/* * This file is part of the coreboot project. * * Copyright (C) 2011 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "raminit.h" #include "pei_data.h" #include "sandybridge.h" #include #include /* Management Engine is in the southbridge */ #include /* * MRC scrambler seed offsets should be reserved in * mainboard cmos.layout and not covered by checksum. */ #if CONFIG(USE_OPTION_TABLE) #include "option_table.h" #define CMOS_OFFSET_MRC_SEED (CMOS_VSTART_mrc_scrambler_seed >> 3) #define CMOS_OFFSET_MRC_SEED_S3 (CMOS_VSTART_mrc_scrambler_seed_s3 >> 3) #define CMOS_OFFSET_MRC_SEED_CHK (CMOS_VSTART_mrc_scrambler_seed_chk >> 3) #else #define CMOS_OFFSET_MRC_SEED 152 #define CMOS_OFFSET_MRC_SEED_S3 156 #define CMOS_OFFSET_MRC_SEED_CHK 160 #endif #define MRC_CACHE_VERSION 0 void save_mrc_data(struct pei_data *pei_data) { u16 c1, c2, checksum; /* Save the MRC S3 restore data to cbmem */ mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION, pei_data->mrc_output, pei_data->mrc_output_len); /* Save the MRC seed values to CMOS */ cmos_write32(CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed); printk(BIOS_DEBUG, "Save scrambler seed 0x%08x to CMOS 0x%02x\n", pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED); cmos_write32(CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3); printk(BIOS_DEBUG, "Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n", pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3); /* Save a simple checksum of the seed values */ c1 = compute_ip_checksum((u8*)&pei_data->scrambler_seed, sizeof(u32)); c2 = compute_ip_checksum((u8*)&pei_data->scrambler_seed_s3, sizeof(u32)); checksum = add_ip_checksums(sizeof(u32), c1, c2); cmos_write(checksum & 0xff, CMOS_OFFSET_MRC_SEED_CHK); cmos_write((checksum >> 8) & 0xff, CMOS_OFFSET_MRC_SEED_CHK+1); } static void prepare_mrc_cache(struct pei_data *pei_data) { struct region_device rdev; u16 c1, c2, checksum, seed_checksum; // preset just in case there is an error pei_data->mrc_input = NULL; pei_data->mrc_input_len = 0; /* Read scrambler seeds from CMOS */ pei_data->scrambler_seed = cmos_read32(CMOS_OFFSET_MRC_SEED); printk(BIOS_DEBUG, "Read scrambler seed 0x%08x from CMOS 0x%02x\n", pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED); pei_data->scrambler_seed_s3 = cmos_read32(CMOS_OFFSET_MRC_SEED_S3); printk(BIOS_DEBUG, "Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n", pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3); /* Compute seed checksum and compare */ c1 = compute_ip_checksum((u8*)&pei_data->scrambler_seed, sizeof(u32)); c2 = compute_ip_checksum((u8*)&pei_data->scrambler_seed_s3, sizeof(u32)); checksum = add_ip_checksums(sizeof(u32), c1, c2); seed_checksum = cmos_read(CMOS_OFFSET_MRC_SEED_CHK); seed_checksum |= cmos_read(CMOS_OFFSET_MRC_SEED_CHK+1) << 8; if (checksum != seed_checksum) { printk(BIOS_ERR, "%s: invalid seed checksum\n", __func__); pei_data->scrambler_seed = 0; pei_data->scrambler_seed_s3 = 0; return; } if (mrc_cache_get_current(MRC_TRAINING_DATA, MRC_CACHE_VERSION, &rdev)) { /* error message printed in find_current_mrc_cache */ return; } pei_data->mrc_input = rdev_mmap_full(&rdev); pei_data->mrc_input_len = region_device_sz(&rdev); printk(BIOS_DEBUG, "%s: at %p, size %x\n", __func__, pei_data->mrc_input, pei_data->mrc_input_len); } static const char *ecc_decoder[] = { "inactive", "active on IO", "disabled on IO", "active" }; /* * Dump in the log memory controller configuration as read from the memory * controller registers. */ static void report_memory_config(void) { u32 addr_decoder_common, addr_decode_ch[2]; int i; addr_decoder_common = MCHBAR32(0x5000); addr_decode_ch[0] = MCHBAR32(0x5004); addr_decode_ch[1] = MCHBAR32(0x5008); printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n", (MCHBAR32(0x5e04) * 13333 * 2 + 50)/100); printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n", addr_decoder_common & 3, (addr_decoder_common >> 2) & 3, (addr_decoder_common >> 4) & 3); for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) { u32 ch_conf = addr_decode_ch[i]; printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf); printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]); printk(BIOS_DEBUG, " enhanced interleave mode %s\n", ((ch_conf >> 22) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " rank interleave %s\n", ((ch_conf >> 21) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " DIMMA %d MB width x%d %s rank%s\n", ((ch_conf >> 0) & 0xff) * 256, ((ch_conf >> 19) & 1) ? 16 : 8, ((ch_conf >> 17) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? "" : ", selected"); printk(BIOS_DEBUG, " DIMMB %d MB width x%d %s rank%s\n", ((ch_conf >> 8) & 0xff) * 256, ((ch_conf >> 20) & 1) ? 16 : 8, ((ch_conf >> 18) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? ", selected" : ""); } } /** * Find PEI executable in coreboot filesystem and execute it. * * @param pei_data: configuration data for UEFI PEI reference code */ void sdram_initialize(struct pei_data *pei_data) { struct sys_info sysinfo; int (*entry) (struct pei_data *pei_data) __attribute__((regparm(1))); /* Wait for ME to be ready */ intel_early_me_init(); intel_early_me_uma_size(); printk(BIOS_DEBUG, "Starting UEFI PEI System Agent\n"); memset(&sysinfo, 0, sizeof(sysinfo)); sysinfo.boot_path = pei_data->boot_mode; /* * Do not pass MRC data in for recovery mode boot, * Always pass it in for S3 resume. */ if (!vboot_recovery_mode_enabled() || pei_data->boot_mode == 2) prepare_mrc_cache(pei_data); /* If MRC data is not found we cannot continue S3 resume. */ if (pei_data->boot_mode == 2 && !pei_data->mrc_input) { printk(BIOS_DEBUG, "Giving up in sdram_initialize: No MRC data\n"); system_reset(); } /* Pass console handler in pei_data */ pei_data->tx_byte = do_putchar; /* Locate and call UEFI System Agent binary. */ entry = cbfs_boot_map_with_leak("mrc.bin", CBFS_TYPE_MRC, NULL); if (entry) { int rv; rv = entry (pei_data); if (rv) { switch (rv) { case -1: printk(BIOS_ERR, "PEI version mismatch.\n"); break; case -2: printk(BIOS_ERR, "Invalid memory frequency.\n"); break; default: printk(BIOS_ERR, "MRC returned %x.\n", rv); } die("Nonzero MRC return value.\n"); } } else { die("UEFI PEI System Agent not found.\n"); } /* mrc.bin reconfigures USB, so reinit it to have debug */ if (CONFIG(USBDEBUG_IN_PRE_RAM)) usbdebug_hw_init(true); /* For reference print the System Agent version * after executing the UEFI PEI stage. */ u32 version = MCHBAR32(0x5034); printk(BIOS_DEBUG, "System Agent Version %d.%d.%d Build %d\n", version >> 24, (version >> 16) & 0xff, (version >> 8) & 0xff, version & 0xff); /* Send ME init done for SandyBridge here. This is done * inside the SystemAgent binary on IvyBridge. */ if (BASE_REV_SNB == (pci_read_config16(PCI_CPU_DEVICE, PCI_DEVICE_ID) & BASE_REV_MASK)) intel_early_me_init_done(ME_INIT_STATUS_SUCCESS); else intel_early_me_status(); report_memory_config(); } /* These are the location and structure of MRC_VAR data in CAR. */ #define DCACHE_RAM_MRC_VAR_BASE \ (CONFIG_DCACHE_RAM_BASE + CONFIG_DCACHE_RAM_SIZE) struct mrc_var_data { u32 acpi_timer_flag; u32 pool_used; u32 pool_base; u32 tx_byte; u32 reserved[4]; } __packed; void perform_raminit(int s3resume) { int cbmem_was_initted; struct pei_data pei_data; struct mrc_var_data *mrc_var; /* Prepare USB controller early in S3 resume */ if (!mainboard_should_reset_usb(s3resume)) enable_usb_bar(); mainboard_fill_pei_data(&pei_data); post_code(0x3a); /* Fix spd_data. MRC only uses spd_data[0] and ignores the other */ for (size_t i = 1; i < ARRAY_SIZE(pei_data.spd_data); i++) { if (pei_data.spd_data[i][0] && !pei_data.spd_data[0][0]) { memcpy(pei_data.spd_data[0], pei_data.spd_data[i], sizeof(pei_data.spd_data[0])); } else if (pei_data.spd_data[i][0] && pei_data.spd_data[0][0]) { if (memcmp(pei_data.spd_data[i], pei_data.spd_data[0], sizeof(pei_data.spd_data[0])) != 0) die("Onboard SPDs must match each other"); } } pei_data.boot_mode = s3resume ? 2 : 0; timestamp_add_now(TS_BEFORE_INITRAM); sdram_initialize(&pei_data); mrc_var = (void *)DCACHE_RAM_MRC_VAR_BASE; /* Sanity check mrc_var location by verifying a known field. */ if (mrc_var->tx_byte == (uintptr_t)pei_data.tx_byte) { printk(BIOS_DEBUG, "MRC_VAR pool occupied [%08x,%08x]\n", mrc_var->pool_base, mrc_var->pool_base + mrc_var->pool_used); } else { printk(BIOS_ERR, "Could not parse MRC_VAR data\n"); hexdump32(BIOS_ERR, mrc_var, sizeof(*mrc_var)/sizeof(u32)); } cbmem_was_initted = !cbmem_recovery(s3resume); if (!s3resume) save_mrc_data(&pei_data); if (s3resume && !cbmem_was_initted) { /* Failed S3 resume, reset to come up cleanly */ system_reset(); } }