0x82; printk(BIOS_DEBUG, "Done PRCOMP\n"); // Power settings power_ddr2(s); printk(BIOS_DEBUG, "Done power settings\n"); // ME related if (RANK_IS_POPULATED(s->dimms, 0, 0) || RANK_IS_POPULATED(s->dimms, 1, 0)) { MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 0); } if (RANK_IS_POPULATED(s->dimms, 0, 1) || RANK_IS_POPULATED(s->dimms, 1, 1)) { MCHBAR8(0xa2f) = MCHBAR8(0xa2f) | (1 << 1); } MCHBAR32(0xa30) = MCHBAR32(0xa30) | (1 << 26); printk(BIOS_DEBUG, "Done ddr2\n"); }