/* * This file is part of the coreboot project. * * Copyright (C) 2014 Damien Zammit * Copyright (C) 2014 Vladimir Serbinenko * Copyright (C) 2016 Patrick Rudolph * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "raminit_native.h" #include "raminit_common.h" #include "sandybridge.h" #define MRC_CACHE_VERSION 1 /* FIXME: no ECC support. */ /* FIXME: no support for 3-channel chipsets. */ static const char *ecc_decoder[] = { "inactive", "active on IO", "disabled on IO", "active" }; static void wait_txt_clear(void) { struct cpuid_result cp; cp = cpuid_ext(0x1, 0x0); /* Check if TXT is supported? */ if (!(cp.ecx & 0x40)) return; /* Some TXT public bit. */ if (!(read32((void *)0xfed30010) & 1)) return; /* Wait for TXT clear. */ while (!(read8((void *)0xfed40000) & (1 << 7))); } /* * Disable a channel in ramctr_timing. */ static void disable_channel(ramctr_timing *ctrl, int channel) { ctrl->rankmap[channel] = 0; memset(&ctrl->rank_mirror[channel][0], 0, sizeof(ctrl->rank_mirror[0])); ctrl->channel_size_mb[channel] = 0; ctrl->cmd_stretch[channel] = 0; ctrl->mad_dimm[channel] = 0; memset(&ctrl->timings[channel][0], 0, sizeof(ctrl->timings[0])); memset(&ctrl->info.dimm[channel][0], 0, sizeof(ctrl->info.dimm[0])); } /* * Fill cbmem with information for SMBIOS type 17. */ static void fill_smbios17(ramctr_timing *ctrl) { int channel, slot; const u16 ddr_freq = (1000 << 8) / ctrl->tCK; FOR_ALL_CHANNELS for (slot = 0; slot < NUM_SLOTS; slot++) { enum cb_err ret = spd_add_smbios17(channel, slot, ddr_freq, &ctrl->info.dimm[channel][slot]); if (ret != CB_SUCCESS) printk(BIOS_ERR, "RAMINIT: Failed to add SMBIOS17\n"); } } /* * Dump in the log memory controller configuration as read from the memory * controller registers. */ static void report_memory_config(void) { u32 addr_decoder_common, addr_decode_ch[NUM_CHANNELS]; int i, refclk; addr_decoder_common = MCHBAR32(0x5000); addr_decode_ch[0] = MCHBAR32(0x5004); addr_decode_ch[1] = MCHBAR32(0x5008); refclk = MCHBAR32(MC_BIOS_REQ) & 0x100 ? 100 : 133; printk(BIOS_DEBUG, "memcfg DDR3 ref clock %d MHz\n", refclk); printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n", (MCHBAR32(MC_BIOS_DATA) * refclk * 100 * 2 + 50) / 100); printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n", addr_decoder_common & 3, (addr_decoder_common >> 2) & 3, (addr_decoder_common >> 4) & 3); for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) { u32 ch_conf = addr_decode_ch[i]; printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf); printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]); printk(BIOS_DEBUG, " enhanced interleave mode %s\n", ((ch_conf >> 22) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " rank interleave %s\n", ((ch_conf >> 21) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " DIMMA %d MB width x%d %s rank%s\n", ((ch_conf >> 0) & 0xff) * 256, ((ch_conf >> 19) & 1) ? 16 : 8, ((ch_conf >> 17) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? "" : ", selected"); printk(BIOS_DEBUG, " DIMMB %d MB width x%d %s rank%s\n", ((ch_conf >> 8) & 0xff) * 256, ((ch_conf >> 20) & 1) ? 16 : 8, ((ch_conf >> 18) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? ", selected" : ""); } } /* * Return CRC16 match for all SPDs. */ static int verify_crc16_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl) { int channel, slot, spd_slot; int match = 1; FOR_ALL_CHANNELS { for (slot = 0; slot < NUM_SLOTS; slot++) { spd_slot = 2 * channel + slot; match &= ctrl->spd_crc[channel][slot] == spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data)); } } return match; } void read_spd(spd_raw_data * spd, u8 addr, bool id_only) { int j; if (id_only) { for (j = 117; j < 128; j++) (*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j); } else { for (j = 0; j < 256; j++) (*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j); } } static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl) { int dimms = 0, dimms_on_channel; int channel, slot, spd_slot; dimm_info *dimm = &ctrl->info; memset (ctrl->rankmap, 0, sizeof(ctrl->rankmap)); ctrl->extended_temperature_range = 1; ctrl->auto_self_refresh = 1; FOR_ALL_CHANNELS { ctrl->channel_size_mb[channel] = 0; dimms_on_channel = 0; /* count dimms on channel */ for (slot = 0; slot < NUM_SLOTS; slot++) { spd_slot = 2 * channel + slot; printk(BIOS_DEBUG, "SPD probe channel%d, slot%d\n", channel, slot); spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]); if (dimm->dimm[channel][slot].dram_type == SPD_MEMORY_TYPE_SDRAM_DDR3) dimms_on_channel++; } for (slot = 0; slot < NUM_SLOTS; slot++) { spd_slot = 2 * channel + slot; printk(BIOS_DEBUG, "SPD probe channel%d, slot%d\n", channel, slot); /* search for XMP profile */ spd_xmp_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot], DDR3_XMP_PROFILE_1); if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) { printram("No valid XMP profile found.\n"); spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]); } else if (dimms_on_channel > dimm->dimm[channel][slot].dimms_per_channel) { printram("XMP profile supports %u DIMMs, but %u DIMMs are installed.\n", dimm->dimm[channel][slot].dimms_per_channel, dimms_on_channel); if (CONFIG(NATIVE_RAMINIT_IGNORE_XMP_MAX_DIMMS)) printk(BIOS_WARNING, "XMP maximum DIMMs will be ignored.\n"); else spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]); } else if (dimm->dimm[channel][slot].voltage != 1500) { /* TODO: support other DDR3 voltage than 1500mV */ printram("XMP profile's requested %u mV is unsupported.\n", dimm->dimm[channel][slot].voltage); spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]); } /* fill in CRC16 for MRC cache */ ctrl->spd_crc[channel][slot] = spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data)); if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) { // set dimm invalid dimm->dimm[channel][slot].ranks = 0; dimm->dimm[channel][slot].size_mb = 0; continue; } dram_print_spd_ddr3(&dimm->dimm[channel][slot]); dimms++; ctrl->rank_mirror[channel][slot * 2] = 0; ctrl->rank_mirror[channel][slot * 2 + 1] = dimm->dimm[channel][slot].flags.pins_mirrored; ctrl->channel_size_mb[channel] += dimm->dimm[channel][slot].size_mb; ctrl->auto_self_refresh &= dimm->dimm[channel][slot].flags.asr; ctrl->extended_temperature_range &= dimm->dimm[channel][slot].flags.ext_temp_refresh; ctrl->rankmap[channel] |= ((1 << dimm->dimm[channel][slot].ranks) - 1) << (2 * slot); printk(BIOS_DEBUG, "channel[%d] rankmap = 0x%x\n", channel, ctrl->rankmap[channel]); } if ((ctrl->rankmap[channel] & 3) && (ctrl->rankmap[channel] & 0xc) && dimm->dimm[channel][0].reference_card <= 5 && dimm->dimm[channel][1].reference_card <= 5) { const int ref_card_offset_table[6][6] = { { 0, 0, 0, 0, 2, 2, }, { 0, 0, 0, 0, 2, 2, }, { 0, 0, 0, 0, 2, 2, }, { 0, 0, 0, 0, 1, 1, }, { 2, 2, 2, 1, 0, 0, }, { 2, 2, 2, 1, 0, 0, }, }; ctrl->ref_card_offset[channel] = ref_card_offset_table[dimm->dimm[channel][0].reference_card] [dimm->dimm[channel][1].reference_card]; } else ctrl->ref_card_offset[channel] = 0; } if (!dimms) die("No DIMMs were found"); } static void save_timings(ramctr_timing *ctrl) { /* Save the MRC S3 restore data to cbmem */ mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION, ctrl, sizeof(*ctrl)); } static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot, int s3_resume, int me_uma_size) { if (ctrl->sandybridge) return try_init_dram_ddr3_sandy(ctrl, fast_boot, s3_resume, me_uma_size); else return try_init_dram_ddr3_ivy(ctrl, fast_boot, s3_resume, me_uma_size); } static void init_dram_ddr3(int min_tck, int s3resume) { int me_uma_size; int cbmem_was_inited; ramctr_timing ctrl; int fast_boot; spd_raw_data spds[4]; struct region_device rdev; ramctr_timing *ctrl_cached; int err; u32 cpu; MCHBAR32(0x5f00) |= 1; /* Wait for ME to be ready */ intel_early_me_init(); me_uma_size = intel_early_me_uma_size(); printk(BIOS_DEBUG, "Starting native Platform init\n"); u32 reg_5d10; wait_txt_clear(); wrmsr(0x000002e6, (msr_t) { .lo = 0, .hi = 0 }); reg_5d10 = MCHBAR32(0x5d10); // !!! = 0x00000000 if ((pci_read_config16(SOUTHBRIDGE, 0xa2) & 0xa0) == 0x20 /* 0x0004 */ && reg_5d10 && !s3resume) { MCHBAR32(0x5d10) = 0; /* Need reset. */ outb(0x6, 0xcf9); halt(); } early_pch_init_native(); early_thermal_init(); /* try to find timings in MRC cache */ int cache_not_found = mrc_cache_get_current(MRC_TRAINING_DATA, MRC_CACHE_VERSION, &rdev); if (cache_not_found || (region_device_sz(&rdev) < sizeof(ctrl))) { if (s3resume) { /* Failed S3 resume, reset to come up cleanly */ outb(0x6, 0xcf9); halt(); } ctrl_cached = NULL; } else { ctrl_cached = rdev_mmap_full(&rdev); } /* verify MRC cache for fast boot */ if (!s3resume && ctrl_cached) { /* Load SPD unique information data. */ memset(spds, 0, sizeof(spds)); mainboard_get_spd(spds, 1); /* check SPD CRC16 to make sure the DIMMs haven't been replaced */ fast_boot = verify_crc16_spds_ddr3(spds, ctrl_cached); if (!fast_boot) printk(BIOS_DEBUG, "Stored timings CRC16 mismatch.\n"); } else { fast_boot = s3resume; } if (fast_boot) { printk(BIOS_DEBUG, "Trying stored timings.\n"); memcpy(&ctrl, ctrl_cached, sizeof(ctrl)); err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size); if (err) { if (s3resume) { /* Failed S3 resume, reset to come up cleanly */ outb(0x6, 0xcf9); halt(); } /* no need to erase bad mrc cache here, it gets overwritten on * successful boot. */ printk(BIOS_ERR, "Stored timings are invalid !\n"); fast_boot = 0; } } if (!fast_boot) { /* Reset internal state */ memset(&ctrl, 0, sizeof(ctrl)); ctrl.tCK = min_tck; /* Get architecture */ cpu = cpu_get_cpuid(); ctrl.sandybridge = IS_SANDY_CPU(cpu); /* Get DDR3 SPD data */ memset(spds, 0, sizeof(spds)); mainboard_get_spd(spds, 0); dram_find_spds_ddr3(spds, &ctrl); err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size); } if (err) { /* fallback: disable failing channel */ printk(BIOS_ERR, "RAM training failed, trying fallback.\n"); printram("Disable failing channel.\n"); /* Reset internal state */ memset(&ctrl, 0, sizeof(ctrl)); ctrl.tCK = min_tck; /* Get architecture */ cpu = cpu_get_cpuid(); ctrl.sandybridge = IS_SANDY_CPU(cpu); /* Reset DDR3 frequency */ dram_find_spds_ddr3(spds, &ctrl); /* disable failing channel */ disable_channel(&ctrl, GET_ERR_CHANNEL(err)); err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size); } if (err) die("raminit failed"); /* FIXME: should be hardware revision-dependent. */ MCHBAR32(0x5024) = 0x00a030ce; set_scrambling_seed(&ctrl); set_42a0(&ctrl); final_registers(&ctrl); /* Zone config */ dram_zones(&ctrl, 0); intel_early_me_status(); intel_early_me_init_done(ME_INIT_STATUS_SUCCESS); intel_early_me_status(); report_memory_config(); cbmem_was_inited = !cbmem_recovery(s3resume); if (!fast_boot) save_timings(&ctrl); if (s3resume && !cbmem_was_inited) { /* Failed S3 resume, reset to come up cleanly */ outb(0x6, 0xcf9); halt(); } if (!s3resume) fill_smbios17(&ctrl); } void perform_raminit(int s3resume) { post_code(0x3a); timestamp_add_now(TS_BEFORE_INITRAM); init_dram_ddr3(get_mem_min_tck(), s3resume); }