/* * This file is part of the coreboot project. * * Copyright (C) 2015 Damien Zammit * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include "pineview.h" #include "raminit.h" #include #include #include /* Debugging macros. */ #if CONFIG_DEBUG_RAM_SETUP #define PRINTK_DEBUG(x...) printk(BIOS_DEBUG, x) #else #define PRINTK_DEBUG(x...) #endif #define MAX_TCLK_667 0x30 #define MAX_TCLK_800 0x25 #define MAX_TAC_667 0x45 #define MAX_TAC_800 0x40 #define NOP_CMD (1 << 1) #define PRE_CHARGE_CMD (1 << 2) #define MRS_CMD ((1 << 2) | (1 << 1)) #define EMRS_CMD (1 << 3) #define EMRS1_CMD (EMRS_CMD | (1 << 4)) #define EMRS2_CMD (EMRS_CMD | (1 << 5)) #define EMRS3_CMD (EMRS_CMD | (1 << 5) | (1 << 4)) #define ZQCAL_CMD ((1 << 3) | (1 << 1)) #define CBR_CMD ((1 << 3) | (1 << 2)) #define NORMAL_OP_CMD ((1 << 3) | (1 << 2) | (1 << 1)) #define UBDIMM 1 #define SODIMM 2 #define TOTAL_CHANNELS 1 #define TOTAL_DIMMS 2 #define DIMM_IS_POPULATED(dimms, idx) (dimms[idx].card_type != 0) #define IF_DIMM_POPULATED(dimms, idx) if (dimms[idx].card_type != 0) #define ONLY_DIMMA_IS_POPULATED(dimms, ch) ( \ (DIMM_IS_POPULATED(dimms, (ch == 0) ? 0 : 2) && \ !DIMM_IS_POPULATED(dimms, (ch == 0) ? 1 : 3))) #define ONLY_DIMMB_IS_POPULATED(dimms, ch) ( \ (DIMM_IS_POPULATED(dimms, (ch == 0) ? 1 : 3) && \ !DIMM_IS_POPULATED(dimms, (ch == 0) ? 0 : 2))) #define BOTH_DIMMS_ARE_POPULATED(dimms, ch) ( \ (DIMM_IS_POPULATED(dimms, (ch == 0) ? 0 : 2) && \ (DIMM_IS_POPULATED(dimms, (ch == 0) ? 1 : 3)))) #define FOR_EACH_DIMM(idx) \ for (idx = 0; idx < TOTAL_DIMMS; ++idx) #define FOR_EACH_POPULATED_DIMM(dimms, idx) \ FOR_EACH_DIMM(idx) IF_DIMM_POPULATED(dimms, idx) #define CHANNEL_IS_POPULATED(dimms, idx) ((dimms[idx<<1].card_type != 0) || (dimms[(idx<<1) + 1].card_type != 0)) #define CHANNEL_IS_CARDF(dimms, idx) ((dimms[idx<<1].card_type == 0xf) || (dimms[(idx<<1) + 1].card_type == 0xf)) #define IF_CHANNEL_POPULATED(dimms, idx) if ((dimms[idx<<1].card_type != 0) || (dimms[(idx<<1) + 1].card_type != 0)) #define FOR_EACH_CHANNEL(idx) \ for (idx = 0; idx < TOTAL_CHANNELS; ++idx) #define FOR_EACH_POPULATED_CHANNEL(dimms, idx) \ FOR_EACH_CHANNEL(idx) IF_CHANNEL_POPULATED(dimms, idx) #define RANKS_PER_CHANNEL 4 #define FOR_EACH_RANK_IN_CHANNEL(r) \ for (r = 0; r < RANKS_PER_CHANNEL; ++r) #define FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) \ FOR_EACH_RANK_IN_CHANNEL(r) if (rank_is_populated(dimms, ch, r)) #define FOR_EACH_RANK(ch, r) \ FOR_EACH_CHANNEL(ch) FOR_EACH_RANK_IN_CHANNEL(r) #define FOR_EACH_POPULATED_RANK(dimms, ch, r) \ FOR_EACH_RANK(ch, r) if (rank_is_populated(dimms, ch, r)) static bool rank_is_populated(struct dimminfo dimms[], u8 ch, u8 r) { return ((dimms[ch<<1].card_type && ((r) < dimms[ch<<1].ranks)) || (dimms[(ch<<1) + 1].card_type && ((r) >= 2) && ((r) < (dimms[(ch<<1) + 1].ranks + 2)))); } static inline void barrier(void) { __asm__ __volatile__("": : :"memory"); } static inline int spd_read_byte(unsigned device, unsigned address) { return smbus_read_byte(device, address); } static int decode_spd(struct dimminfo *d, int i) { d->type = 0; if (d->spd_data[20] == 0x2) { d->type = UBDIMM; } else if (d->spd_data[20] == 0x4) { d->type = SODIMM; } d->sides = (d->spd_data[5] & 0x7) + 1; d->banks = (d->spd_data[17] >> 2) - 1; d->chip_capacity = d->banks; d->rows = d->spd_data[3];// - 12; d->cols = d->spd_data[4];// - 9; d->cas_latencies = 0x78; d->cas_latencies &= d->spd_data[18]; if (d->cas_latencies == 0) d->cas_latencies = 7; d->tAAmin = d->spd_data[26]; d->tCKmin = d->spd_data[25]; d->width = (d->spd_data[13] >> 3) - 1; d->page_size = (d->width+1) * (1 << d->cols); // Bytes d->tRAS = d->spd_data[30]; d->tRP = d->spd_data[27]; d->tRCD = d->spd_data[29]; d->tWR = d->spd_data[36]; d->ranks = d->sides; // XXX #if CONFIG_DEBUG_RAM_SETUP const char *ubso[2] = { "UB", "SO" }; #endif PRINTK_DEBUG("%s-DIMM %d\n", &ubso[d->type][0], i); PRINTK_DEBUG(" Sides : %d\n", d->sides); PRINTK_DEBUG(" Banks : %d\n", d->banks); PRINTK_DEBUG(" Ranks : %d\n", d->ranks); PRINTK_DEBUG(" Rows : %d\n", d->rows); PRINTK_DEBUG(" Cols : %d\n", d->cols); PRINTK_DEBUG(" Page size : %d\n", d->page_size); PRINTK_DEBUG(" Width : %d\n", (d->width + 1) * 8); return 0; } /* Ram Config: DIMMB-DIMMA * 0 EMPTY-EMPTY * 1 EMPTY-x16SS * 2 EMPTY-x16DS * 3 x16SS-x16SS * 4 x16DS-x16DS * 5 EMPTY- x8DS * 6 x8DS - x8DS */ static void find_ramconfig(struct sysinfo *s, u32 chan) { if (s->dimms[chan>>1].sides == 0) { // NC if (s->dimms[(chan>>1) + 1].sides == 0) { // NC/NC s->dimm_config[chan] = 0; } else if (s->dimms[(chan>>1) + 1].sides == 1) { // NC/SS if (s->dimms[(chan>>1) + 1].width == 0) { // NC/8SS s->dimm_config[chan] = 1; } else { // NC/16SS s->dimm_config[chan] = 1; } } else { // NC/DS if (s->dimms[(chan>>1) + 1].width == 0) { // NC/8DS s->dimm_config[chan] = 5; } else { // NC/16DS s->dimm_config[chan] = 2; } } } else if (s->dimms[chan>>1].sides == 1) { // SS if (s->dimms[(chan>>1) + 1].sides == 0) { // SS/NC if (s->dimms[chan>>1].width == 0) { // 8SS/NC s->dimm_config[chan] = 1; } else { // 16SS/NC s->dimm_config[chan] = 1; } } else if (s->dimms[(chan>>1) + 1].sides == 1) { // SS/SS if (s->dimms[chan>>1].width == 0) { if (s->dimms[(chan>>1) + 1].width == 0) { // 8SS/8SS s->dimm_config[chan] = 3; } else { // 8SS/16SS die("Mixed Not supported\n"); } } else { if (s->dimms[(chan>>1) + 1].width == 0) { // 16SS/8SS die("Mixed Not supported\n"); } else { // 16SS/16SS s->dimm_config[chan] = 3; } } } else { // SS/DS if (s->dimms[chan>>1].width == 0) { if (s->dimms[(chan>>1) + 1].width == 0) { // 8SS/8DS die("Mixed Not supported\n"); } else { die("Mixed Not supported\n"); } } else { if (s->dimms[(chan>>1) + 1].width == 0) { // 16SS/8DS die("Mixed Not supported\n"); } else { die("Mixed Not supported\n"); } } } } else { // DS if (s->dimms[(chan>>1) + 1].sides == 0) { // DS/NC if (s->dimms[chan>>1].width == 0) { // 8DS/NC s->dimm_config[chan] = 5; } else { s->dimm_config[chan] = 4; } } else if (s->dimms[(chan>>1) + 1].sides == 1) { // DS/SS if (s->dimms[chan>>1].width == 0) { if (s->dimms[(chan>>1) + 1].width == 0) { // 8DS/8SS die("Mixed Not supported\n"); } else { // 8DS/16SS die("Mixed Not supported\n"); } } else { if (s->dimms[(chan>>1) + 1].width == 0) { die("Mixed Not supported\n"); } else { // 16DS/16DS s->dimm_config[chan] = 4; } } } else { // DS/DS if (s->dimms[chan>>1].width == 0 && s->dimms[(chan>>1)+1].width == 0) { // 8DS/8DS s->dimm_config[chan] = 6; } } } } static void sdram_read_spds(struct sysinfo *s) { u8 i, j, chan; int status = 0; s->dt0mode = 0; FOR_EACH_DIMM(i) { for (j = 0; j < 64; j++) { status = spd_read_byte(s->spd_map[i], j); if (status < 0) { s->dimms[i].card_type = 0; break; } s->dimms[i].spd_data[j] = (u8) status; if (j == 62) s->dimms[i].card_type = ((u8) status) & 0x1f; } hexdump(s->dimms[i].spd_data, 64); } s->spd_type = 0; FOR_EACH_POPULATED_DIMM(s->dimms, i) { switch (s->dimms[i].spd_data[2]) { case 0x8: s->spd_type = DDR2; break; case 0xb: default: die("DIMM type mismatch\n"); break; } } int err = 1; FOR_EACH_POPULATED_DIMM(s->dimms, i) { err = decode_spd(&s->dimms[i], i); s->dt0mode |= (s->dimms[i].spd_data[49] & 0x2) >> 1; } if (err) { die("No memory dimms, halt\n"); } FOR_EACH_POPULATED_CHANNEL(s->dimms, chan) { find_ramconfig(s, chan); PRINTK_DEBUG(" Config[CH%d] : %d\n", chan, s->dimm_config[chan]); } } #if CONFIG_DEBUG_RAM_SETUP static u32 fsb_reg_to_mhz(u32 speed) { return (speed * 133) + 667; } static u32 ddr_reg_to_mhz(u32 speed) { u32 mhz; mhz = (speed == 0) ? 667 : (speed == 1) ? 800 : 0; return mhz; } #endif static u8 lsbpos(u8 val) //Forward { u8 i; for (i = 0; (i < 8) && ((val & (1 << i)) == 0); i++); return i; } static u8 msbpos(u8 val) //Reverse { u8 i; for (i = 7; (i >= 0) && ((val & (1 << i)) == 0); i--); return i; } static void sdram_detect_smallest_params(struct sysinfo *s) { u16 mult[6] = { 3000, // 667 2500, // 800 }; u8 i; u32 tmp; u32 maxtras = 0; u32 maxtrp = 0; u32 maxtrcd = 0; u32 maxtwr = 0; u32 maxtrfc = 0; u32 maxtwtr = 0; u32 maxtrrd = 0; u32 maxtrtp = 0; FOR_EACH_POPULATED_DIMM(s->dimms, i) { maxtras = max(maxtras, s->dimms[i].spd_data[30] * 1000); maxtrp = max(maxtrp, (s->dimms[i].spd_data[27] * 1000) >> 2); maxtrcd = max(maxtrcd, (s->dimms[i].spd_data[29] * 1000) >> 2); maxtwr = max(maxtwr, (s->dimms[i].spd_data[36] * 1000) >> 2); maxtrfc = max(maxtrfc, s->dimms[i].spd_data[42] * 1000 + (s->dimms[i].spd_data[40] & 0xf)); maxtwtr = max(maxtwtr, (s->dimms[i].spd_data[37] * 1000) >> 2); maxtrrd = max(maxtrrd, (s->dimms[i].spd_data[28] * 1000) >> 2); maxtrtp = max(maxtrtp, (s->dimms[i].spd_data[38] * 1000) >> 2); } for (i = 9; i < 24; i++) { // 16 tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtras) { s->selected_timings.tRAS = i; break; } } for (i = 3; i < 10; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtrp) { s->selected_timings.tRP = i; break; } } for (i = 3; i < 10; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtrcd) { s->selected_timings.tRCD = i; break; } } for (i = 3; i < 15; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtwr) { s->selected_timings.tWR = i; break; } } for (i = 15; i < 78; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtrfc) { s->selected_timings.tRFC = ((i + 16) & 0xfe) - 15; break; } } for (i = 4; i < 15; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtwtr) { s->selected_timings.tWTR = i; break; } } for (i = 2; i < 15; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtrrd) { s->selected_timings.tRRD = i; break; } } for (i = 4; i < 15; i++) { tmp = mult[s->selected_timings.mem_clock] * i; if (tmp >= maxtrtp) { s->selected_timings.tRTP = i; break; } } PRINTK_DEBUG("Selected timings:\n"); PRINTK_DEBUG("\tFSB: %dMHz\n", fsb_reg_to_mhz(s->selected_timings.fsb_clock)); PRINTK_DEBUG("\tDDR: %dMHz\n", ddr_reg_to_mhz(s->selected_timings.mem_clock)); PRINTK_DEBUG("\tCAS: %d\n", s->selected_timings.CAS); PRINTK_DEBUG("\ttRAS: %d\n", s->selected_timings.tRAS); PRINTK_DEBUG("\ttRP: %d\n", s->selected_timings.tRP); PRINTK_DEBUG("\ttRCD: %d\n", s->selected_timings.tRCD); PRINTK_DEBUG("\ttWR: %d\n", s->selected_timings.tWR); PRINTK_DEBUG("\ttRFC: %d\n", s->selected_timings.tRFC); PRINTK_DEBUG("\ttWTR: %d\n", s->selected_timings.tWTR); PRINTK_DEBUG("\ttRRD: %d\n", s->selected_timings.tRRD); PRINTK_DEBUG("\ttRTP: %d\n", s->selected_timings.tRTP); } static void sdram_detect_ram_speed(struct sysinfo *s) { u8 cas, reg8; u32 reg32; u32 freq = 0; u32 fsb = 0; u8 i; u8 commoncas = 0; u8 highcas = 0; u8 lowcas = 0; // Core frequency fsb = (pci_read_config8(PCI_DEV(0,0,0), 0xe3) & 0x70) >> 4; if (fsb) { fsb = 5 - fsb; } else { fsb = FSB_CLOCK_800MHz; } // DDR frequency freq = (pci_read_config8(PCI_DEV(0,0,0), 0xe3) & 0x80) >> 7; freq |= (pci_read_config8(PCI_DEV(0,0,0), 0xe4) & 0x3) << 1; if (freq) { freq = 6 - freq; } else { freq = MEM_CLOCK_800MHz; } // Detect a common CAS latency commoncas = 0xff; FOR_EACH_POPULATED_DIMM(s->dimms, i) { commoncas &= s->dimms[i].spd_data[18]; } if (commoncas == 0) { die("No common CAS among dimms\n"); } // Start with fastest common CAS cas = 0; highcas = msbpos(commoncas); lowcas = max(lsbpos(commoncas), 5); while (cas == 0 && highcas >= lowcas) { FOR_EACH_POPULATED_DIMM(s->dimms, i) { switch (freq) { case MEM_CLOCK_800MHz: if ((s->dimms[i].spd_data[9] > 0x25) || (s->dimms[i].spd_data[10] > 0x40)) { // CAS too fast, lower it highcas--; break; } else { cas = highcas; } break; case MEM_CLOCK_667MHz: default: if ((s->dimms[i].spd_data[9] > 0x30) || (s->dimms[i].spd_data[10] > 0x45)) { // CAS too fast, lower it highcas--; break; } else { cas = highcas; } break; } } } if (highcas < lowcas) { // Timings not supported by MCH, lower the frequency if (freq == MEM_CLOCK_800MHz) { freq--; PRINTK_DEBUG("Run DDR clock speed reduced due to timings\n"); } else { die("Timings not supported by MCH\n"); } cas = 0; highcas = msbpos(commoncas); lowcas = lsbpos(commoncas); while (cas == 0 && highcas >= lowcas) { FOR_EACH_POPULATED_DIMM(s->dimms, i) { switch (freq) { case MEM_CLOCK_800MHz: if ((s->dimms[i].spd_data[9] > 0x25) || (s->dimms[i].spd_data[10] > 0x40)) { // CAS too fast, lower it highcas--; break; } else { cas = highcas; } break; case MEM_CLOCK_667MHz: default: if ((s->dimms[i].spd_data[9] > 0x30) || (s->dimms[i].spd_data[10] > 0x45)) { // CAS too fast, lower it highcas--; break; } else { cas = highcas; } break; } } } if (cas == 0) { die("Unsupported dimms\n"); } } s->selected_timings.CAS = cas; s->selected_timings.mem_clock = freq; s->selected_timings.fsb_clock = fsb; PRINTK_DEBUG("Drive Memory at %dMHz with CAS = %d clocks\n", ddr_reg_to_mhz(s->selected_timings.mem_clock), s->selected_timings.CAS); // Set memory frequency if (s->boot_path == BOOT_PATH_RESET) return; MCHBAR32(0xf14) = MCHBAR32(0xf14) | 0x1; reg32 = (MCHBAR32(0xc00) & (~0x70)) | (1 << 10); if (s->selected_timings.mem_clock == MEM_CLOCK_800MHz) { reg8 = 3; } else { reg8 = 2; } reg32 |= reg8 << 4; MCHBAR32(0xc00) = reg32; s->selected_timings.mem_clock = ((MCHBAR32(0xc00) >> 4) & 0x7) - 2; if (s->selected_timings.mem_clock == MEM_CLOCK_800MHz) { PRINTK_DEBUG("MCH validated at 800MHz\n"); s->nodll = 0; s->maxpi = 63; s->pioffset = 0; } else if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { PRINTK_DEBUG("MCH validated at 667MHz\n"); s->nodll = 1; s->maxpi = 15; s->pioffset = 1; } else { PRINTK_DEBUG("MCH set to unknown (%02x)\n", (uint8_t) s->selected_timings.mem_clock & 0xff); } } #define HPET_BASE 0xfed00000 #define HPET32(x) *((volatile u32 *)(HPET_BASE + x)) static void enable_hpet(void) { u32 reg32; reg32 = RCBA32(0x3404); reg32 &= ~0x3; reg32 |= (1 << 7); RCBA32(0x3404) = reg32; HPET32(0x10) = HPET32(0x10) | 1; } static void sdram_clk_crossing(struct sysinfo *s) { u8 clk_idx, fsb_idx; const u32 clkcross[2][2][4] = { { {0xFFFFFFFF, 0x05030305, 0x0000FFFF, 0x00000000}, //667 667 {0x1F1F1F1F, 0x2A1F1FA5, 0x00000000, 0x05000002}, //667 800 }, { {0x1F1F1F1F, 0x0D07070B, 0x00000000, 0x00000000}, //800 667 {0xFFFFFFFF, 0x05030305, 0x0000FFFF, 0x00000000}, //800 800 } }; clk_idx = s->selected_timings.mem_clock; fsb_idx = s->selected_timings.fsb_clock; MCHBAR32(0xc04) = clkcross[fsb_idx][clk_idx][0]; MCHBAR32(0xc50) = clkcross[fsb_idx][clk_idx][1]; MCHBAR32(0xc54) = clkcross[fsb_idx][clk_idx][2]; MCHBAR32(0xc28) = 0; MCHBAR32(0xc2c) = clkcross[fsb_idx][clk_idx][3]; MCHBAR32(0xc08) = MCHBAR32(0xc08) | (1 << 7); if ((fsb_idx == 0) && (clk_idx == 1)) { MCHBAR8(0x6d4) = 0; MCHBAR32(0x700) = 0; MCHBAR32(0x704) = 0; } const u32 clkcross2[2][2][8] = { { { 0, 0x08010204, 0, 0x08010204, 0, 0, 0, 0x04080102}, // 667 667 { 0x04080000, 0x10010002, 0x10000000, 0x20010208, 0, 0x00000004, 0x02040000, 0x08100102}, // 667 800 }, { { 0x10000000, 0x20010208, 0x04080000, 0x10010002, 0, 0, 0x08000000, 0x10200204}, // 800 667 { 0x00000000, 0x08010204, 0, 0x08010204, 0, 0, 0, 0x04080102}, // 800 800 } }; MCHBAR32(0x6d8) = clkcross2[fsb_idx][clk_idx][0]; MCHBAR32(0x6e0) = clkcross2[fsb_idx][clk_idx][0]; MCHBAR32(0x6e8) = clkcross2[fsb_idx][clk_idx][0]; MCHBAR32(0x6d8+4) = clkcross2[fsb_idx][clk_idx][1]; MCHBAR32(0x6e0+4) = clkcross2[fsb_idx][clk_idx][1]; MCHBAR32(0x6e8+4) = clkcross2[fsb_idx][clk_idx][1]; MCHBAR32(0x6f0) = clkcross2[fsb_idx][clk_idx][2]; MCHBAR32(0x6f4) = clkcross2[fsb_idx][clk_idx][3]; MCHBAR32(0x6f8) = clkcross2[fsb_idx][clk_idx][4]; MCHBAR32(0x6fc) = clkcross2[fsb_idx][clk_idx][5]; MCHBAR32(0x708) = clkcross2[fsb_idx][clk_idx][6]; MCHBAR32(0x70c) = clkcross2[fsb_idx][clk_idx][7]; } static void sdram_clkmode(struct sysinfo *s) { u8 reg8; u16 reg16; MCHBAR16(0x1b6) = MCHBAR16(0x1b6) & ~(1 << 8); MCHBAR8(0x1b6) = MCHBAR8(0x1b6) & ~0x3f; if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { reg8 = 0; reg16 = 1; } else { reg8 = 1; reg16 = (1 << 8) | (1 << 5); } if (s->boot_path != BOOT_PATH_RESET) MCHBAR16(0x1c0) = (MCHBAR16(0x1c0) & ~(0x033f)) | reg16; MCHBAR32(0x220) = 0x58001117; MCHBAR32(0x248) = (MCHBAR32(0x248) | (1 << 23)); const u32 cas_to_reg[2][4] = { {0x00000000, 0x00030100, 0x0C240201, 0x00000000}, // 667 {0x00000000, 0x00030100, 0x0C240201, 0x10450302} // 800 }; MCHBAR32(0x224) = cas_to_reg[reg8][s->selected_timings.CAS - 3]; } static void sdram_timings(struct sysinfo *s) { u8 i, j, ch, r, ta1, ta2, ta3, ta4, trp, bank, page, flag; u8 reg8, wl; u16 reg16; u32 reg32, reg2; u8 pagetab[2][2] = {{0xe, 0x12}, {0x10, 0x14}}; // Only consider DDR2 wl = s->selected_timings.CAS - 1; ta1 = ta2 = 6; ta3 = s->selected_timings.CAS; ta4 = 8; s->selected_timings.tRFC = (s->selected_timings.tRFC + 1) & 0xfe; trp = 0; bank = 1; page = 0; MCHBAR8(0x240) = ((wl - 3) << 4) | (s->selected_timings.CAS - 3); FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { i = ch << 1; if (s->dimms[i].banks == 1) { trp = 1; bank = 0; } if (s->dimms[i].page_size == 2048) { page = 1; } } PRINTK_DEBUG("trp=%d bank=%d page=%d\n",trp, bank, page); if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { flag = 0; } else { flag = 1; } MCHBAR8(0x26f) = MCHBAR8(0x26f) | 0x3; MCHBAR16(0x250) = ((wl + 4 + s->selected_timings.tWR) << 6) | ((2 + MAX(s->selected_timings.tRTP, 2)) << 2) | 1; reg32 = (bank << 21) | (s->selected_timings.tRRD << 17) | (s->selected_timings.tRP << 13) | ((s->selected_timings.tRP + trp) << 9) | s->selected_timings.tRFC; if (bank == 0) { reg32 |= (pagetab[flag][page] << 22); } MCHBAR16(0x252) = (u16) reg32; MCHBAR16(0x254) = (u16) (reg32 >> 16); reg16 = (MCHBAR16(0x254) & 0xfc0) >> 6; MCHBAR16(0x62c) = (MCHBAR16(0x62c) & ~0x1f80) | (reg16 << 7); reg16 = (s->selected_timings.tRCD << 12) | (4 << 8) | (ta2 << 4) | ta4; MCHBAR16(0x256) = reg16; reg32 = (s->selected_timings.tRCD << 17) | ((wl + 4 + s->selected_timings.tWTR) << 12) | (ta3 << 8) | (4 << 4) | ta1; MCHBAR32(0x258) = reg32; reg16 = ((s->selected_timings.tRP + trp) << 9) | s->selected_timings.tRFC; MCHBAR8(0x25b) = (u8) reg16; MCHBAR8(0x25c) = (u8) (reg16 >> 8); MCHBAR16(0x260) = (MCHBAR16(0x260) & ~0x3fe) | (100 << 1); MCHBAR8(0x25d) = (MCHBAR8(0x25d) & ~0x3f) | s->selected_timings.tRAS; MCHBAR16(0x244) = 0x2310; MCHBAR8(0x246) = (MCHBAR8(0x246) & ~0x1f) | 1; if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { reg32 = 3000; } else { reg32 = 2500; } if (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) { reg2 = 6000; } else { reg2 = 5000; } reg16 = (u16)((((s->selected_timings.CAS + 7)*(reg32)) / reg2) << 8); MCHBAR16(0x248) = (MCHBAR16(0x248) & ~0x1f00) | reg16; flag = 0; if (wl > 2) { flag = 1; } reg16 = (u8) (wl - 1 - flag); reg16 |= reg16 << 4; reg16 |= flag << 8; MCHBAR16(0x24d) = (MCHBAR16(0x24d) & ~0x1ff) | reg16; MCHBAR16(0x25e) = 0x1585; MCHBAR8(0x265) = MCHBAR8(0x265) & ~0x1f; MCHBAR16(0x265) = (MCHBAR16(0x265) & ~0x3f00) | ((s->selected_timings.CAS + 9) << 8); if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { reg16 = 0x514; reg32 = 0xa28; } else { reg16 = 0x618; reg32 = 0xc30; } MCHBAR32(0x268) = (MCHBAR32(0x268) & ~0xfffff00) | (0x3f << 22) | (reg32 << 8); MCHBAR8(0x26c) = 0x00; MCHBAR16(0x2b8) = (MCHBAR16(0x2b8) & 0xc000) | reg16; MCHBAR8(0x274) = MCHBAR8(0x274) | 1; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0x7f000000) | (0xb << 25); i = s->selected_timings.mem_clock; j = s->selected_timings.fsb_clock; if (i > j) { MCHBAR32(0x248) = MCHBAR32(0x248) | (1 << 24); } MCHBAR8(0x24c) = MCHBAR8(0x24c) & ~0x3; MCHBAR16(0x24d) = (MCHBAR16(0x24d) & ~0x7c00) | ((wl + 10) << 10); MCHBAR32(0x260) = (MCHBAR32(0x260) & ~0x70e0000) | (3 << 24) | (3 << 17); reg16 = 0x15 << 6; reg16 |= 0x1f; reg16 |= (0x6 << 12); MCHBAR16(0x26d) = (MCHBAR16(0x26d) & ~0x7fff) | reg16; reg32 = (0x6 << 27) | (1 << 25); MCHBAR32(0x268) = (MCHBAR32(0x268) & ~0x30000000) | ((u32)(reg32 << 8)); MCHBAR8(0x26c) = (MCHBAR8(0x26c) & ~0xfa) | ((u8)(reg32 >> 24)); MCHBAR8(0x271) = MCHBAR8(0x271) & ~(1 << 7); MCHBAR8(0x274) = MCHBAR8(0x274) & ~0x6; reg32 = (u32) (((6 & 0x03) << 30) | (4 << 25) | (1 << 20) | (8 << 15) | (6 << 10) | (4 << 5) | 1); MCHBAR32(0x278) = reg32; MCHBAR16(0x27c) = (MCHBAR16(0x27c) & ~0x1ff) | (8 << 3) | (6 >> 2); MCHBAR16(0x125) = MCHBAR16(0x125) | 0x1c00 | (0x1f << 5); MCHBAR8(0x127) = (MCHBAR8(0x127) & ~0xff) | 0x40; MCHBAR8(0x128) = (MCHBAR8(0x128) & ~0x7) | 0x5; MCHBAR8(0x129) = MCHBAR8(0x129) | 0x1f; reg8 = 3 << 6; reg8 |= (s->dt0mode << 4); reg8 |= 0x0c; MCHBAR8(0x12f) = (MCHBAR8(0x12f) & ~0xdf) | reg8; MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0x2; MCHBAR8(0x228) = (MCHBAR8(0x228) & ~0x7) | 0x2; MCHBAR16(0x241) = (MCHBAR16(0x241) & ~0x3fc) | (4 << 2); reg32 = (2 << 29) | (1 << 28) | (1 << 23); MCHBAR32(0x120) = (MCHBAR32(0x120) & ~0xffb00000) | reg32; reg8 = (u8) ((MCHBAR16(0x252) & 0xe000) >> 13); reg8 |= (u8) ((MCHBAR16(0x254) & 1) << 3); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf0) | (reg8 << 4); reg8 = (u8) ((MCHBAR32(0x258) & 0xf0000) >> 17); MCHBAR8(0x12d) = (MCHBAR8(0x12d) & ~0xf) | reg8; MCHBAR8(0x12e) = MCHBAR8(0x12e) & ~0xfc; MCHBAR8(0x12e) = MCHBAR8(0x12e) & ~0x3; MCHBAR8(0x12f) = MCHBAR8(0x12f) & ~0x3; MCHBAR8(0x241) = MCHBAR8(0x241) | 1; MCHBAR16(0x1b6) = MCHBAR16(0x1b6) | (1 << 9); for (i = 0; i < 8; i++) { MCHBAR32(0x540 + i*4) = (MCHBAR32(0x540 + i*4) & ~0x3f3f3f3f) | 0x0c0c0c0c; } MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | ((s->selected_timings.CAS + 1) << 16); for (i = 0; i < 8; i++) { MCHBAR8(0x560 + i*4) = MCHBAR8(0x560 + i*4) & ~0x3f; MCHBAR16(0x58c) = MCHBAR16(0x58c) & ((u16) (~(3 << (i*2)))); MCHBAR16(0x588) = MCHBAR16(0x588) & ((u16) (~(3 << (i*2)))); MCHBAR16(0x5fa) = MCHBAR16(0x5fa) & ((u16) (~(3 << (i*2)))); } MCHBAR8(0x5f0) = MCHBAR8(0x5f0) & ~0x1; MCHBAR8(0x5f0) = MCHBAR8(0x5f0) | 0x2; MCHBAR8(0x5f0) = MCHBAR8(0x5f0) | 0x4; MCHBAR32(0x2c0) = MCHBAR32(0x2c0) | 0xc0400; MCHBAR32(0x594) = MCHBAR32(0x594) | (1 << 31); } static void sdram_p_clkset0(struct pllparam *pll, u8 f, u8 i) { MCHBAR16(0x5a0) = (MCHBAR16(0x5a0) & ~0xc440) | (pll->clkdelay[f][i] << 14) | (pll->dben[f][i] << 10) | (pll->dbsel[f][i] << 6); MCHBAR8(0x581) = (MCHBAR8(0x581) & ~0x3f) | pll->pi[f][i]; } static void sdram_p_clkset1(struct pllparam *pll, u8 f, u8 i) { MCHBAR16(0x5a0) = (MCHBAR16(0x5a0) & ~0x30880) | (pll->clkdelay[f][i] << 16) | (pll->dben[f][i] << 11) | (pll->dbsel[f][i] << 7); MCHBAR8(0x582) = (MCHBAR8(0x582) & ~0x3f) | pll->pi[f][i]; } static void sdram_p_cmd(struct pllparam *pll, u8 f, u8 i) { u8 reg8; reg8 = pll->dbsel[f][i] << 5; reg8 |= pll->dben[f][i] << 6; MCHBAR8(0x594) = (MCHBAR8(0x594) & ~0x60) | reg8; reg8 = pll->clkdelay[f][i] << 4; MCHBAR8(0x598) = (MCHBAR8(0x598) & ~0x30) | reg8; reg8 = pll->pi[f][i]; MCHBAR8(0x580) = (MCHBAR8(0x580) & ~0x3f) | reg8; MCHBAR8(0x583) = (MCHBAR8(0x583) & ~0x3f) | reg8; } static void sdram_p_ctrl(struct pllparam *pll, u8 f, u8 i) { u8 reg8; u32 reg32; reg32 = ((u32) pll->dbsel[f][i]) << 20; reg32 |= ((u32) pll->dben[f][i]) << 21; reg32 |= ((u32) pll->dbsel[f][i]) << 22; reg32 |= ((u32) pll->dben[f][i]) << 23; reg32 |= ((u32) pll->clkdelay[f][i]) << 24; reg32 |= ((u32) pll->clkdelay[f][i]) << 27; MCHBAR32(0x59c) = (MCHBAR32(0x59c) & ~0x1bf0000) | reg32; reg8 = pll->pi[f][i]; MCHBAR8(0x584) = (MCHBAR8(0x584) & ~0x3f) | reg8; MCHBAR8(0x585) = (MCHBAR8(0x585) & ~0x3f) | reg8; reg32 = ((u32) pll->dbsel[f][i]) << 12; reg32 |= ((u32) pll->dben[f][i]) << 13; reg32 |= ((u32) pll->dbsel[f][i]) << 8; reg32 |= ((u32) pll->dben[f][i]) << 9; reg32 |= ((u32) pll->clkdelay[f][i]) << 14; reg32 |= ((u32) pll->clkdelay[f][i]) << 10; MCHBAR32(0x598) = (MCHBAR32(0x598) & ~0xff00) | reg32; reg8 = pll->pi[f][i]; MCHBAR8(0x586) = (MCHBAR8(0x586) & ~0x3f) | reg8; MCHBAR8(0x587) = (MCHBAR8(0x587) & ~0x3f) | reg8; } static void sdram_p_dqs(struct pllparam *pll, u8 f, u8 clk) { u8 rank, dqs, reg8, j; u32 reg32; j = clk - 40; reg8 = 0; reg32 = 0; rank = j % 4; dqs = j / 4; reg32 |= ((u32) pll->dben[f][clk]) << (dqs + 9); reg32 |= ((u32) pll->dbsel[f][clk]) << dqs; MCHBAR32(0x5b4+rank*4) = (MCHBAR32(0x5b4+rank*4) & ~( (1 << (dqs+9))|(1 << dqs) )) | reg32; reg32 = ((u32) pll->clkdelay[f][clk]) << ((dqs*2) + 16); MCHBAR32(0x5c8+rank*4) = (MCHBAR32(0x5c8+rank*4) & ~( (1 << (dqs*2 + 17))|(1 << (dqs*2 + 16)) )) | reg32; reg8 = pll->pi[f][clk]; MCHBAR8(0x520+j) = (MCHBAR8(0x520+j) & ~0x3f) | reg8; } static void sdram_p_dq(struct pllparam *pll, u8 f, u8 clk) { u8 rank, dq, reg8, j; u32 reg32; j = clk - 8; reg8 = 0; reg32 = 0; rank = j % 4; dq = j / 4; reg32 |= ((u32) pll->dben[f][clk]) << (dq + 9); reg32 |= ((u32) pll->dbsel[f][clk]) << dq; MCHBAR32(0x5a4+rank*4) = (MCHBAR32(0x5a4+rank*4) & ~( (1 << (dq+9))|(1 << dq) )) | reg32; reg32 = ((u32) pll->clkdelay[f][clk]) << (dq*2); MCHBAR32(0x5c8+rank*4) = (MCHBAR32(0x5c8+rank*4) & ~( (1 << (dq*2 + 1))|(1 << (dq*2)) )) | reg32; reg8 = pll->pi[f][clk]; MCHBAR8(0x500+j) = (MCHBAR8(0x500+j) & ~0x3f) | reg8; } static void sdram_calibratepll(struct sysinfo *s, u8 pidelay) { struct pllparam pll = { .pi = { { // 667 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 3, 3, 3 }, { // 800 53, 53, 10, 10, 5, 5, 5, 5, 27, 27, 27, 27, 34, 34, 34, 34, 34, 34, 34, 34, 39, 39, 39, 39, 47, 47, 47, 47, 44, 44, 44, 44, 47, 47, 47, 47, 47, 47, 47, 47, 59, 59, 59, 59, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7, 7, 7, 15, 15, 15, 15, 12, 12, 12, 12, 15, 15, 15, 15, 15, 15, 15, 15 }}, .dben = { { // 667 0,0,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0 }, { // 800 1,1,1,1,1,1,1,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0 }}, .dbsel = { { // 667 0,0,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0 }, { // 800 0,0,1,1,1,1,1,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,0,0,0,0, 1,1,1,1,0,0,0,0,0,0,0,0 }}, .clkdelay = { { // 667 0,0,1,1,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0 }, { // 800 0,0,0,0,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1 }} }; u8 i, f; if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { f = 0; } else { f = 1; } for (i = 0; i < 72; i++) { pll.pi[f][i] += pidelay; } MCHBAR8(0x1a4) = MCHBAR8(0x1a4) & ~(1 << 7); MCHBAR16(0x190) = (MCHBAR16(0x190) & (u16) ~(0x3fff)) | 0x1fff; sdram_p_clkset0(&pll, f, 0); sdram_p_clkset1(&pll, f, 1); sdram_p_cmd(&pll, f, 2); sdram_p_ctrl(&pll, f, 4); for (i = 0; i < 32; i++) { sdram_p_dqs(&pll, f, i+40); } for (i = 0; i < 32; i++) { sdram_p_dq(&pll, f, i+8); } } static void sdram_calibratehwpll(struct sysinfo *s) { u8 reg8; s->async = 0; reg8 = 0; MCHBAR16(0x180) = MCHBAR16(0x180) | (1 << 15); MCHBAR8(0x180) = MCHBAR8(0x180) & ~(1 << 7); MCHBAR8(0x180) = MCHBAR8(0x180) | (1 << 3); MCHBAR8(0x180) = MCHBAR8(0x180) | (1 << 2); MCHBAR8(0x180) = MCHBAR8(0x180) | (1 << 7); while ((MCHBAR8(0x180) & (1 << 2)) == 0); reg8 = (MCHBAR8(0x180) & (1 << 3)) >> 3; if (reg8 != 0) { s->async = 1; } } static void sdram_dlltiming(struct sysinfo *s) { u8 reg8, i, pipost; u16 reg16; u32 reg32; if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { reg32 = 0x8014227; } else { reg32 = 0x14221; } MCHBAR32(0x19c) = (MCHBAR32(0x19c) & ~0xfffffff) | reg32; MCHBAR32(0x19c) = MCHBAR32(0x19c) | (1 << 23); MCHBAR32(0x19c) = MCHBAR32(0x19c) | (1 << 15); MCHBAR32(0x19c) = MCHBAR32(0x19c) & ~(1 << 15); if (s->nodll) { MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 0); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 2); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 4); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 8); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 10); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 12); MCHBAR16(0x198) = MCHBAR16(0x198) | (1 << 14); } else { MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 0); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 2); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 4); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 8); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 10); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 12); MCHBAR16(0x198) = MCHBAR16(0x198) & ~(1 << 14); } if (s->nodll) { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x3f) | 0x7; } else { MCHBAR8(0x1c8) = (MCHBAR8(0x1c8) & ~0x3f); } sdram_calibratepll(s, 0); // XXX check MCHBAR16(0x5f0) = MCHBAR16(0x5f0) | (1 << 11); MCHBAR16(0x5f0) = MCHBAR16(0x5f0) | (1 << 12); for (i = 0; i < 8; i++) { MCHBAR16(0x5f0) = MCHBAR16(0x5f0) | ((1 << 10) >> i); } MCHBAR8(0x2c14) = MCHBAR8(0x2c14) | 1; MCHBAR16(0x182) = 0x5005; MCHBAR16(0x18a) = (MCHBAR16(0x18a) & ~0x1f1f) | 0x51a; MCHBAR16(0x2c00) = (MCHBAR16(0x2c00) & ~0xbf3f) | 0x9010; if (s->nodll) { MCHBAR8(0x18e) = (MCHBAR8(0x18e) & ~0x7f) | 0x6b; } else { MCHBAR8(0x18e) = (MCHBAR8(0x18e) & ~0x7f) | 0x55; sdram_calibratehwpll(s); } pipost = 0x34; MCHBAR32(0x248) = MCHBAR32(0x248) & ~(1 << 22); MCHBAR8(0x5d9) = MCHBAR8(0x5d9) & ~0x2; MCHBAR8(0x189) = MCHBAR8(0x189) | 0xc0; MCHBAR8(0x189) = MCHBAR8(0x189) & ~(1 << 5); MCHBAR8(0x189) = (MCHBAR8(0x189) & ~0xc0) | (1 << 6); MCHBAR8(0x188) = (MCHBAR8(0x188) & ~0x3f) | 0x1a; MCHBAR8(0x188) = MCHBAR8(0x188) | 1; MCHBAR8(0x1a8) = MCHBAR8(0x1a8) | 1; MCHBAR32(0x1a0) = 0x551803; if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0)) { reg8 = 0x3c; } else if (ONLY_DIMMB_IS_POPULATED(s->dimms, 0)) { reg8 = 0x27; } else if (BOTH_DIMMS_ARE_POPULATED(s->dimms, 0)) { reg8 = 0x24; } else { // None reg8 = 0x3f; } reg8 = 0x00; //switch all clocks on anyway MCHBAR32(0x5a0) = (MCHBAR32(0x5a0) & ~0x3f000000) | (reg8 << 24); MCHBAR8(0x594) = MCHBAR8(0x594) & ~1; reg16 = 0; if (!rank_is_populated(s->dimms, 0, 0)) { reg16 |= (1 << 8) | (1 << 4) | (1 << 0); } if (!rank_is_populated(s->dimms, 0, 1)) { reg16 |= (1 << 9) | (1 << 5) | (1 << 1); } if (!rank_is_populated(s->dimms, 0, 2)) { reg16 |= (1 << 10) | (1 << 6) | (1 << 2); } if (!rank_is_populated(s->dimms, 0, 3)) { reg16 |= (1 << 11) | (1 << 7) | (1 << 3); } MCHBAR16(0x59c) = MCHBAR16(0x59c) | reg16; } static void sdram_rcomp(struct sysinfo *s) { u8 i, j, reg8, f, rcompp, rcompn, srup, srun; u16 reg16; u32 reg32, rcomp1, rcomp2; u8 rcompupdate[7] = { 0, 0, 0, 1, 1, 0, 0 }; u8 rcompslew = 0xa; u8 rcompstr[7] = { 0x66, 0, 0xaa, 0x55, 0x55, 0x77, 0x77 }; u16 rcompscomp[7] = { 0xa22a, 0, 0xe22e, 0xe22e, 0xe22e, 0xa22a, 0xa22a }; u8 rcompdelay[7] = { 1, 0, 0, 0, 0, 1, 1 }; u16 rcompctl[7] = { 0x31c, 0, 0x374, 0x3a2, 0x3d0, 0x3fe, 0x42c }; u16 rcompf[7] = { 0x1114, 0, 0x0505, 0x0909, 0x0909, 0x0a0a, 0x0a0a }; // NC-NC x16SS x16DS x16SS2 x16DS2 x8DS, x8DS2 u8 rcompstr2[7] = { 0x00, 0x55, 0x55, 0xaa, 0xaa , 0x55, 0xaa}; u16 rcompscomp2[7] = { 0x0000, 0xe22e, 0xe22e, 0xe22e, 0x8228 , 0xe22e, 0x8228 }; u8 rcompdelay2[7] = { 0, 0, 0, 0, 2 , 0, 2}; u8 rcomplut[64][12] = { { 9, 9,11,11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 9, 9,11, 11, 2, 2, 5,5, 6, 6,5, 5}, { 10,9,12, 11, 2, 2, 5,5, 6, 6,5, 5}, { 10,9,12, 11, 2, 2, 6,5, 7, 6,6, 5}, { 10,10,12, 12, 2, 2, 6,5, 7, 6,6, 5}, { 10,10,12, 12, 2, 2, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 2, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 2, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 2, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 10,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 11,10,12, 12, 3, 3, 6,6, 7, 7,6, 6}, { 11,10,14, 13, 3, 3, 6,6, 7, 7,6, 6}, { 12,10,14, 13, 3, 3, 6,6, 7, 7,6, 6}, { 12,12,14, 13, 3, 3, 7,6, 7, 7,7, 6}, { 13,12,16, 15, 3, 3, 7,6, 8, 7,7, 6}, { 13,14,16, 15, 4, 3, 7,7, 8, 8,7, 7}, { 14,14,16, 17, 4, 3, 7,7, 8, 8,7, 7}, { 14,16,18, 17, 4, 4, 8,7, 8, 8,8, 7}, { 15,16,18, 19, 4, 4, 8,7, 9, 8,8, 7}, { 15,18,18, 19, 4, 4, 8,8, 9, 9,8, 8}, { 16,18,20, 21, 4, 4, 8,8, 9, 9,8, 8}, { 16,19,20, 21, 5, 4, 9,8, 10, 9,9, 8}, { 16,19,20, 23, 5, 5, 9,9, 10, 10,9, 9}, { 17,19,22, 23, 5, 5, 9,9, 10, 10,9, 9}, { 17,20,22, 25, 5, 5, 9,9, 10, 10,9, 9}, { 17,20,22, 25, 5, 5, 9,9, 10, 10,9, 9}, { 18,20,22, 25, 5, 5, 9,9, 10, 10,9, 9}, { 18,21,24, 25, 5, 5, 9,9, 11, 10,9, 9}, { 19,21,24, 27, 5, 5, 9, 9, 11, 11,9, 9}, { 19,22,24, 27, 5, 5, 10,9, 11, 11,10, 9}, { 20,22,24, 27, 6, 5, 10,10, 11, 11,10, 10}, { 20,23,26, 27, 6, 6, 10,10, 12, 12,10, 10}, { 20,23,26, 29, 6, 6, 10,10, 12, 12,10, 10}, { 21,24,26, 29, 6, 6, 10,10, 12, 12,10, 10}, { 21,24,26, 29, 6, 6, 11,10, 12, 13,11, 10}, { 22,25,28, 29, 6, 6, 11,11, 13, 13,11, 11}, { 22,25,28, 31, 6, 6, 11,11, 13, 13,11, 11}, { 22,26,28, 31, 6, 6, 11,11, 13, 14,11, 11}, { 23,26,30, 31, 7, 6, 12,11, 14, 14,12, 11}, { 23,27,30, 33, 7, 7, 12,12, 14, 14,12, 12}, { 23,27,30, 33, 7, 7, 12,12, 14, 15,12, 12}, { 24,28,32, 33, 7, 7, 12,12, 15, 15,12, 12}, { 24,28,32, 33, 7, 7, 12,12, 15, 16,12, 12}, { 24,29,32, 35, 7, 7, 12,12, 15, 16,12, 12}, { 25,29,32, 35, 7, 7, 12,12, 15, 17,12, 12}, { 25,30,32, 35, 7, 7, 12,12, 15, 17,12, 12}, { 25,30,32, 35, 7, 7, 12,12, 15, 17,12, 12}, }; srup = 0; srun = 0; if (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) { f = 0; rcomp1 = 0x00050431; } else { f = 1; rcomp1 = 0x00050542; } if (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) { rcomp2 = 0x14C42827; } else { rcomp2 = 0x19042827; } for (i = 0; i < 7; i++) { if (i == 1) continue; reg8 = rcompupdate[i]; MCHBAR8(rcompctl[i]) = (MCHBAR8(rcompctl[i]) & ~0x1) | reg8; MCHBAR8(rcompctl[i]) = MCHBAR8(rcompctl[i]) & ~0x2; reg16 = (u16) rcompslew; MCHBAR16(rcompctl[i]) = (MCHBAR16(rcompctl[i]) & ~0xf000) | (reg16 << 12); MCHBAR8(rcompctl[i]+4) = rcompstr[i]; MCHBAR16(rcompctl[i]+0xe) = rcompscomp[i]; MCHBAR8(rcompctl[i]+0x14) = (MCHBAR8(rcompctl[i]+0x14) & ~0x3) | rcompdelay[i]; if (i == 2) { reg16 = (u16) rcompslew; MCHBAR16(rcompctl[i]) = (MCHBAR16(rcompctl[i]) & ~0xf000) | (reg16 << 12); MCHBAR8(rcompctl[i]+4) = rcompstr2[s->dimm_config[0]]; MCHBAR16(rcompctl[i]+0xe) = rcompscomp2[s->dimm_config[0]]; MCHBAR8(rcompctl[i]+0x14) = (MCHBAR8(rcompctl[i]+0x14) & ~0x3) | rcompdelay2[s->dimm_config[0]]; } MCHBAR16(rcompctl[i]+0x16) = MCHBAR16(rcompctl[i]+0x16) & ~0x7f7f; MCHBAR16(rcompctl[i]+0x18) = MCHBAR16(rcompctl[i]+0x18) & ~0x3f3f; MCHBAR16(rcompctl[i]+0x1a) = MCHBAR16(rcompctl[i]+0x1a) & ~0x3f3f; MCHBAR16(rcompctl[i]+0x1c) = MCHBAR16(rcompctl[i]+0x1c) & ~0x3f3f; MCHBAR16(rcompctl[i]+0x1e) = MCHBAR16(rcompctl[i]+0x1e) & ~0x3f3f; } MCHBAR8(0x45a) = (MCHBAR8(0x45a) & ~0x3f) | 0x36; MCHBAR8(0x462) = (MCHBAR8(0x462) & ~0x3f) | 0x36; for (i = 0; i < 7; i++) { if (i == 1) continue; MCHBAR8(rcompctl[i]) = MCHBAR8(rcompctl[i]) & ~0x60; MCHBAR16(rcompctl[i]+2) = MCHBAR16(rcompctl[i]+2) & ~0x706; MCHBAR16(rcompctl[i]+0xa) = MCHBAR16(rcompctl[i]+0xa) & ~0x7f7f; MCHBAR16(rcompctl[i]+0x12) = MCHBAR16(rcompctl[i]+0x12) & ~0x3f3f; MCHBAR16(rcompctl[i]+0x24) = MCHBAR16(rcompctl[i]+0x24) & ~0x1f1f; MCHBAR8(rcompctl[i]+0x26) = MCHBAR8(rcompctl[i]+0x26) & ~0x1f; } MCHBAR16(0x45a) = MCHBAR16(0x45a) & ~0xffc0; MCHBAR16(0x45c) = MCHBAR16(0x45c) & ~0xf; MCHBAR16(0x462) = MCHBAR16(0x462) & ~0xffc0; MCHBAR16(0x464) = MCHBAR16(0x464) & ~0xf; for (i = 0; i < 7; i++) { if (i == 1) continue; MCHBAR16(rcompctl[i]+0x10) = rcompf[i]; MCHBAR16(rcompctl[i]+0x20) = 0x1219; MCHBAR16(rcompctl[i]+0x22) = 0x000C; } MCHBAR32(0x164) = (MCHBAR32(0x164) & ~0x1f1f1f) | 0x0c1219; MCHBAR16(0x4b0) = (MCHBAR16(0x4b0) & ~0x1f00) | 0x1200; MCHBAR8(0x4b0) = (MCHBAR8(0x4b0) & ~0x1f) | 0x12; MCHBAR32(0x138) = 0x007C9007; MCHBAR32(0x16c) = rcomp1; MCHBAR16(0x17a) = 0x1f7f; MCHBAR32(0x134) = rcomp2; MCHBAR16(0x170) = (MCHBAR16(0x170) & ~0xf) | 1; MCHBAR16(0x178) = 0x134; MCHBAR32(0x130) = 0x4C293600; MCHBAR8(0x133) = (MCHBAR8(0x133) & ~0x44) | (1 << 6) | (1 << 2); MCHBAR16(0x4b0) = MCHBAR16(0x4b0) & ~(1 << 13); MCHBAR8(0x4b0) = MCHBAR8(0x4b0) & ~(1 << 5); for (i = 0; i < 7; i++) { if (i == 1) continue; MCHBAR8(rcompctl[i]+2) = MCHBAR8(rcompctl[i]) & ~0x71; } if ((MCHBAR32(0x130) & (1 << 30)) == 0) { MCHBAR8(0x130) = MCHBAR8(0x130) | 0x1; while ((MCHBAR8(0x130) & 0x1) != 0); reg32 = MCHBAR32(0x13c); rcompp = (u8) ((reg32 & ~(1 << 31)) >> 24); rcompn = (u8) ((reg32 & ~(0xff800000)) >> 16); for (i = 0; i < 7; i++) { if (i == 1) continue; srup = (MCHBAR8(rcompctl[i]+1) & 0xc0) >> 6; srun = (MCHBAR8(rcompctl[i]+1) & 0x30) >> 4; reg16 = (u16)(rcompp - (1 << (srup + 1))) << 8; MCHBAR16(rcompctl[i]+0x16) = (MCHBAR16(rcompctl[i]+0x16) & ~0x7f00) | reg16; reg16 = (u16)(rcompn - (1 << (srun + 1))); MCHBAR8(rcompctl[i]+0x16) = (MCHBAR8(rcompctl[i]+0x16) & ~0x7f) | (u8)reg16; } reg8 = rcompp - (1 << (srup + 1)); for (i = 0, j = reg8; i < 4; i++, j += (1 << srup)) { MCHBAR8(rcompctl[0]+0x18+i) = (MCHBAR8(rcompctl[0]+0x18+i) & ~0x3f) | rcomplut[j][0]; } for (i = 0, j = reg8; i < 4; i++, j += (1 << srup)) { if (s->dimm_config[0] < 3 || s->dimm_config[0] == 5) { MCHBAR8(rcompctl[2]+0x18+i) = (MCHBAR8(rcompctl[2]+0x18+i) & ~0x3f) | rcomplut[j][10]; } } for (i = 0, j = reg8; i < 4; i++, j += (1 << srup)) { MCHBAR8(rcompctl[3]+0x18+i) = (MCHBAR8(rcompctl[3]+0x18+i) & ~0x3f) | rcomplut[j][6]; MCHBAR8(rcompctl[4]+0x18+i) = (MCHBAR8(rcompctl[4]+0x18+i) & ~0x3f) | rcomplut[j][6]; } for (i = 0, j = reg8; i < 4; i++, j += (1 << srup)) { MCHBAR8(rcompctl[5]+0x18+i) = (MCHBAR8(rcompctl[5]+0x18+i) & ~0x3f) | rcomplut[j][8]; MCHBAR8(rcompctl[6]+0x18+i) = (MCHBAR8(rcompctl[6]+0x18+i) & ~0x3f) | rcomplut[j][8]; } reg8 = rcompn - (1 << (srun + 1)); for (i = 0, j = reg8; i < 4; i++, j += (1 << srun)) { MCHBAR8(rcompctl[0]+0x1c+i) = (MCHBAR8(rcompctl[0]+0x1c+i) & ~0x3f) | rcomplut[j][1]; } for (i = 0, j = reg8; i < 4; i++, j += (1 << srun)) { if (s->dimm_config[0] < 3 || s->dimm_config[0] == 5) { MCHBAR8(rcompctl[2]+0x1c+i) = (MCHBAR8(rcompctl[2]+0x1c+i) & ~0x3f) | rcomplut[j][11]; } } for (i = 0, j = reg8; i < 4; i++, j += (1 << srun)) { MCHBAR8(rcompctl[3]+0x1c+i) = (MCHBAR8(rcompctl[3]+0x1c+i) & ~0x3f) | rcomplut[j][7]; MCHBAR8(rcompctl[4]+0x1c+i) = (MCHBAR8(rcompctl[4]+0x1c+i) & ~0x3f) | rcomplut[j][7]; } for (i = 0, j = reg8; i < 4; i++, j += (1 << srun)) { MCHBAR8(rcompctl[5]+0x1c+i) = (MCHBAR8(rcompctl[5]+0x1c+i) & ~0x3f) | rcomplut[j][9]; MCHBAR8(rcompctl[6]+0x1c+i) = (MCHBAR8(rcompctl[6]+0x1c+i) & ~0x3f) | rcomplut[j][9]; } } MCHBAR8(0x130) = MCHBAR8(0x130) | 1; } static void sdram_odt(struct sysinfo *s) { u8 rankindex = 0; u16 odt294[16] = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0044, 0x1111, 0x0000, 0x1111, 0x0000, 0x0000, 0x0000, 0x0000, 0x0044, 0x1111, 0x0000, 0x1111 }; u16 odt298[16] = { 0x0000, 0x0011, 0x0000, 0x0011, 0x0000, 0x4444, 0x0000, 0x4444, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x4444, 0x0000, 0x4444 }; switch (s->dimms[0].ranks) { case 0: if (s->dimms[1].ranks == 0) { rankindex = 0; } else if (s->dimms[1].ranks == 1) { rankindex = 4; } else if (s->dimms[1].ranks == 2) { rankindex = 12; } break; case 1: if (s->dimms[1].ranks == 0) { rankindex = 1; } else if (s->dimms[1].ranks == 1) { rankindex = 5; } else if (s->dimms[1].ranks == 2) { rankindex = 13; } break; case 2: if (s->dimms[1].ranks == 0) { rankindex = 3; } else if (s->dimms[1].ranks == 1) { rankindex = 7; } else if (s->dimms[1].ranks == 2) { rankindex = 15; } break; } MCHBAR16(0x298) = odt298[rankindex]; MCHBAR16(0x294) = odt294[rankindex]; } static void sdram_mmap(struct sysinfo *s) { u32 w260[7] = {0, 0x400001, 0xc00001, 0x500000, 0xf00000, 0xc00001, 0xf00000}; u32 w208[7] = {0, 0x10000, 0x1010000, 0x10001, 0x1010101, 0x1010000, 0x1010101}; u32 w200[7] = {0, 0, 0, 0x20002, 0x40002, 0, 0x40002}; u32 w204[7] = {0, 0x20002, 0x40002, 0x40004, 0x80006, 0x40002, 0x80006}; u16 tolud[7] = {0x800, 0x800, 0x1000, 0x1000, 0x2000, 0x1000, 0x2000}; u16 tom[7] = {0x2, 0x2, 0x4, 0x4, 0x8, 0x4, 0x8}; u16 touud[7] = {0x80, 0x80, 0x100, 0x100, 0x200, 0x100, 0x200}; u32 gbsm[7] = {0x8000000, 0x8000000, 0x10000000, 0x8000000, 0x20000000, 0x10000000, 0x20000000}; u32 bgsm[7] = {0x8000000, 0x8000000, 0x10000000, 0x8000000, 0x20000000, 0x10000000, 0x20000000}; u32 tsegmb[7] = {0x8000000, 0x8000000, 0x10000000, 0x8000000, 0x20000000, 0x10000000, 0x20000000}; if ((s->dimm_config[0] < 3) && rank_is_populated(s->dimms, 0, 0)) { if (s->dimms[0].sides > 1) { // 2R/NC MCHBAR32(0x260) = (MCHBAR32(0x260) & ~0x1) | 0x300001; MCHBAR32(0x208) = 0x101; MCHBAR32(0x200) = 0x40002; MCHBAR32(0x204) = w204[s->dimm_config[0]]; } else { // 1R/NC MCHBAR32(0x260) = (MCHBAR32(0x260) & ~0x1) | 0x100001; MCHBAR32(0x208) = 0x1; MCHBAR32(0x200) = 0x20002; MCHBAR32(0x204) = w204[s->dimm_config[0]]; } } else if ((s->dimm_config[0] == 5) && rank_is_populated(s->dimms, 0, 0)) { MCHBAR32(0x260) = (MCHBAR32(0x260) & ~0x1) | 0x300001; MCHBAR32(0x208) = 0x101; MCHBAR32(0x200) = 0x40002; MCHBAR32(0x204) = 0x40004; } else { MCHBAR32(0x260) = (MCHBAR32(0x260) & ~0x1) | w260[s->dimm_config[0]]; MCHBAR32(0x208) = w208[s->dimm_config[0]]; MCHBAR32(0x200) = w200[s->dimm_config[0]]; MCHBAR32(0x204) = w204[s->dimm_config[0]]; } pci_write_config16(PCI_DEV(0, 0, 0), 0xb0, tolud[s->dimm_config[0]]); pci_write_config16(PCI_DEV(0, 0, 0), 0xa0, tom[s->dimm_config[0]]); pci_write_config16(PCI_DEV(0, 0, 0), 0xa2, touud[s->dimm_config[0]]); pci_write_config32(PCI_DEV(0, 0, 0), 0xa4, gbsm[s->dimm_config[0]]); pci_write_config32(PCI_DEV(0, 0, 0), 0xa8, bgsm[s->dimm_config[0]]); pci_write_config32(PCI_DEV(0, 0, 0), 0xac, tsegmb[s->dimm_config[0]]); } #if 1 static void hpet_udelay(u32 del) { u32 start, finish, now; del *= 15; /* now in usec */ start = HPET32(0xf0); finish = start + del; while (1) { now = HPET32(0xf0); if (finish > start) { if (now >= finish) break; } else { if ((now < start) && (now >= finish)) { break; } } } } #endif static u8 sdram_checkrcompoverride(void) { u32 xcomp; u8 aa, bb, a, b, c, d; xcomp = MCHBAR32(0x13c); a = (u8)((xcomp & 0x7f000000) >> 24); b = (u8)((xcomp & 0x7f0000) >> 16); c = (u8)((xcomp & 0x3f00) >> 8); d = (u8)(xcomp & 0x3f); if (a > b) { aa = a - b; } else { aa = b - a; } if (c > d) { bb = c - d; } else { bb = d - c; } if ((aa > 18) || (bb > 7) || (a <= 5) || (b <= 5) || (c <= 5) || (d <= 5) || (a >= 0x7a) || (b >= 0x7a) || (c >= 0x3a) || (d >= 0x3a)) { MCHBAR32(0x140) = 0x9718a729; return 1; } return 0; } static void sdram_rcompupdate(struct sysinfo *s) { u8 i, ok; u32 reg32a, reg32b; ok = 0; MCHBAR8(0x170) = MCHBAR8(0x170) & ~(1 << 3); MCHBAR8(0x130) = MCHBAR8(0x130) & ~(1 << 7); for (i = 0; i < 3; i++) { MCHBAR8(0x130) = MCHBAR8(0x130) | 1; hpet_udelay(1000); while ((MCHBAR8(0x130) & 0x1) != 0); ok |= sdram_checkrcompoverride(); } if (!ok) { reg32a = MCHBAR32(0x13c); reg32b = (reg32a >> 16) & 0x0000ffff; reg32a = ((reg32a << 16) & 0xffff0000) | reg32b; reg32a |= (1 << 31) | (1 << 15); MCHBAR32(0x140) = reg32a; } MCHBAR8(0x130) = MCHBAR8(0x130) | 1; hpet_udelay(1000); while ((MCHBAR8(0x130) & 0x1) != 0); } static void __attribute__((noinline)) sdram_jedec(struct sysinfo *s, u8 rank, u8 jmode, u16 jval) { u32 reg32; reg32 = jval << 3; reg32 |= rank * 0x8000000; MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0x3e) | jmode; read32((void *)reg32); barrier(); hpet_udelay(1); // 1us } static void sdram_zqcl(struct sysinfo *s) { if (s->boot_path == BOOT_PATH_RESUME) { MCHBAR32(0x260) = MCHBAR32(0x260) | (1 << 27); MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0xe) | NORMAL_OP_CMD; MCHBAR8(0x271) = MCHBAR8(0x271) & ~0x30; MCHBAR32(0x268) = (MCHBAR32(0x268) & ~((1 << 30) | (1 << 31))) | (1 << 30) | (1 << 31); } } static void sdram_jedecinit(struct sysinfo *s) { u8 r, i, ch; u16 reg16, mrs, rttnom; struct jedeclist { char debug[15]; u8 cmd; u16 val; }; struct jedeclist jedec[12] = { { " NOP ", NOP_CMD, 0 }, { " PRE CHARGE ", PRE_CHARGE_CMD, 0 }, { " EMRS2 ", EMRS2_CMD, 0 }, { " EMRS3 ", EMRS3_CMD, 0 }, { " EMRS1 ", EMRS1_CMD, 0 }, { " DLL RESET ", MRS_CMD, (1 << 8) }, { " PRE CHARGE ", PRE_CHARGE_CMD, 0 }, { " AUTOREFRESH", CBR_CMD, 0 }, { " AUTOREFRESH", CBR_CMD, 0 }, { " INITIALISE ", MRS_CMD, 0 }, { " EMRS1 OCD ", EMRS1_CMD, (1 << 9) | (1 << 8) | (1 << 7) }, { " EMRS1 EXIT ", EMRS1_CMD, 0 } }; mrs = (s->selected_timings.CAS << 4) | ((s->selected_timings.tWR - 1) << 9) | (1 << 3) | (1 << 1) | 1; rttnom = (1 << 2); if (rank_is_populated(s->dimms, 0, 0) && rank_is_populated(s->dimms, 0, 2)) { rttnom |= (1 << 6); } hpet_udelay(200); // 200us reg16 = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { for (i = 0; i < 12; i++) { PRINTK_DEBUG("Rank:%d Jedec:%14s...", r, jedec[i].debug); reg16 = jedec[i].val; switch (jedec[i].cmd) { case EMRS1_CMD: reg16 |= rttnom; break; case MRS_CMD: reg16 |= mrs; break; default: break; } sdram_jedec(s, r, jedec[i].cmd, reg16); PRINTK_DEBUG("done\n"); } } } static void sdram_misc(struct sysinfo *s) { u32 reg32; reg32 = 0; reg32 |= (0x4 << 13); reg32 |= (0x6 << 8); MCHBAR32(0x274) = (MCHBAR32(0x274) & ~0x3ff00) | reg32; MCHBAR8(0x274) = MCHBAR8(0x274) & ~(1 << 7); MCHBAR8(0x26c) = MCHBAR8(0x26c) | 1; if (s->boot_path != BOOT_PATH_RESUME) { MCHBAR8(0x271) = (MCHBAR8(0x271) & ~0xe) | NORMAL_OP_CMD; MCHBAR8(0x271) = MCHBAR8(0x271) & ~0x30; } else { sdram_zqcl(s); } } static void sdram_checkreset(void) { u8 pmcon2, pmcon3, reset; pmcon2 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2); pmcon3 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4); pmcon3 &= ~0x2; if (pmcon2 & 0x80) { pmcon2 &= ~0x80; reset = 1; } else { pmcon2 |= 0x80; reset = 0; } if (pmcon2 & 0x4) { pmcon2 |= 0x4; pmcon3 = (pmcon3 & ~0x30) | 0x30; pmcon3 |= (1 << 3); } pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, pmcon2); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, pmcon3); if (reset) { printk(BIOS_DEBUG, "Power cycle reset...\n"); outb(0xe, 0xcf9); } } static void sdram_dradrb(struct sysinfo *s) { u8 i, reg8, ch, r; u32 reg32, ind, c0dra, c0drb, dra; u16 addr; i = 0; u8 dratab[2][2][2][4] = {{ { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x00, 0x02, 0xff} }, { {0xff, 0x01, 0xff, 0xff}, {0xff, 0x03, 0xff, 0x06} } }, { { {0xff, 0xff, 0xff, 0xff}, {0xff, 0x04, 0x06, 0x08} }, { {0xff, 0xff, 0xff, 0xff}, {0x05, 0x07, 0x09, 0xff} } }}; u8 dradrb[10][6] = { //Row Col Bank Width DRB {0x01, 0x01, 0x00, 0x08, 0, 0x04}, {0x01, 0x00, 0x00, 0x10, 0, 0x02}, {0x02, 0x01, 0x00, 0x08, 1, 0x08}, {0x01, 0x01, 0x00, 0x10, 1, 0x04}, {0x01, 0x01, 0x01, 0x08, 1, 0x08}, {0x00, 0x01, 0x01, 0x10, 1, 0x04}, {0x02, 0x01, 0x01, 0x08, 2, 0x10}, {0x01, 0x01, 0x01, 0x10, 2, 0x08}, {0x03, 0x01, 0x01, 0x08, 3, 0x20}, {0x02, 0x01, 0x01, 0x10, 3, 0x10}, }; reg32 = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { i = r / 2; PRINTK_DEBUG("RANK %d PRESENT\n", r); dra = dratab[s->dimms[i].banks] [s->dimms[i].width] [s->dimms[i].cols - 9] [s->dimms[i].rows - 12]; if (s->dimms[i].banks == 1) { dra |= (1 << 7); } reg32 |= (dra << (r*8)); } MCHBAR32(0x208) = reg32; c0dra = reg32; PRINTK_DEBUG("C0DRA = 0x%08x\n", c0dra); reg32 = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { reg32 |= (1 << r); } reg8 = (u8)(reg32 << 4) & 0xf0; MCHBAR8(0x262) = (MCHBAR8(0x262) & ~0xf0) | reg8; if (ONLY_DIMMA_IS_POPULATED(s->dimms, 0) || ONLY_DIMMB_IS_POPULATED(s->dimms, 0)) { MCHBAR8(0x260) = MCHBAR8(0x260) | 1; } addr = 0x200; c0drb = 0; FOR_EACH_RANK(ch, r) { if (rank_is_populated(s->dimms, ch, r)) { ind = (c0dra >> (8*r)) & 0x7f; c0drb = (u16)(c0drb + dradrb[ind][5]); s->channel_capacity[0] += dradrb[ind][5] << 6; } MCHBAR16(addr) = c0drb; addr += 2; } printk(BIOS_DEBUG, "Total memory = %dMB\n", s->channel_capacity[0]); } static u8 sampledqs(u32 dqshighaddr, u32 strobeaddr, u8 highlow, u8 count) { volatile u32 strobedata; u8 dqsmatches = 1; while (count--) { MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0x2; hpet_udelay(1); MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x2; hpet_udelay(1); barrier(); strobedata = read32((void*)strobeaddr); barrier(); hpet_udelay(1); if (((MCHBAR8(dqshighaddr) & 0x40) >> 6) != highlow) { dqsmatches = 0; } } return dqsmatches; } static void rcvenclock(u8 *coarse, u8 *medium, u8 bytelane) { if (*medium < 3) { (*medium)++; MCHBAR16(0x58c) = (MCHBAR16(0x58c) & (u16)(~(0x3 << (bytelane*2)))) | (*medium << (bytelane*2)); } else { *medium = 0; (*coarse)++; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | (*coarse << 16); MCHBAR16(0x58c) = (MCHBAR16(0x58c) & (u16)(~0x3 << (bytelane*2))) | (*medium << (bytelane*2)); } } static void sdram_rcven(struct sysinfo *s) { u8 curcoarse, savecoarse; u8 curmedium, savemedium; u8 pi, savepi; u8 bytelane; u8 bytelanecoarse[8] = { 0 }; u8 minbytelanecoarse = 0xff; u8 bytelaneoffset; u8 maxbytelane = 8; u32 strobeaddr = (rank_is_populated(s->dimms, 0, 0)) ? 0 : 2*128*1024*1024; u32 dqshighaddr; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80; PRINTK_DEBUG("rcven 0\n"); for (bytelane = 0; bytelane < maxbytelane; bytelane++) { PRINTK_DEBUG("rcven bytelane %d\n", bytelane); //trylaneagain: dqshighaddr = 0x561 + (bytelane << 2); curcoarse = s->selected_timings.CAS + 1; pi = 0; curmedium = 0; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | (curcoarse << 16); MCHBAR16(0x58c) = (MCHBAR16(0x58c) & (u16)(~(0x3 << (bytelane*2)))) | (curmedium << (bytelane*2)); MCHBAR8(0x560+bytelane*4) = MCHBAR8(0x560+bytelane*4) & ~0x3f; savecoarse = curcoarse; savemedium = curmedium; savepi = pi; PRINTK_DEBUG("rcven 0.1\n"); //MCHBAR16(0x588) = (MCHBAR16(0x588) & (u16)~(0x3 << (bytelane*2))) | (1 << (bytelane*2)); // XXX comment out while (sampledqs(dqshighaddr, strobeaddr, 0, 3) == 0) { //printk(BIOS_DEBUG, "coarse=%d medium=%d\n", curcoarse, curmedium); rcvenclock(&curcoarse, &curmedium, bytelane); if (curcoarse > 0xf) { PRINTK_DEBUG("Error: coarse > 0xf\n"); //goto trylaneagain; break; } } PRINTK_DEBUG("rcven 0.2\n"); savecoarse = curcoarse; savemedium = curmedium; rcvenclock(&curcoarse, &curmedium, bytelane); while (sampledqs(dqshighaddr, strobeaddr, 1, 3) == 0) { savecoarse = curcoarse; savemedium = curmedium; rcvenclock(&curcoarse, &curmedium, bytelane); if (curcoarse > 0xf) { PRINTK_DEBUG("Error: coarse > 0xf\n"); //goto trylaneagain; break; } } PRINTK_DEBUG("rcven 0.3\n"); curcoarse = savecoarse; curmedium = savemedium; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | (curcoarse << 16); MCHBAR16(0x58c) = (MCHBAR16(0x58c) & (u16)(~(0x3 << bytelane*2))) | (curmedium << (bytelane*2)); while (sampledqs(dqshighaddr, strobeaddr, 1, 3) == 0) { savepi = pi; pi++; if (pi > s->maxpi) { //if (s->nodll) { pi = savepi = s->maxpi; break; //} } MCHBAR8(0x560 + bytelane*4) = (MCHBAR8(0x560 + bytelane*4) & ~0x3f) | (pi << s->pioffset); } PRINTK_DEBUG("rcven 0.4\n"); pi = savepi; MCHBAR8(0x560 + bytelane*4) = (MCHBAR8(0x560 + bytelane*4) & ~0x3f) | (pi << s->pioffset); rcvenclock(&curcoarse, &curmedium, bytelane); if (sampledqs(dqshighaddr, strobeaddr, 1, 1) == 0) { PRINTK_DEBUG("Error: DQS not high\n"); //goto trylaneagain; } PRINTK_DEBUG("rcven 0.5\n"); while (sampledqs(dqshighaddr, strobeaddr, 0, 3) == 0) { curcoarse--; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | (curcoarse << 16); if (curcoarse == 0) { PRINTK_DEBUG("Error: DQS didnt hit 0\n"); break; } } PRINTK_DEBUG("rcven 0.6\n"); rcvenclock(&curcoarse, &curmedium, bytelane); s->pi[bytelane] = pi; bytelanecoarse[bytelane] = curcoarse; } PRINTK_DEBUG("rcven 1\n"); bytelane = maxbytelane; do { bytelane--; if (minbytelanecoarse > bytelanecoarse[bytelane]) { minbytelanecoarse = bytelanecoarse[bytelane]; } } while (bytelane != 0); bytelane = maxbytelane; do { bytelane--; bytelaneoffset = bytelanecoarse[bytelane] - minbytelanecoarse; MCHBAR16(0x5fa) = (MCHBAR16(0x5fa) & (u16)(~(0x3 << (bytelane*2)))) | (bytelaneoffset << (bytelane*2)); } while (bytelane != 0); MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0xf0000) | (minbytelanecoarse << 16); s->coarsectrl = minbytelanecoarse; s->coarsedelay = MCHBAR16(0x5fa); s->mediumphase = MCHBAR16(0x58c); s->readptrdelay = MCHBAR16(0x588); PRINTK_DEBUG("rcven 2\n"); MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xe; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x2; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x4; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x8; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80; MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; PRINTK_DEBUG("rcven 3\n"); } static void sdram_mmap_regs(struct sysinfo *s) { bool reclaim; u32 tsegsize; u32 mmiosize; u32 tom, tolud, touud, reclaimbase, reclaimlimit; u32 gfxbase, gfxsize, gttbase, gttsize, tsegbase; u16 ggc; u16 ggc_to_uma[10] = { 0, 1, 4, 8, 16, 32, 48, 64, 128, 256 }; u8 ggc_to_gtt[4] = { 0, 1, 0, 0 }; reclaimbase = 0; reclaimlimit = 0; ggc = pci_read_config16(PCI_DEV(0,0,0), GGC); printk(BIOS_DEBUG, "GGC = 0x%04x\n", ggc); gfxsize = ggc_to_uma[(ggc & 0xf0) >> 4]; gttsize = ggc_to_gtt[(ggc & 0x300) >> 8]; tom = s->channel_capacity[0]; tsegsize = 0x1; // 1MB mmiosize = 0x400; // 1GB reclaim = false; tolud = MIN(0x1000 - mmiosize, tom); if ((tom - tolud) > 0x40) { // reclaim = true; } if (reclaim) { tolud = tolud & ~0x3f; tom = tom & ~0x3f; reclaimbase = MAX(0x1000, tom); reclaimlimit = reclaimbase + (MIN(0x1000, tom) - tolud) - 0x40; } touud = tom; if (reclaim) { touud = reclaimlimit + 0x40; } gfxbase = tolud - gfxsize; gttbase = gfxbase - gttsize; tsegbase = gttbase - tsegsize; /* Program the regs */ pci_write_config16(PCI_DEV(0,0,0), TOLUD, (u16)(tolud << 4)); pci_write_config16(PCI_DEV(0,0,0), TOM, (u16)(tom >> 6)); if (reclaim) { pci_write_config16(PCI_DEV(0,0,0), 0x98, (u16)(reclaimbase >> 6)); pci_write_config16(PCI_DEV(0,0,0), 0x9a, (u16)(reclaimlimit >> 6)); } pci_write_config16(PCI_DEV(0,0,0), TOUUD, (u16)(touud)); pci_write_config32(PCI_DEV(0,0,0), GBSM, gfxbase << 20); pci_write_config32(PCI_DEV(0,0,0), BGSM, gttbase << 20); pci_write_config32(PCI_DEV(0,0,0), TSEG, tsegbase << 20); printk(BIOS_DEBUG, "GBSM (igd) = verified %08x (written %08x)\n", pci_read_config32(PCI_DEV(0,0,0), GBSM), gfxbase << 20); printk(BIOS_DEBUG, "BGSM (gtt) = verified %08x (written %08x)\n", pci_read_config32(PCI_DEV(0,0,0), BGSM), gttbase << 20); printk(BIOS_DEBUG, "TSEG (smm) = verified %08x (written %08x)\n", pci_read_config32(PCI_DEV(0,0,0), TSEG), tsegbase << 20); } static void sdram_enhancedmode(struct sysinfo *s) { u8 reg8, ch, r, j, i; u32 mask32, reg32; MCHBAR8(0x246) = MCHBAR8(0x246) | 1; MCHBAR8(0x269 + 3) = MCHBAR8(0x269 + 3) | 1; mask32 = (0x1f << 15) | (0x1f << 10) | (0x1f << 5) | 0x1f; reg32 = (0x1e << 15) | (0x10 << 10) | (0x1e << 5) | 0x10; MCHBAR32(0x120) = (MCHBAR32(0x120) & ~mask32) | reg32; MCHBAR8(0x288 + 1) = 0x2; MCHBAR16(0x288 + 2) = 0x0804; MCHBAR16(0x288 + 4) = 0x2010; MCHBAR8(0x288 + 6) = 0x40; MCHBAR16(0x288 + 8) = 0x091c; MCHBAR8(0x288 + 10) = 0xf2; MCHBAR8(0x241) = MCHBAR8(0x241) | 1; MCHBAR8(0x243) = MCHBAR8(0x243) | 1; MCHBAR16(0x272) = MCHBAR16(0x272) | 0x100; reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xf0); pci_write_config8(PCI_DEV(0,0,0), 0xf0, reg8 | 1); MCHBAR32(0xfa0) = 0x00000002; MCHBAR32(0xfa4) = 0x20310002; MCHBAR32(0x24) = 0x02020302; MCHBAR32(0x30) = 0x001f1806; MCHBAR32(0x34) = 0x01102800; MCHBAR32(0x38) = 0x07000000; MCHBAR32(0x3c) = 0x01014010; MCHBAR32(0x40) = 0x0f038000; reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xf0); pci_write_config8(PCI_DEV(0,0,0), 0xf0, reg8 & ~1); u32 nranks, curranksize, maxranksize, maxdra, dra; u8 rankmismatch, dramismatch; u8 drbtab[10] = { 0x4, 0x2, 0x8, 0x4, 0x8, 0x4, 0x10, 0x8, 0x20, 0x10 }; nranks = 0; curranksize = 0; maxranksize = 0; maxdra = 0; rankmismatch = 0; dramismatch = 0; FOR_EACH_POPULATED_RANK(s->dimms, ch, r) { nranks++; dra = (u8) ((MCHBAR32(0x208) >> (8*r)) & 0x7f); curranksize = drbtab[dra]; if (maxranksize == 0) { maxranksize = curranksize; maxdra = dra; } if (curranksize != maxranksize) { rankmismatch = 1; } if (dra != maxdra) { dramismatch = 1; } } reg8 = 0; switch (nranks) { case 4: if (rankmismatch) { reg8 = 0x64; } else { reg8 = 0xa4; } break; case 1: case 3: reg8 = 0x64; break; case 2: if (rankmismatch) { reg8 = 0x64; } else { reg8 = 0x24; } break; default: die("Invalid number of ranks found, halt\n"); break; } MCHBAR8(0x111) = (MCHBAR8(0x111) & ~0xfc) | (reg8 & 0xfc); MCHBAR32(0xd0) = MCHBAR32(0xd0) & ~0x80000000; MCHBAR32(0x28) = 0xf; MCHBAR8(0x2c4) = MCHBAR8(0x2c4) | 1; MCHBAR32(0x3c) = MCHBAR32(0x3c) & ~0xe000000; MCHBAR32(0x40) = (MCHBAR32(0x40) & ~0xc0000) | 0x40000; u32 clkcx[2][2][3] = { { {0, 0x0c080302, 0x08010204}, // 667 {0x02040000, 0x08100102, 0} }, { {0x18000000, 0x3021060c, 0x20010208}, {0, 0x0c090306, 0} // 800 } }; j = s->selected_timings.fsb_clock; i = s->selected_timings.mem_clock; MCHBAR32(0x708) = clkcx[j][i][0]; MCHBAR32(0x70c) = clkcx[j][i][1]; MCHBAR32(0x6dc) = clkcx[j][i][2]; MCHBAR8(0x40) = MCHBAR8(0x40) & ~0x2; } static void sdram_periodic_rcomp(void) { MCHBAR8(0x130) = MCHBAR8(0x130) & ~0x2; while ((MCHBAR32(0x130) & 0x80000000) > 0) { ; } MCHBAR16(0x1b4) = (MCHBAR16(0x1b4) & ~0x3000); MCHBAR8(0x5dc) = MCHBAR8(0x5dc) | 0x80; MCHBAR16(0x170) = (MCHBAR16(0x170) & ~0xf) | 0x9; MCHBAR8(0x130) = MCHBAR8(0x130) | 0x82; } static void sdram_new_trd(struct sysinfo *s) { u8 pidelay, i, j, k, cc, trd_perphase[5]; u8 bypass, freqgb, trd, reg8, txfifo, cas; u32 reg32, datadelay, tio, rcvendelay, maxrcvendelay; u16 tmclk, thclk, buffertocore, postcalib; u8 txfifo_lut[8] = { 0, 7, 6, 5, 2, 1, 4, 3 }; u16 trd_adjust[2][2][5] = { { {3000, 3000, 0,0,0}, {1000,2000,3000,1500,2500} }, { {2000,1000,3000,0,0}, {2500, 2500, 0,0,0} }}; freqgb = 110; buffertocore = 5000; cas = s->selected_timings.CAS; postcalib = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 1250 : 500; tmclk = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 3000 : 2500; tmclk = tmclk * 100 / freqgb; thclk = (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) ? 6000 : 5000; switch (s->selected_timings.mem_clock) { case MEM_CLOCK_667MHz: if (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) { cc = 2; } else { cc = 3; } break; default: case MEM_CLOCK_800MHz: if (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) { cc = 5; } else { cc = 2; } break; } tio = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 2700 : 3240; maxrcvendelay = 0; pidelay = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 24 : 20; for (i = 0; i < 8; i++) { rcvendelay = ((u32)((s->coarsedelay >> (i << 1)) & 0x3) * (u32)(tmclk)); rcvendelay += ((u32)((s->readptrdelay >> (i << 1)) & 0x3) * (u32)(tmclk) / 2); rcvendelay += ((u32)((s->mediumphase >> (i << 1)) & 0x3) * (u32)(tmclk) / 4); rcvendelay += (u32)(pidelay * s->pi[i]); maxrcvendelay = MAX(maxrcvendelay, rcvendelay); } if ((MCHBAR8(0xc54+3) == 0xff) && (MCHBAR8(0xc08) & 0x80)) { bypass = 1; } else { bypass = 0; } txfifo = 0; reg8 = (MCHBAR8(0x188) & 0xe) >> 1; txfifo = txfifo_lut[reg8] & 0x7; datadelay = tmclk * (2*txfifo + 4*s->coarsectrl + 4*(bypass-1) + 13) / 4 + tio + maxrcvendelay + pidelay + buffertocore + postcalib; if (s->async) { datadelay += tmclk / 2; } j = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 0 : 1; k = (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) ? 0 : 1; if (j == 0 && k == 0) { datadelay -= 3084; } trd = 0; for (i = 0; i < cc; i++) { reg32 = datadelay - (trd_adjust[k][j][i] * 100 / freqgb); trd_perphase[i] = (u8)(reg32 / thclk) - 2; trd_perphase[i] += 1; if (trd_perphase[i] > trd) { trd = trd_perphase[i]; } } MCHBAR16(0x248) = (MCHBAR16(0x248) & ~0x1f00) | (trd << 8); } static void sdram_powersettings(struct sysinfo *s) { u8 j; u32 reg32; /* Thermal sensor */ MCHBAR8(0x3808) = 0x9b; MCHBAR32(0x380c) = (MCHBAR32(0x380c) & ~0x00ffffff) | 0x1d00; MCHBAR8(0x3814) = 0x08; MCHBAR8(0x3824) = 0x00; MCHBAR8(0x3809) = (MCHBAR8(0x3809) & ~0xf) | 0x4; MCHBAR8(0x3814) = (MCHBAR8(0x3814) & ~1) | 1; MCHBAR8(0x3812) = (MCHBAR8(0x3812) & ~0x80) | 0x80; /* Clock gating */ MCHBAR32(0xf18) = MCHBAR32(0xf18) & ~0x00040001; MCHBAR8(0xfac+3) = MCHBAR8(0xfac+3) & ~0x80; MCHBAR8(0xff8+3) = MCHBAR8(0xff8+3) & ~0x80; MCHBAR16(0xff0) = MCHBAR16(0xff0) & ~0x1fff; MCHBAR32(0xfb0) = MCHBAR32(0xfb0) & ~0x0001ffff; MCHBAR16(0x48) = (MCHBAR16(0x48) & ~0x03ff) & 0x6; MCHBAR32(0x20) = (MCHBAR32(0x20) & ~0xffffffff) | 0x20; MCHBAR8(0xd14) = MCHBAR8(0xd14) & ~1; MCHBAR8(0x239) = s->selected_timings.CAS - 1 + 0x15; MCHBAR16(0x2d1) = (MCHBAR16(0x2d1) & ~0x07fc) | 0x40; MCHBAR16(0x6d1) = (MCHBAR16(0x6d1) & ~0x0fff) | 0xd00; MCHBAR16(0x210) = MCHBAR16(0x210) & ~0x0d80; MCHBAR16(0xf6c+2) = 0xffff; /* Sequencing */ MCHBAR32(0x14) = (MCHBAR32(0x14) & ~0x1fffffff) | 0x1f643fff; MCHBAR32(0x18) = (MCHBAR32(0x18) & ~0xffffff7f) | 0x02010000; MCHBAR16(0x1c) = (MCHBAR16(0x1c) & ~0x7000) | (0x3 << 12); /* Power */ MCHBAR32(0x1104) = (MCHBAR32(0x1104) & ~0xffff0003) | 0x10100000; MCHBAR32(0x1108) = (MCHBAR32(0x1108) & ~0x0001bff7) | 0x00000078; if (s->selected_timings.fsb_clock == FSB_CLOCK_667MHz) { MCHBAR16(0x110c) = (MCHBAR16(0x110c) & ~0x03ff) | 0xc8; } else { MCHBAR16(0x110c) = (MCHBAR16(0x110c) & ~0x03ff) | 0x100; } j = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 0 : 1; MCHBAR32(0x1110) = (MCHBAR32(0x1110) & ~0x1fff37f) | 0x10810700; MCHBAR8(0x1114) = (MCHBAR8(0x1114) & ~0x07) | 1; MCHBAR8(0x1124) = MCHBAR8(0x1124) & ~0x02; u16 ddr2lut[2][4][2] = {{ {0x0000, 0x0000}, {0x019A, 0x0039}, {0x0099, 0x1049}, {0x0000, 0x0000} }, { {0x0000, 0x0000}, {0x019A, 0x0039}, {0x0099, 0x1049}, {0x0099, 0x2159} }}; MCHBAR16(0x23c) = 0x7a89; MCHBAR8(0x117) = 0xaa; MCHBAR16(0x118) = ddr2lut[j][s->selected_timings.CAS - 3][1]; MCHBAR16(0x115) = (MCHBAR16(0x115) & ~0x7fff) | ddr2lut[j] [s->selected_timings.CAS - 3][0]; MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0xf000) | 0xf000; MCHBAR8(0x2c02) = (MCHBAR8(0x2c02) & ~0x77) | (4 << 4 | 4); if (s->nodll) { reg32 = 0x30000000; } else { reg32 = 0; } MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0x0f000000) | 0x20000000 | reg32; MCHBAR32(0x2d1) = (MCHBAR32(0x2d1) & ~0x00f00000) | 0x00f00000; MCHBAR32(0x6d0) = (MCHBAR32(0x6d0) & ~0x001ff000) | (0xbf << 20); MCHBAR16(0x610) = (MCHBAR16(0x610) & ~0x1f7f) | (0xb << 8) | (7 << 4) | 0xb; MCHBAR16(0x612) = 0x3264; MCHBAR16(0x614) = (MCHBAR16(0x614) & ~0x3f3f) | (0x14 << 8) | 0xa; MCHBAR32(0x6c0) = MCHBAR32(0x6c0) | 0x80002000; } static void sdram_programddr(void) { MCHBAR16(0x6d1) = (MCHBAR16(0x6d1) & ~0x03ff) | 0x100; MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0x003f) | 0x10; MCHBAR16(0x2d1) = (MCHBAR16(0x2d1) & ~0x7000) | 0x2000; MCHBAR8(0x180) = MCHBAR8(0x180) & ~0xe; MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0xc; MCHBAR8(0x561) = MCHBAR8(0x561) & ~0xe; MCHBAR8(0x565) = MCHBAR8(0x565) & ~0xe; MCHBAR8(0x569) = MCHBAR8(0x569) & ~0xe; MCHBAR8(0x56d) = MCHBAR8(0x56d) & ~0xe; MCHBAR8(0x571) = MCHBAR8(0x571) & ~0xe; MCHBAR8(0x575) = MCHBAR8(0x575) & ~0xe; MCHBAR8(0x579) = MCHBAR8(0x579) & ~0xe; MCHBAR8(0x57d) = MCHBAR8(0x57d) & ~0xe; MCHBAR8(0x18c) = MCHBAR8(0x18c) & ~0x2; MCHBAR16(0x1b4) = MCHBAR16(0x1b4) & ~0x400; MCHBAR16(0x210) = MCHBAR16(0x210) & ~0xdc0; MCHBAR8(0x239) = MCHBAR8(0x239) & ~0x80; MCHBAR32(0x2c0) = MCHBAR32(0x2c0) & ~(1 << 22); MCHBAR16(0x2d1) = MCHBAR16(0x2d1) & ~0x80fc; MCHBAR16(0x6d1) = MCHBAR16(0x6d1) & ~0xc00; MCHBAR8(0x180) = MCHBAR8(0x180) & ~0xd; MCHBAR8(0x561) = MCHBAR8(0x561) & ~1; MCHBAR8(0x565) = MCHBAR8(0x565) & ~1; MCHBAR8(0x569) = MCHBAR8(0x569) & ~1; MCHBAR8(0x56d) = MCHBAR8(0x56d) & ~1; MCHBAR8(0x571) = MCHBAR8(0x571) & ~1; MCHBAR8(0x575) = MCHBAR8(0x575) & ~1; MCHBAR8(0x579) = MCHBAR8(0x579) & ~1; MCHBAR8(0x57d) = MCHBAR8(0x57d) & ~1; MCHBAR32(0x248) = (MCHBAR32(0x248) & ~0x700000) | (0x3 << 20); MCHBAR32(0x2c0) = MCHBAR32(0x2c0) & ~0x100000; MCHBAR8(0x592) = MCHBAR8(0x592) | 0x1e; MCHBAR8(0x2c15) = MCHBAR8(0x2c15) | 0x3; MCHBAR32(0x62c) = (MCHBAR32(0x62c) & ~0xc000000) | 0x4000000; MCHBAR16(0x248) = MCHBAR16(0x248) | 0x6000; MCHBAR32(0x260) = MCHBAR32(0x260) | 0x10000; MCHBAR8(0x2c0) = MCHBAR8(0x2c0) | 0x10; MCHBAR32(0x2d0) = MCHBAR32(0x2d0) | (0xf << 24); MCHBAR8(0x189) = MCHBAR8(0x189) | 0x7; MCHBAR8(0x592) = MCHBAR8(0x592) | 0xc0; MCHBAR8(0x124) = MCHBAR8(0x124) | 0x7; MCHBAR16(0x12a) = (MCHBAR16(0x12a) & ~0xffff) | 0x0080; MCHBAR8(0x12c) = (MCHBAR8(0x12c) & ~0xff) | 0x10; MCHBAR16(0x2c0) = MCHBAR16(0x2c0) | 0x1e0; MCHBAR8(0x189) = MCHBAR8(0x189) | 0x18; MCHBAR8(0x193) = MCHBAR8(0x193) | 0xd; MCHBAR16(0x212) = MCHBAR16(0x212) | 0xa3f; MCHBAR8(0x248) = MCHBAR8(0x248) | 0x3; MCHBAR8(0x268) = (MCHBAR8(0x268) & ~0xff) | 0x4a; MCHBAR8(0x2c4) = MCHBAR8(0x2c4) & ~0x60; MCHBAR16(0x592) = MCHBAR16(0x592) | 0x321; } static void sdram_programdqdqs(struct sysinfo *s) { u16 mdclk, tpi, refclk, dqdqs_out, dqdqs_outdelay, dqdqs_delay; u32 coretomcp, txdelay, tmaxunmask, tmaxpi; u8 repeat, halfclk, feature, reg8, push; u16 cwb, pimdclk; u32 reg32; u8 txfifotab[8] = { 0, 7, 6, 5, 2, 1, 4, 3 }; tpi = 3000; dqdqs_out = 4382; dqdqs_outdelay = 5083; dqdqs_delay = 4692; coretomcp = 0; txdelay = 0; halfclk = 0; tmaxunmask = 0; tmaxpi = 0; repeat = 2; feature = 0; cwb = 0; pimdclk = 0; reg32 = 0; push = 0; reg8 = 0; mdclk = (s->selected_timings.mem_clock == MEM_CLOCK_667MHz) ? 3000 : 2500; refclk = 3000 - mdclk; coretomcp = ((MCHBAR8(0x246) >> 2) & 0x3) + 1; coretomcp *= mdclk; reg8 = (MCHBAR8(0x188) & 0xe) >> 1; while (repeat) { txdelay = mdclk * ( ((MCHBAR16(0x220) >> 8) & 0x7) + (MCHBAR8(0x24d) & 0xf) + (MCHBAR8(0x24e) & 0x1) ) + txfifotab[reg8]*(mdclk/2) + coretomcp + refclk + cwb; halfclk = (MCHBAR8(0x5d9) >> 1) & 0x1; if (halfclk) { txdelay -= mdclk / 2; reg32 = dqdqs_outdelay + coretomcp - mdclk / 2; } else { reg32 = dqdqs_outdelay + coretomcp; } tmaxunmask = txdelay - mdclk - dqdqs_out; tmaxpi = tmaxunmask - tpi; if ((tmaxunmask >= reg32) && tmaxpi >= dqdqs_delay) { if (repeat == 2) { MCHBAR32(0x2c0) = MCHBAR32(0x2c0) & ~(1 << 23); } feature = 1; repeat = 0; } else { repeat--; MCHBAR32(0x2c0) = MCHBAR32(0x2c0) | (1 << 23); cwb = 2 * mdclk; } } if (!feature) { MCHBAR8(0x2d1) = MCHBAR8(0x2d1) & ~0x3; return; } MCHBAR8(0x2d1) = MCHBAR8(0x2d1) | 0x3; MCHBAR16(0x210) = (MCHBAR16(0x210) & ~0xf000) | (pimdclk << 12); MCHBAR8(0x2c02) = (MCHBAR8(0x2c02) & ~0x77) | (push << 4) | push; MCHBAR32(0x2c0) = (MCHBAR32(0x2c0) & ~0xf000000) | 0x3000000; } /** * @param boot_path: 0 = normal, 1 = reset, 2 = resume from s3 */ void sdram_initialize(int boot_path, const u8 *spd_addresses) { struct sysinfo si; u8 reg8; const char *boot_str[] = { "Normal", "Reset", "Resume"}; PRINTK_DEBUG("Setting up RAM controller.\n"); memset(&si, 0, sizeof(si)); si.boot_path = boot_path; printk(BIOS_DEBUG, "Boot path: %s\n", boot_str[boot_path]); si.spd_map[0] = spd_addresses[0]; si.spd_map[1] = spd_addresses[1]; si.spd_map[2] = spd_addresses[2]; si.spd_map[3] = spd_addresses[3]; sdram_read_spds(&si); /* Choose Common Frequency */ sdram_detect_ram_speed(&si); /* Determine smallest common tRAS, tRP, tRCD, etc */ sdram_detect_smallest_params(&si); /* Enable HPET */ enable_hpet(); hpet_udelay(300000); MCHBAR16(0xc1c) = MCHBAR16(0xc1c) | (1 << 15); hpet_udelay(100000); sdram_clk_crossing(&si); sdram_checkreset(); PRINTK_DEBUG("Done checkreset\n"); sdram_clkmode(&si); PRINTK_DEBUG("Done clkmode\n"); sdram_timings(&si); PRINTK_DEBUG("Done timings (dqs dll enabled)\n"); if (si.boot_path != BOOT_PATH_RESET) { sdram_dlltiming(&si); PRINTK_DEBUG("Done dlltiming\n"); } hpet_udelay(200000); if (si.boot_path != BOOT_PATH_RESET) { sdram_rcomp(&si); PRINTK_DEBUG("Done RCOMP\n"); } sdram_odt(&si); PRINTK_DEBUG("Done odt\n"); if (si.boot_path != BOOT_PATH_RESET) { while ((MCHBAR8(0x130) & 0x1) != 0) ; } sdram_mmap(&si); PRINTK_DEBUG("Done mmap\n"); // Enable DDR IO buffer MCHBAR8(0x5dd) = (MCHBAR8(0x5dd) & ~0x3f) | 0x8; MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x1; sdram_rcompupdate(&si); PRINTK_DEBUG("Done RCOMP update\n"); MCHBAR8(0x40) = MCHBAR8(0x40) | 0x2; if (si.boot_path != BOOT_PATH_RESUME) { MCHBAR32(0x260) = MCHBAR32(0x260) | (1 << 27); sdram_jedecinit(&si); PRINTK_DEBUG("Done MRS\n"); } sdram_misc(&si); PRINTK_DEBUG("Done misc\n"); sdram_zqcl(&si); PRINTK_DEBUG("Done zqcl\n"); if (si.boot_path != BOOT_PATH_RESUME) { MCHBAR32(0x268) = MCHBAR32(0x268) | 0xc0000000; } sdram_dradrb(&si); PRINTK_DEBUG("Done dradrb\n"); sdram_rcven(&si); PRINTK_DEBUG("Done rcven\n"); sdram_new_trd(&si); PRINTK_DEBUG("Done tRD\n"); sdram_mmap_regs(&si); PRINTK_DEBUG("Done mmap regs\n"); sdram_enhancedmode(&si); PRINTK_DEBUG("Done enhanced mode\n"); sdram_powersettings(&si); PRINTK_DEBUG("Done power settings\n"); sdram_programddr(); PRINTK_DEBUG("Done programming ddr\n"); sdram_programdqdqs(&si); PRINTK_DEBUG("Done programming dqdqs\n"); sdram_periodic_rcomp(); PRINTK_DEBUG("Done periodic RCOMP\n"); /* Set init done */ MCHBAR32(0x268) = MCHBAR32(0x268) | 0x40000000; /* Tell ICH7 that we're done */ reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~0x80); /* Tell northbridge we're done */ reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xf4); pci_write_config8(PCI_DEV(0,0,0), 0xf4, reg8 | 1); printk(BIOS_DEBUG, "RAM initialization finished.\n"); }