/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "ironlake.h" #include "raminit.h" #include "raminit_tables.h" #define NORTHBRIDGE PCI_DEV(0, 0, 0) #define SOUTHBRIDGE PCI_DEV(0, 0x1f, 0) #define GMA PCI_DEV (0, 0x2, 0x0) #define HECIDEV PCI_DEV(0, 0x16, 0) #define HECIBAR 0x10 #define FOR_ALL_RANKS \ for (channel = 0; channel < NUM_CHANNELS; channel++) \ for (slot = 0; slot < NUM_SLOTS; slot++) \ for (rank = 0; rank < NUM_RANKS; rank++) #define FOR_POPULATED_RANKS \ for (channel = 0; channel < NUM_CHANNELS; channel++) \ for (slot = 0; slot < NUM_SLOTS; slot++) \ for (rank = 0; rank < NUM_RANKS; rank++) \ if (info->populated_ranks[channel][slot][rank]) #define FOR_POPULATED_RANKS_BACKWARDS \ for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) \ for (slot = 0; slot < NUM_SLOTS; slot++) \ for (rank = 0; rank < NUM_RANKS; rank++) \ if (info->populated_ranks[channel][slot][rank]) /* [REG_178][CHANNEL][2 * SLOT + RANK][LANE] */ typedef struct { u8 smallest; u8 largest; } timing_bounds_t[2][2][2][9]; #define MRC_CACHE_VERSION 3 struct ram_training { /* [TM][CHANNEL][SLOT][RANK][LANE] */ u16 lane_timings[4][2][2][2][9]; u16 reg_178; u16 reg_10b; u8 reg178_center; u8 reg178_smallest; u8 reg178_largest; timing_bounds_t timing_bounds[2]; u16 timing_offset[2][2][2][9]; u16 timing2_offset[2][2][2][9]; u16 timing2_bounds[2][2][2][9][2]; u8 reg274265[2][3]; /* [CHANNEL][REGISTER] */ u8 reg2ca9_bit0; u32 reg_6dc; u32 reg_6e8; }; #include /* Prototypes */ typedef struct _u128 { u64 lo; u64 hi; } u128; static void read128(u32 addr, u64 * out) { u128 ret; u128 stor; asm volatile ("movdqu %%xmm0, %0\n" "movdqa (%2), %%xmm0\n" "movdqu %%xmm0, %1\n" "movdqu %0, %%xmm0":"+m" (stor), "=m"(ret):"r"(addr)); out[0] = ret.lo; out[1] = ret.hi; } /* * Ironlake memory I/O timings are located in scan chains, accessible * through MCHBAR register groups. Each channel has a scan chain, and * there's a global scan chain too. Each chain is broken into smaller * sections of N bits, where N <= 32. Each section allows reading and * writing a certain parameter. Each section contains N - 2 data bits * and two additional bits: a Mask bit, and a Halt bit. */ /* OK */ static void write_1d0(u32 val, u16 addr, int bits, int flag) { MCHBAR32(0x1d0) = 0; while (MCHBAR32(0x1d0) & 0x800000) ; MCHBAR32(0x1d4) = (val & ((1 << bits) - 1)) | (2 << bits) | (flag << bits); MCHBAR32(0x1d0) = 0x40000000 | addr; while (MCHBAR32(0x1d0) & 0x800000) ; } /* OK */ static u16 read_1d0(u16 addr, int split) { u32 val; MCHBAR32(0x1d0) = 0; while (MCHBAR32(0x1d0) & 0x800000) ; MCHBAR32(0x1d0) = 0x80000000 | (((MCHBAR8(0x246) >> 2) & 3) + 0x361 - addr); while (MCHBAR32(0x1d0) & 0x800000) ; val = MCHBAR32(0x1d8); write_1d0(0, 0x33d, 0, 0); write_1d0(0, 0x33d, 0, 0); val &= ((1 << split) - 1); // printk (BIOS_ERR, "R1D0C [%x] => %x\n", addr, val); return val; } static void write32p(uintptr_t addr, uint32_t val) { write32((void *)addr, val); } static uint32_t read32p(uintptr_t addr) { return read32((void *)addr); } static void sfence(void) { asm volatile ("sfence"); } static inline u16 get_lane_offset(int slot, int rank, int lane) { return 0x124 * lane + ((lane & 4) ? 0x23e : 0) + 11 * rank + 22 * slot - 0x452 * (lane == 8); } static inline u16 get_timing_register_addr(int lane, int tm, int slot, int rank) { const u16 offs[] = { 0x1d, 0xa8, 0xe6, 0x5c }; return get_lane_offset(slot, rank, lane) + offs[(tm + 3) % 4]; } static u32 gav_real(int line, u32 in) { // printk (BIOS_DEBUG, "%d: GAV: %x\n", line, in); return in; } #define gav(x) gav_real (__LINE__, (x)) struct raminfo { u16 clock_speed_index; /* clock_speed (REAL, not DDR) / 133.(3) - 3 */ u16 fsb_frequency; /* in 1.(1)/2 MHz. */ u8 is_x16_module[2][2]; /* [CHANNEL][SLOT] */ u8 density[2][2]; /* [CHANNEL][SLOT] */ u8 populated_ranks[2][2][2]; /* [CHANNEL][SLOT][RANK] */ int rank_start[2][2][2]; u8 cas_latency; u8 board_lane_delay[9]; u8 use_ecc; u8 revision; u8 max_supported_clock_speed_index; u8 uma_enabled; u8 spd[2][2][151]; /* [CHANNEL][SLOT][BYTE] */ u8 silicon_revision; u8 populated_ranks_mask[2]; u8 max_slots_used_in_channel; u8 mode4030[2]; u16 avg4044[2]; u16 max4048[2]; unsigned int total_memory_mb; unsigned int interleaved_part_mb; unsigned int non_interleaved_part_mb; unsigned int memory_reserved_for_heci_mb; struct ram_training training; u32 last_500_command[2]; u32 delay46_ps[2]; u32 delay54_ps[2]; u8 revision_flag_1; u8 some_delay_1_cycle_floor; u8 some_delay_2_halfcycles_ceil; u8 some_delay_3_ps_rounded; const struct ram_training *cached_training; }; /* Global allocation of timings_car */ timing_bounds_t timings_car[64]; static void write_500(struct raminfo *info, int channel, u32 val, u16 addr, int bits, int flag); /* OK */ static u16 read_500(struct raminfo *info, int channel, u16 addr, int split) { u32 val; info->last_500_command[channel] = 0x80000000; MCHBAR32(0x500 + (channel << 10)) = 0; while (MCHBAR32(0x500 + (channel << 10)) & 0x800000) ; MCHBAR32(0x500 + (channel << 10)) = 0x80000000 | (((MCHBAR8(0x246 + (channel << 10)) >> 2) & 3) + 0xb88 - addr); while (MCHBAR32(0x500 + (channel << 10)) & 0x800000) ; val = MCHBAR32(0x508 + (channel << 10)); return val & ((1 << split) - 1); } /* OK */ static void write_500(struct raminfo *info, int channel, u32 val, u16 addr, int bits, int flag) { if (info->last_500_command[channel] == 0x80000000) { info->last_500_command[channel] = 0x40000000; write_500(info, channel, 0, 0xb61, 0, 0); } MCHBAR32(0x500 + (channel << 10)) = 0; while (MCHBAR32(0x500 + (channel << 10)) & 0x800000) ; MCHBAR32(0x504 + (channel << 10)) = (val & ((1 << bits) - 1)) | (2 << bits) | (flag << bits); MCHBAR32(0x500 + (channel << 10)) = 0x40000000 | addr; while (MCHBAR32(0x500 + (channel << 10)) & 0x800000) ; } static int rw_test(int rank) { const u32 mask = 0xf00fc33c; int ok = 0xff; int i; for (i = 0; i < 64; i++) write32p((rank << 28) | (i << 2), 0); sfence(); for (i = 0; i < 64; i++) gav(read32p((rank << 28) | (i << 2))); sfence(); for (i = 0; i < 32; i++) { u32 pat = (((mask >> i) & 1) ? 0xffffffff : 0); write32p((rank << 28) | (i << 3), pat); write32p((rank << 28) | (i << 3) | 4, pat); } sfence(); for (i = 0; i < 32; i++) { u8 pat = (((mask >> i) & 1) ? 0xff : 0); int j; u32 val; gav(val = read32p((rank << 28) | (i << 3))); for (j = 0; j < 4; j++) if (((val >> (j * 8)) & 0xff) != pat) ok &= ~(1 << j); gav(val = read32p((rank << 28) | (i << 3) | 4)); for (j = 0; j < 4; j++) if (((val >> (j * 8)) & 0xff) != pat) ok &= ~(16 << j); } sfence(); for (i = 0; i < 64; i++) write32p((rank << 28) | (i << 2), 0); sfence(); for (i = 0; i < 64; i++) gav(read32p((rank << 28) | (i << 2))); return ok; } static void program_timings(struct raminfo *info, u16 base, int channel, int slot, int rank) { int lane; for (lane = 0; lane < 8; lane++) { write_500(info, channel, base + info->training. lane_timings[2][channel][slot][rank][lane], get_timing_register_addr(lane, 2, slot, rank), 9, 0); write_500(info, channel, base + info->training. lane_timings[3][channel][slot][rank][lane], get_timing_register_addr(lane, 3, slot, rank), 9, 0); } } static void write_26c(int channel, u16 si) { MCHBAR32(0x26c + (channel << 10)) = 0x03243f35; MCHBAR32(0x268 + (channel << 10)) = 0xcfc00000 | (si << 9); MCHBAR16(0x2b9 + (channel << 10)) = si; } static u32 get_580(int channel, u8 addr) { u32 ret; gav(read_1d0(0x142, 3)); MCHBAR8(0x5ff) = 0x0; MCHBAR8(0x5ff) = 0x80; MCHBAR32(0x580 + (channel << 10)) = 0x8493c012 | addr; MCHBAR8_OR(0x580 + (channel << 10), 1); while (!((ret = MCHBAR32(0x580 + (channel << 10))) & 0x10000)) ; MCHBAR8_AND(0x580 + (channel << 10), ~1); return ret; } #define NUM_CHANNELS 2 #define NUM_SLOTS 2 #define NUM_RANKS 2 #define RANK_SHIFT 28 #define CHANNEL_SHIFT 10 static void seq9(struct raminfo *info, int channel, int slot, int rank) { int i, lane; for (i = 0; i < 2; i++) for (lane = 0; lane < 8; lane++) write_500(info, channel, info->training.lane_timings[i + 1][channel][slot] [rank][lane], get_timing_register_addr(lane, i + 1, slot, rank), 9, 0); write_1d0(1, 0x103, 6, 1); for (lane = 0; lane < 8; lane++) write_500(info, channel, info->training. lane_timings[0][channel][slot][rank][lane], get_timing_register_addr(lane, 0, slot, rank), 9, 0); for (i = 0; i < 2; i++) { for (lane = 0; lane < 8; lane++) write_500(info, channel, info->training.lane_timings[i + 1][channel][slot] [rank][lane], get_timing_register_addr(lane, i + 1, slot, rank), 9, 0); gav(get_580(channel, ((i + 1) << 2) | (rank << 5))); } gav(read_1d0(0x142, 3)); // = 0x10408118 MCHBAR8(0x5ff) = 0x0; MCHBAR8(0x5ff) = 0x80; write_1d0(0x2, 0x142, 3, 1); for (lane = 0; lane < 8; lane++) { // printk (BIOS_ERR, "before: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]); info->training.lane_timings[2][channel][slot][rank][lane] = read_500(info, channel, get_timing_register_addr(lane, 2, slot, rank), 9); //printk (BIOS_ERR, "after: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]); info->training.lane_timings[3][channel][slot][rank][lane] = info->training.lane_timings[2][channel][slot][rank][lane] + 0x20; } } static int count_ranks_in_channel(struct raminfo *info, int channel) { int slot, rank; int res = 0; for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_SLOTS; rank++) res += info->populated_ranks[channel][slot][rank]; return res; } static void config_rank(struct raminfo *info, int s3resume, int channel, int slot, int rank) { int add; write_1d0(0, 0x178, 7, 1); seq9(info, channel, slot, rank); program_timings(info, 0x80, channel, slot, rank); if (channel == 0) add = count_ranks_in_channel(info, 1); else add = 0; if (!s3resume) gav(rw_test(rank + add)); program_timings(info, 0x00, channel, slot, rank); if (!s3resume) gav(rw_test(rank + add)); if (!s3resume) gav(rw_test(rank + add)); write_1d0(0, 0x142, 3, 1); write_1d0(0, 0x103, 6, 1); gav(get_580(channel, 0xc | (rank << 5))); gav(read_1d0(0x142, 3)); MCHBAR8(0x5ff) = 0x0; MCHBAR8(0x5ff) = 0x80; } static void set_4cf(struct raminfo *info, int channel, u8 val) { gav(read_500(info, channel, 0x4cf, 4)); // = 0xc2300cf9 write_500(info, channel, val, 0x4cf, 4, 1); gav(read_500(info, channel, 0x659, 4)); // = 0x80300839 write_500(info, channel, val, 0x659, 4, 1); gav(read_500(info, channel, 0x697, 4)); // = 0x80300839 write_500(info, channel, val, 0x697, 4, 1); } static void set_334(int zero) { int j, k, channel; const u32 val3[] = { 0x2a2b2a2b, 0x26272627, 0x2e2f2e2f, 0x2a2b }; u32 vd8[2][16]; for (channel = 0; channel < NUM_CHANNELS; channel++) { for (j = 0; j < 4; j++) { u32 a = (j == 1) ? 0x29292929 : 0x31313131; u32 lmask = (j == 3) ? 0xffff : 0xffffffff; u16 c; if ((j == 0 || j == 3) && zero) c = 0; else if (j == 3) c = 0x5f; else c = 0x5f5f; for (k = 0; k < 2; k++) { MCHBAR32(0x138 + 8 * k) = (channel << 26) | (j << 24); gav(vd8[1][(channel << 3) | (j << 1) | k] = MCHBAR32(0x138 + 8 * k)); gav(vd8[0][(channel << 3) | (j << 1) | k] = MCHBAR32(0x13c + 8 * k)); } MCHBAR32(0x334 + (channel << 10) + (j * 0x44)) = zero ? 0 : val3[j]; MCHBAR32(0x32c + (channel << 10) + (j * 0x44)) = zero ? 0 : (0x18191819 & lmask); MCHBAR16(0x34a + (channel << 10) + (j * 0x44)) = c; MCHBAR32(0x33c + (channel << 10) + (j * 0x44)) = zero ? 0 : (a & lmask); MCHBAR32(0x344 + (channel << 10) + (j * 0x44)) = zero ? 0 : (a & lmask); } } MCHBAR32_OR(0x130, 1); while (MCHBAR8(0x130) & 1) ; } static void rmw_1d0(u16 addr, u32 and, u32 or, int split) { u32 v; v = read_1d0(addr, split); write_1d0((v & and) | or, addr, split, 1); } static int find_highest_bit_set(u16 val) { int i; for (i = 15; i >= 0; i--) if (val & (1 << i)) return i; return -1; } static int find_lowest_bit_set32(u32 val) { int i; for (i = 0; i < 32; i++) if (val & (1 << i)) return i; return -1; } enum { DEVICE_TYPE = 2, MODULE_TYPE = 3, DENSITY = 4, RANKS_AND_DQ = 7, MEMORY_BUS_WIDTH = 8, TIMEBASE_DIVIDEND = 10, TIMEBASE_DIVISOR = 11, CYCLETIME = 12, CAS_LATENCIES_LSB = 14, CAS_LATENCIES_MSB = 15, CAS_LATENCY_TIME = 16, THERMAL_AND_REFRESH = 31, REFERENCE_RAW_CARD_USED = 62, RANK1_ADDRESS_MAPPING = 63 }; static void calculate_timings(struct raminfo *info) { unsigned int cycletime; unsigned int cas_latency_time; unsigned int supported_cas_latencies; unsigned int channel, slot; unsigned int clock_speed_index; unsigned int min_cas_latency; unsigned int cas_latency; unsigned int max_clock_index; /* Find common CAS latency */ supported_cas_latencies = 0x3fe; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) if (info->populated_ranks[channel][slot][0]) supported_cas_latencies &= 2 * (info-> spd[channel][slot][CAS_LATENCIES_LSB] | (info-> spd[channel][slot][CAS_LATENCIES_MSB] << 8)); max_clock_index = MIN(3, info->max_supported_clock_speed_index); cycletime = min_cycletime[max_clock_index]; cas_latency_time = min_cas_latency_time[max_clock_index]; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) if (info->populated_ranks[channel][slot][0]) { unsigned int timebase; timebase = 1000 * info-> spd[channel][slot][TIMEBASE_DIVIDEND] / info->spd[channel][slot][TIMEBASE_DIVISOR]; cycletime = MAX(cycletime, timebase * info->spd[channel][slot][CYCLETIME]); cas_latency_time = MAX(cas_latency_time, timebase * info-> spd[channel][slot][CAS_LATENCY_TIME]); } if (cycletime > min_cycletime[0]) die("RAM init: Decoded SPD DRAM freq is slower than the controller minimum!"); for (clock_speed_index = 0; clock_speed_index < 3; clock_speed_index++) { if (cycletime == min_cycletime[clock_speed_index]) break; if (cycletime > min_cycletime[clock_speed_index]) { clock_speed_index--; cycletime = min_cycletime[clock_speed_index]; break; } } min_cas_latency = DIV_ROUND_UP(cas_latency_time, cycletime); cas_latency = 0; while (supported_cas_latencies) { cas_latency = find_highest_bit_set(supported_cas_latencies) + 3; if (cas_latency <= min_cas_latency) break; supported_cas_latencies &= ~(1 << find_highest_bit_set(supported_cas_latencies)); } if (cas_latency != min_cas_latency && clock_speed_index) clock_speed_index--; if (cas_latency * min_cycletime[clock_speed_index] > 20000) die("Couldn't configure DRAM"); info->clock_speed_index = clock_speed_index; info->cas_latency = cas_latency; } static void program_base_timings(struct raminfo *info) { unsigned int channel; unsigned int slot, rank, lane; unsigned int extended_silicon_revision; int i; extended_silicon_revision = info->silicon_revision; if (info->silicon_revision == 0) for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) if ((info-> spd[channel][slot][MODULE_TYPE] & 0xF) == 3) extended_silicon_revision = 4; for (channel = 0; channel < NUM_CHANNELS; channel++) { for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_SLOTS; rank++) { int card_timing_2; if (!info->populated_ranks[channel][slot][rank]) continue; for (lane = 0; lane < 9; lane++) { int tm_reg; int card_timing; card_timing = 0; if ((info-> spd[channel][slot][MODULE_TYPE] & 0xF) == 3) { int reference_card; reference_card = info-> spd[channel][slot] [REFERENCE_RAW_CARD_USED] & 0x1f; if (reference_card == 3) card_timing = u16_ffd1188[0][lane] [info-> clock_speed_index]; if (reference_card == 5) card_timing = u16_ffd1188[1][lane] [info-> clock_speed_index]; } info->training. lane_timings[0][channel][slot][rank] [lane] = u8_FFFD1218[info-> clock_speed_index]; info->training. lane_timings[1][channel][slot][rank] [lane] = 256; for (tm_reg = 2; tm_reg < 4; tm_reg++) info->training. lane_timings[tm_reg] [channel][slot][rank][lane] = u8_FFFD1240[channel] [extended_silicon_revision] [lane][2 * slot + rank][info-> clock_speed_index] + info->max4048[channel] + u8_FFFD0C78[channel] [extended_silicon_revision] [info-> mode4030[channel]][slot] [rank][info-> clock_speed_index] + card_timing; for (tm_reg = 0; tm_reg < 4; tm_reg++) write_500(info, channel, info->training. lane_timings[tm_reg] [channel][slot][rank] [lane], get_timing_register_addr (lane, tm_reg, slot, rank), 9, 0); } card_timing_2 = 0; if (!(extended_silicon_revision != 4 || (info-> populated_ranks_mask[channel] & 5) == 5)) { if ((info-> spd[channel][slot] [REFERENCE_RAW_CARD_USED] & 0x1F) == 3) card_timing_2 = u16_FFFE0EB8[0][info-> clock_speed_index]; if ((info-> spd[channel][slot] [REFERENCE_RAW_CARD_USED] & 0x1F) == 5) card_timing_2 = u16_FFFE0EB8[1][info-> clock_speed_index]; } for (i = 0; i < 3; i++) write_500(info, channel, (card_timing_2 + info->max4048[channel] + u8_FFFD0EF8[channel] [extended_silicon_revision] [info-> mode4030[channel]][info-> clock_speed_index]), u16_fffd0c50[i][slot][rank], 8, 1); write_500(info, channel, (info->max4048[channel] + u8_FFFD0C78[channel] [extended_silicon_revision][info-> mode4030 [channel]] [slot][rank][info-> clock_speed_index]), u16_fffd0c70[slot][rank], 7, 1); } if (!info->populated_ranks_mask[channel]) continue; for (i = 0; i < 3; i++) write_500(info, channel, (info->max4048[channel] + info->avg4044[channel] + u8_FFFD17E0[channel] [extended_silicon_revision][info-> mode4030 [channel]][info-> clock_speed_index]), u16_fffd0c68[i], 8, 1); } } static unsigned int fsbcycle_ps(struct raminfo *info) { return 900000 / info->fsb_frequency; } /* The time of DDR transfer in ps. */ static unsigned int halfcycle_ps(struct raminfo *info) { return 3750 / (info->clock_speed_index + 3); } /* The time of clock cycle in ps. */ static unsigned int cycle_ps(struct raminfo *info) { return 2 * halfcycle_ps(info); } /* Frequency in 1.(1)=10/9 MHz units. */ static unsigned int frequency_11(struct raminfo *info) { return (info->clock_speed_index + 3) * 120; } /* Frequency in 0.1 MHz units. */ static unsigned int frequency_01(struct raminfo *info) { return 100 * frequency_11(info) / 9; } static unsigned int ps_to_halfcycles(struct raminfo *info, unsigned int ps) { return (frequency_11(info) * 2) * ps / 900000; } static unsigned int ns_to_cycles(struct raminfo *info, unsigned int ns) { return (frequency_11(info)) * ns / 900; } static void compute_derived_timings(struct raminfo *info) { unsigned int channel, slot, rank; int extended_silicon_revision; int some_delay_1_ps; int some_delay_2_ps; int some_delay_2_halfcycles_ceil; int some_delay_2_halfcycles_floor; int some_delay_3_ps; int some_delay_3_ps_rounded; int some_delay_1_cycle_ceil; int some_delay_1_cycle_floor; some_delay_3_ps_rounded = 0; extended_silicon_revision = info->silicon_revision; if (!info->silicon_revision) for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) if ((info-> spd[channel][slot][MODULE_TYPE] & 0xF) == 3) extended_silicon_revision = 4; if (info->board_lane_delay[7] < 5) info->board_lane_delay[7] = 5; info->revision_flag_1 = 2; if (info->silicon_revision == 2 || info->silicon_revision == 3) info->revision_flag_1 = 0; if (info->revision < 16) info->revision_flag_1 = 0; if (info->revision < 8) info->revision_flag_1 = 0; if (info->revision >= 8 && (info->silicon_revision == 0 || info->silicon_revision == 1)) some_delay_2_ps = 735; else some_delay_2_ps = 750; if (info->revision >= 0x10 && (info->silicon_revision == 0 || info->silicon_revision == 1)) some_delay_1_ps = 3929; else some_delay_1_ps = 3490; some_delay_1_cycle_floor = some_delay_1_ps / cycle_ps(info); some_delay_1_cycle_ceil = some_delay_1_ps / cycle_ps(info); if (some_delay_1_ps % cycle_ps(info)) some_delay_1_cycle_ceil++; else some_delay_1_cycle_floor--; info->some_delay_1_cycle_floor = some_delay_1_cycle_floor; if (info->revision_flag_1) some_delay_2_ps = halfcycle_ps(info) >> 6; some_delay_2_ps += MAX(some_delay_1_ps - 30, 2 * halfcycle_ps(info) * (some_delay_1_cycle_ceil - 1) + 1000) + 375; some_delay_3_ps = halfcycle_ps(info) - some_delay_2_ps % halfcycle_ps(info); if (info->revision_flag_1) { if (some_delay_3_ps >= 150) { const int some_delay_3_halfcycles = (some_delay_3_ps << 6) / halfcycle_ps(info); some_delay_3_ps_rounded = halfcycle_ps(info) * some_delay_3_halfcycles >> 6; } } some_delay_2_halfcycles_ceil = (some_delay_2_ps + halfcycle_ps(info) - 1) / halfcycle_ps(info) - 2 * (some_delay_1_cycle_ceil - 1); if (info->revision_flag_1 && some_delay_3_ps < 150) some_delay_2_halfcycles_ceil++; some_delay_2_halfcycles_floor = some_delay_2_halfcycles_ceil; if (info->revision < 0x10) some_delay_2_halfcycles_floor = some_delay_2_halfcycles_ceil - 1; if (!info->revision_flag_1) some_delay_2_halfcycles_floor++; info->some_delay_2_halfcycles_ceil = some_delay_2_halfcycles_ceil; info->some_delay_3_ps_rounded = some_delay_3_ps_rounded; if ((info->populated_ranks[0][0][0] && info->populated_ranks[0][1][0]) || (info->populated_ranks[1][0][0] && info->populated_ranks[1][1][0])) info->max_slots_used_in_channel = 2; else info->max_slots_used_in_channel = 1; for (channel = 0; channel < 2; channel++) MCHBAR32(0x244 + (channel << 10)) = ((info->revision < 8) ? 1 : 0x200) | ((2 - info->max_slots_used_in_channel) << 17) | (channel << 21) | (info->some_delay_1_cycle_floor << 18) | 0x9510; if (info->max_slots_used_in_channel == 1) { info->mode4030[0] = (count_ranks_in_channel(info, 0) == 2); info->mode4030[1] = (count_ranks_in_channel(info, 1) == 2); } else { info->mode4030[0] = ((count_ranks_in_channel(info, 0) == 1) || (count_ranks_in_channel(info, 0) == 2)) ? 2 : 3; /* 2 if 1 or 2 ranks */ info->mode4030[1] = ((count_ranks_in_channel(info, 1) == 1) || (count_ranks_in_channel(info, 1) == 2)) ? 2 : 3; } for (channel = 0; channel < NUM_CHANNELS; channel++) { int max_of_unk; int min_of_unk_2; int i, count; int sum; if (!info->populated_ranks_mask[channel]) continue; max_of_unk = 0; min_of_unk_2 = 32767; sum = 0; count = 0; for (i = 0; i < 3; i++) { int unk1; if (info->revision < 8) unk1 = u8_FFFD1891[0][channel][info-> clock_speed_index] [i]; else if (! (info->revision >= 0x10 || info->revision_flag_1)) unk1 = u8_FFFD1891[1][channel][info-> clock_speed_index] [i]; else unk1 = 0; for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) { int a = 0; int b = 0; if (!info-> populated_ranks[channel][slot] [rank]) continue; if (extended_silicon_revision == 4 && (info-> populated_ranks_mask[channel] & 5) != 5) { if ((info-> spd[channel][slot] [REFERENCE_RAW_CARD_USED] & 0x1F) == 3) { a = u16_ffd1178[0] [info-> clock_speed_index]; b = u16_fe0eb8[0][info-> clock_speed_index]; } else if ((info-> spd[channel][slot] [REFERENCE_RAW_CARD_USED] & 0x1F) == 5) { a = u16_ffd1178[1] [info-> clock_speed_index]; b = u16_fe0eb8[1][info-> clock_speed_index]; } } min_of_unk_2 = MIN(min_of_unk_2, a); min_of_unk_2 = MIN(min_of_unk_2, b); if (rank == 0) { sum += a; count++; } { int t; t = b + u8_FFFD0EF8[channel] [extended_silicon_revision] [info-> mode4030[channel]][info-> clock_speed_index]; if (unk1 >= t) max_of_unk = MAX(max_of_unk, unk1 - t); } } { int t = u8_FFFD17E0[channel] [extended_silicon_revision][info-> mode4030 [channel]] [info->clock_speed_index] + min_of_unk_2; if (unk1 >= t) max_of_unk = MAX(max_of_unk, unk1 - t); } } if (count == 0) die("No memory ranks found for channel %u\n", channel); info->avg4044[channel] = sum / count; info->max4048[channel] = max_of_unk; } } static void jedec_read(struct raminfo *info, int channel, int slot, int rank, int total_rank, u8 addr3, unsigned int value) { /* Handle mirrored mapping. */ if ((rank & 1) && (info->spd[channel][slot][RANK1_ADDRESS_MAPPING] & 1)) addr3 = (addr3 & 0xCF) | ((addr3 & 0x10) << 1) | ((addr3 >> 1) & 0x10); MCHBAR8(0x271) = addr3 | (MCHBAR8(0x271) & 0xC1); MCHBAR8(0x671) = addr3 | (MCHBAR8(0x671) & 0xC1); /* Handle mirrored mapping. */ if ((rank & 1) && (info->spd[channel][slot][RANK1_ADDRESS_MAPPING] & 1)) value = (value & ~0x1f8) | ((value >> 1) & 0xa8) | ((value & 0xa8) << 1); read32p((value << 3) | (total_rank << 28)); MCHBAR8(0x271) = (MCHBAR8(0x271) & 0xC3) | 2; MCHBAR8(0x671) = (MCHBAR8(0x671) & 0xC3) | 2; read32p(total_rank << 28); } enum { MR1_RZQ12 = 512, MR1_RZQ2 = 64, MR1_RZQ4 = 4, MR1_ODS34OHM = 2 }; enum { MR0_BT_INTERLEAVED = 8, MR0_DLL_RESET_ON = 256 }; enum { MR2_RTT_WR_DISABLED = 0, MR2_RZQ2 = 1 << 10 }; static void jedec_init(struct raminfo *info) { int write_recovery; int channel, slot, rank; int total_rank; int dll_on; int self_refresh_temperature; int auto_self_refresh; auto_self_refresh = 1; self_refresh_temperature = 1; if (info->board_lane_delay[3] <= 10) { if (info->board_lane_delay[3] <= 8) write_recovery = info->board_lane_delay[3] - 4; else write_recovery = 5; } else { write_recovery = 6; } FOR_POPULATED_RANKS { auto_self_refresh &= (info->spd[channel][slot][THERMAL_AND_REFRESH] >> 2) & 1; self_refresh_temperature &= info->spd[channel][slot][THERMAL_AND_REFRESH] & 1; } if (auto_self_refresh == 1) self_refresh_temperature = 0; dll_on = ((info->silicon_revision != 2 && info->silicon_revision != 3) || (info->populated_ranks[0][0][0] && info->populated_ranks[0][1][0]) || (info->populated_ranks[1][0][0] && info->populated_ranks[1][1][0])); total_rank = 0; for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) { int rtt, rtt_wr = MR2_RTT_WR_DISABLED; int rzq_reg58e; if (info->silicon_revision == 2 || info->silicon_revision == 3) { rzq_reg58e = 64; rtt = MR1_RZQ2; if (info->clock_speed_index != 0) { rzq_reg58e = 4; if (info->populated_ranks_mask[channel] == 3) rtt = MR1_RZQ4; } } else { if ((info->populated_ranks_mask[channel] & 5) == 5) { rtt = MR1_RZQ12; rzq_reg58e = 64; rtt_wr = MR2_RZQ2; } else { rzq_reg58e = 4; rtt = MR1_RZQ4; } } MCHBAR16(0x588 + (channel << 10)) = 0x0; MCHBAR16(0x58a + (channel << 10)) = 0x4; MCHBAR16(0x58c + (channel << 10)) = rtt | MR1_ODS34OHM; MCHBAR16(0x58e + (channel << 10)) = rzq_reg58e | 0x82; MCHBAR16(0x590 + (channel << 10)) = 0x1282; for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) if (info->populated_ranks[channel][slot][rank]) { jedec_read(info, channel, slot, rank, total_rank, 0x28, rtt_wr | (info-> clock_speed_index << 3) | (auto_self_refresh << 6) | (self_refresh_temperature << 7)); jedec_read(info, channel, slot, rank, total_rank, 0x38, 0); jedec_read(info, channel, slot, rank, total_rank, 0x18, rtt | MR1_ODS34OHM); jedec_read(info, channel, slot, rank, total_rank, 6, (dll_on << 12) | (write_recovery << 9) | ((info->cas_latency - 4) << 4) | MR0_BT_INTERLEAVED | MR0_DLL_RESET_ON); total_rank++; } } } static void program_modules_memory_map(struct raminfo *info, int pre_jedec) { unsigned int channel, slot, rank; unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */ unsigned int channel_0_non_interleaved; FOR_ALL_RANKS { if (info->populated_ranks[channel][slot][rank]) { total_mb[channel] += pre_jedec ? 256 : (256 << info-> density[channel][slot] >> info-> is_x16_module[channel][slot]); MCHBAR8(0x208 + rank + 2 * slot + (channel << 10)) = (pre_jedec ? (1 | ((1 + 1) << 1)) : (info->is_x16_module[channel][slot] | ((info->density[channel][slot] + 1) << 1))) | 0x80; } MCHBAR16(0x200 + (channel << 10) + 4 * slot + 2 * rank) = total_mb[channel] >> 6; } info->total_memory_mb = total_mb[0] + total_mb[1]; info->interleaved_part_mb = pre_jedec ? 0 : 2 * MIN(total_mb[0], total_mb[1]); info->non_interleaved_part_mb = total_mb[0] + total_mb[1] - info->interleaved_part_mb; channel_0_non_interleaved = total_mb[0] - info->interleaved_part_mb / 2; MCHBAR32(0x100) = channel_0_non_interleaved | (info->non_interleaved_part_mb << 16); if (!pre_jedec) MCHBAR16(0x104) = info->interleaved_part_mb; } static void program_board_delay(struct raminfo *info) { int cas_latency_shift; int some_delay_ns; int some_delay_3_half_cycles; unsigned int channel, i; int high_multiplier; int lane_3_delay; int cas_latency_derived; high_multiplier = 0; some_delay_ns = 200; some_delay_3_half_cycles = 4; cas_latency_shift = info->silicon_revision == 0 || info->silicon_revision == 1 ? 1 : 0; if (info->revision < 8) { some_delay_ns = 600; cas_latency_shift = 0; } { int speed_bit; speed_bit = ((info->clock_speed_index > 1 || (info->silicon_revision != 2 && info->silicon_revision != 3))) ^ (info->revision >= 0x10); write_500(info, 0, speed_bit | ((!info->use_ecc) << 1), 0x60e, 3, 1); write_500(info, 1, speed_bit | ((!info->use_ecc) << 1), 0x60e, 3, 1); if (info->revision >= 0x10 && info->clock_speed_index <= 1 && (info->silicon_revision == 2 || info->silicon_revision == 3)) rmw_1d0(0x116, 5, 2, 4); } MCHBAR32(0x120) = (1 << (info->max_slots_used_in_channel + 28)) | 0x188e7f9f; MCHBAR8(0x124) = info->board_lane_delay[4] + ((frequency_01(info) + 999) / 1000); MCHBAR16(0x125) = 0x1360; MCHBAR8(0x127) = 0x40; if (info->fsb_frequency < frequency_11(info) / 2) { unsigned int some_delay_2_half_cycles; high_multiplier = 1; some_delay_2_half_cycles = ps_to_halfcycles(info, ((3 * fsbcycle_ps(info)) >> 1) + (halfcycle_ps(info) * reg178_min[info-> clock_speed_index] >> 6) + 4 * halfcycle_ps(info) + 2230); some_delay_3_half_cycles = MIN((some_delay_2_half_cycles + (frequency_11(info) * 2) * (28 - some_delay_2_half_cycles) / (frequency_11(info) * 2 - 4 * (info->fsb_frequency))) >> 3, 7); } if (MCHBAR8(0x2ca9) & 1) some_delay_3_half_cycles = 3; for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32_OR(0x220 + (channel << 10), 0x18001117); MCHBAR32(0x224 + (channel << 10)) = (info->max_slots_used_in_channel - 1) | ((info->cas_latency - 5 - info->clock_speed_index) << 21) | ((info->max_slots_used_in_channel + info->cas_latency - cas_latency_shift - 4) << 16) | ((info->cas_latency - cas_latency_shift - 4) << 26) | ((info->cas_latency - info->clock_speed_index + info->max_slots_used_in_channel - 6) << 8); MCHBAR32(0x228 + (channel << 10)) = info->max_slots_used_in_channel; MCHBAR8(0x239 + (channel << 10)) = 32; MCHBAR32(0x248 + (channel << 10)) = (high_multiplier << 24) | (some_delay_3_half_cycles << 25) | 0x840000; MCHBAR32(0x278 + (channel << 10)) = 0xc362042; MCHBAR32(0x27c + (channel << 10)) = 0x8b000062; MCHBAR32(0x24c + (channel << 10)) = ((!!info->clock_speed_index) << 17) | (((2 + info->clock_speed_index - (!!info->clock_speed_index))) << 12) | 0x10200; MCHBAR8(0x267 + (channel << 10)) = 0x4; MCHBAR16(0x272 + (channel << 10)) = 0x155; MCHBAR32_AND_OR(0x2bc + (channel << 10), 0xFF000000, 0x707070); write_500(info, channel, ((!info->populated_ranks[channel][1][1]) | (!info->populated_ranks[channel][1][0] << 1) | (!info->populated_ranks[channel][0][1] << 2) | (!info->populated_ranks[channel][0][0] << 3)), 0x4c9, 4, 1); } MCHBAR8(0x2c4) = ((1 + (info->clock_speed_index != 0)) << 6) | 0xC; { u8 freq_divisor = 2; if (info->fsb_frequency == frequency_11(info)) freq_divisor = 3; else if (2 * info->fsb_frequency < 3 * (frequency_11(info) / 2)) freq_divisor = 1; else freq_divisor = 2; MCHBAR32(0x2c0) = (freq_divisor << 11) | 0x6009c400; } if (info->board_lane_delay[3] <= 10) { if (info->board_lane_delay[3] <= 8) lane_3_delay = info->board_lane_delay[3]; else lane_3_delay = 10; } else { lane_3_delay = 12; } cas_latency_derived = info->cas_latency - info->clock_speed_index + 2; if (info->clock_speed_index > 1) cas_latency_derived++; for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32(0x240 + (channel << 10)) = ((info->clock_speed_index == 0) * 0x11000) | 0x1002100 | ((2 + info->clock_speed_index) << 4) | (info->cas_latency - 3); write_500(info, channel, (info->clock_speed_index << 1) | 1, 0x609, 6, 1); write_500(info, channel, info->clock_speed_index + 2 * info->cas_latency - 7, 0x601, 6, 1); MCHBAR32(0x250 + (channel << 10)) = ((lane_3_delay + info->clock_speed_index + 9) << 6) | (info->board_lane_delay[7] << 2) | (info->board_lane_delay[4] << 16) | (info->board_lane_delay[1] << 25) | (info->board_lane_delay[1] << 29) | 1; MCHBAR32(0x254 + (channel << 10)) = (info->board_lane_delay[1] >> 3) | ((info->board_lane_delay[8] + 4 * info->use_ecc) << 6) | 0x80 | (info->board_lane_delay[6] << 1) | (info->board_lane_delay[2] << 28) | (cas_latency_derived << 16) | 0x4700000; MCHBAR32(0x258 + (channel << 10)) = ((info->board_lane_delay[5] + info->clock_speed_index + 9) << 12) | ((info->clock_speed_index - info->cas_latency + 12) << 8) | (info->board_lane_delay[2] << 17) | (info->board_lane_delay[4] << 24) | 0x47; MCHBAR32(0x25c + (channel << 10)) = (info->board_lane_delay[1] << 1) | (info->board_lane_delay[0] << 8) | 0x1da50000; MCHBAR8(0x264 + (channel << 10)) = 0xff; MCHBAR8(0x5f8 + (channel << 10)) = (cas_latency_shift << 3) | info->use_ecc; } program_modules_memory_map(info, 1); MCHBAR16(0x610) = (MIN(ns_to_cycles(info, some_delay_ns) / 2, 127) << 9) | (MCHBAR16(0x610) & 0x1C3) | 0x3C; MCHBAR16_OR(0x612, 0x100); MCHBAR16_OR(0x214, 0x3E00); for (i = 0; i < 8; i++) { pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i), (info->total_memory_mb - 64) | !i | 2); pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0); } } #define DEFAULT_PCI_MMIO_SIZE 2048 #define HOST_BRIDGE PCI_DEVFN(0, 0) static unsigned int get_mmio_size(void) { const struct device *dev; const struct northbridge_intel_ironlake_config *cfg = NULL; dev = pcidev_path_on_root(HOST_BRIDGE); if (dev) cfg = dev->chip_info; /* If this is zero, it just means devicetree.cb didn't set it */ if (!cfg || cfg->pci_mmio_size == 0) return DEFAULT_PCI_MMIO_SIZE; else return cfg->pci_mmio_size; } static void program_total_memory_map(struct raminfo *info) { unsigned int tom, tolud, touud; unsigned int quickpath_reserved; unsigned int remap_base; unsigned int uma_base_igd; unsigned int uma_base_gtt; unsigned int mmio_size; int memory_remap; unsigned int memory_map[8]; int i; unsigned int current_limit; unsigned int tseg_base; int uma_size_igd = 0, uma_size_gtt = 0; memset(memory_map, 0, sizeof(memory_map)); if (info->uma_enabled) { u16 t = pci_read_config16(NORTHBRIDGE, GGC); gav(t); const int uma_sizes_gtt[16] = { 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4, 42, 42, 42, 42 }; /* Igd memory */ const int uma_sizes_igd[16] = { 0, 0, 0, 0, 0, 32, 48, 64, 128, 256, 96, 160, 224, 352, 256, 512 }; uma_size_igd = uma_sizes_igd[(t >> 4) & 0xF]; uma_size_gtt = uma_sizes_gtt[(t >> 8) & 0xF]; } mmio_size = get_mmio_size(); tom = info->total_memory_mb; if (tom == 4096) tom = 4032; touud = ALIGN_DOWN(tom - info->memory_reserved_for_heci_mb, 64); tolud = ALIGN_DOWN(MIN(4096 - mmio_size + ALIGN_UP(uma_size_igd + uma_size_gtt, 64) , touud), 64); memory_remap = 0; if (touud - tolud > 64) { memory_remap = 1; remap_base = MAX(4096, touud); touud = touud - tolud + 4096; } if (touud > 4096) memory_map[2] = touud | 1; quickpath_reserved = 0; u32 t = pci_read_config32(QPI_SAD, 0x68); gav(t); if (t & 0x800) { u32 shift = t >> 20; if (shift == 0) die("Quickpath value is 0\n"); quickpath_reserved = (u32)1 << find_lowest_bit_set32(shift); } if (memory_remap) touud -= quickpath_reserved; uma_base_igd = tolud - uma_size_igd; uma_base_gtt = uma_base_igd - uma_size_gtt; tseg_base = ALIGN_DOWN(uma_base_gtt, 64) - (CONFIG_SMM_TSEG_SIZE >> 20); if (!memory_remap) tseg_base -= quickpath_reserved; tseg_base = ALIGN_DOWN(tseg_base, 8); pci_write_config16(NORTHBRIDGE, TOLUD, tolud << 4); pci_write_config16(NORTHBRIDGE, TOM, tom >> 6); if (memory_remap) { pci_write_config16(NORTHBRIDGE, REMAPBASE, remap_base >> 6); pci_write_config16(NORTHBRIDGE, REMAPLIMIT, (touud - 64) >> 6); } pci_write_config16(NORTHBRIDGE, TOUUD, touud); if (info->uma_enabled) { pci_write_config32(NORTHBRIDGE, IGD_BASE, uma_base_igd << 20); pci_write_config32(NORTHBRIDGE, GTT_BASE, uma_base_gtt << 20); } pci_write_config32(NORTHBRIDGE, TSEG, tseg_base << 20); current_limit = 0; memory_map[0] = ALIGN_DOWN(uma_base_gtt, 64) | 1; memory_map[1] = 4096; for (i = 0; i < ARRAY_SIZE(memory_map); i++) { current_limit = MAX(current_limit, memory_map[i] & ~1); pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i), (memory_map[i] & 1) | ALIGN_DOWN(current_limit - 1, 64) | 2); pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0); } } static void collect_system_info(struct raminfo *info) { u32 capid0[3]; int i; unsigned int channel; for (i = 0; i < 3; i++) { capid0[i] = pci_read_config32(NORTHBRIDGE, CAPID0 | (i << 2)); printk(BIOS_DEBUG, "CAPID0[%d] = 0x%08x\n", i, capid0[i]); } info->revision = pci_read_config8(NORTHBRIDGE, PCI_REVISION_ID); printk(BIOS_DEBUG, "Revision ID: 0x%x\n", info->revision); printk(BIOS_DEBUG, "Device ID: 0x%x\n", pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID)); info->max_supported_clock_speed_index = (~capid0[1] & 7); if ((capid0[1] >> 11) & 1) info->uma_enabled = 0; else gav(info->uma_enabled = pci_read_config8(NORTHBRIDGE, DEVEN) & 8); /* Unrecognised: [0000:fffd3d2d] 37f81.37f82 ! CPUID: eax: 00000001; ecx: 00000e00 => 00020655.00010800.029ae3ff.bfebfbff */ info->silicon_revision = 0; if (capid0[2] & 2) { info->silicon_revision = 0; info->max_supported_clock_speed_index = 2; for (channel = 0; channel < NUM_CHANNELS; channel++) if (info->populated_ranks[channel][0][0] && (info->spd[channel][0][MODULE_TYPE] & 0xf) == 3) { info->silicon_revision = 2; info->max_supported_clock_speed_index = 1; } } else { switch (((capid0[2] >> 18) & 1) + 2 * ((capid0[1] >> 3) & 1)) { case 1: case 2: info->silicon_revision = 3; break; case 3: info->silicon_revision = 0; break; case 0: info->silicon_revision = 2; break; } switch (pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID)) { case 0x40: info->silicon_revision = 0; break; case 0x48: info->silicon_revision = 1; break; } } } static void write_training_data(struct raminfo *info) { int tm, channel, slot, rank, lane; if (info->revision < 8) return; for (tm = 0; tm < 4; tm++) for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) for (lane = 0; lane < 9; lane++) write_500(info, channel, info-> cached_training-> lane_timings[tm] [channel][slot][rank] [lane], get_timing_register_addr (lane, tm, slot, rank), 9, 0); write_1d0(info->cached_training->reg_178, 0x178, 7, 1); write_1d0(info->cached_training->reg_10b, 0x10b, 6, 1); } static void dump_timings(struct raminfo *info) { int channel, slot, rank, lane, i; printk(RAM_SPEW, "Timings:\n"); FOR_POPULATED_RANKS { printk(RAM_SPEW, "channel %d, slot %d, rank %d\n", channel, slot, rank); for (lane = 0; lane < 9; lane++) { printk(RAM_SPEW, "lane %d: ", lane); for (i = 0; i < 4; i++) { printk(RAM_SPEW, "%x (%x) ", read_500(info, channel, get_timing_register_addr (lane, i, slot, rank), 9), info->training. lane_timings[i][channel][slot][rank] [lane]); } printk(RAM_SPEW, "\n"); } } printk(RAM_SPEW, "[178] = %x (%x)\n", read_1d0(0x178, 7), info->training.reg_178); printk(RAM_SPEW, "[10b] = %x (%x)\n", read_1d0(0x10b, 6), info->training.reg_10b); } /* Read timings and other registers that need to be restored verbatim and put them to CBMEM. */ static void save_timings(struct raminfo *info) { struct ram_training train; int channel, slot, rank, lane, i; train = info->training; FOR_POPULATED_RANKS for (lane = 0; lane < 9; lane++) for (i = 0; i < 4; i++) train.lane_timings[i][channel][slot][rank][lane] = read_500(info, channel, get_timing_register_addr(lane, i, slot, rank), 9); train.reg_178 = read_1d0(0x178, 7); train.reg_10b = read_1d0(0x10b, 6); for (channel = 0; channel < NUM_CHANNELS; channel++) { u32 reg32; reg32 = MCHBAR32((channel << 10) + 0x274); train.reg274265[channel][0] = reg32 >> 16; train.reg274265[channel][1] = reg32 & 0xffff; train.reg274265[channel][2] = MCHBAR16((channel << 10) + 0x265) >> 8; } train.reg2ca9_bit0 = MCHBAR8(0x2ca9) & 1; train.reg_6dc = MCHBAR32(0x6dc); train.reg_6e8 = MCHBAR32(0x6e8); printk(RAM_SPEW, "[6dc] = %x\n", train.reg_6dc); printk(RAM_SPEW, "[6e8] = %x\n", train.reg_6e8); /* Save the MRC S3 restore data to cbmem */ mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION, &train, sizeof(train)); } static const struct ram_training *get_cached_training(void) { return mrc_cache_current_mmap_leak(MRC_TRAINING_DATA, MRC_CACHE_VERSION, NULL); } /* FIXME: add timeout. */ static void wait_heci_ready(void) { while (!(read32(DEFAULT_HECIBAR + 0xc) & 8)) // = 0x8000000c ; write32((DEFAULT_HECIBAR + 0x4), (read32(DEFAULT_HECIBAR + 0x4) & ~0x10) | 0xc); } /* FIXME: add timeout. */ static void wait_heci_cb_avail(int len) { union { struct mei_csr csr; u32 raw; } csr; while (!(read32(DEFAULT_HECIBAR + 0xc) & 8)) ; do { csr.raw = read32(DEFAULT_HECIBAR + 0x4); } while (len > csr.csr.buffer_depth - (csr.csr.buffer_write_ptr - csr.csr.buffer_read_ptr)); } static void send_heci_packet(struct mei_header *head, u32 *payload) { int len = (head->length + 3) / 4; int i; wait_heci_cb_avail(len + 1); /* FIXME: handle leftovers correctly. */ write32(DEFAULT_HECIBAR + 0, *(u32 *) head); for (i = 0; i < len - 1; i++) write32(DEFAULT_HECIBAR + 0, payload[i]); write32(DEFAULT_HECIBAR + 0, payload[i] & ((1 << (8 * len)) - 1)); write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 0x4); } static void send_heci_message(u8 *msg, int len, u8 hostaddress, u8 clientaddress) { struct mei_header head; int maxlen; wait_heci_ready(); maxlen = (read32(DEFAULT_HECIBAR + 0x4) >> 24) * 4 - 4; while (len) { int cur = len; if (cur > maxlen) { cur = maxlen; head.is_complete = 0; } else head.is_complete = 1; head.length = cur; head.reserved = 0; head.client_address = clientaddress; head.host_address = hostaddress; send_heci_packet(&head, (u32 *) msg); len -= cur; msg += cur; } } /* FIXME: Add timeout. */ static int recv_heci_packet(struct mei_header *head, u32 *packet, u32 *packet_size) { union { struct mei_csr csr; u32 raw; } csr; int i = 0; write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 2); do { csr.raw = read32(DEFAULT_HECIBAR + 0xc); } while (csr.csr.buffer_write_ptr == csr.csr.buffer_read_ptr); *(u32 *) head = read32(DEFAULT_HECIBAR + 0x8); if (!head->length) { write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 2); *packet_size = 0; return 0; } if (head->length + 4 > 4 * csr.csr.buffer_depth || head->length > *packet_size) { *packet_size = 0; return -1; } do { csr.raw = read32(DEFAULT_HECIBAR + 0xc); } while (((head->length + 3) >> 2) > (csr.csr.buffer_write_ptr - csr.csr.buffer_read_ptr)); for (i = 0; i < (head->length + 3) >> 2; i++) packet[i++] = read32(DEFAULT_HECIBAR + 0x8); *packet_size = head->length; if (!csr.csr.ready) *packet_size = 0; write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 4); return 0; } /* FIXME: Add timeout. */ static int recv_heci_message(u32 *message, u32 *message_size) { struct mei_header head; int current_position; current_position = 0; while (1) { u32 current_size; current_size = *message_size - current_position; if (recv_heci_packet (&head, message + (current_position >> 2), ¤t_size) == -1) break; if (!current_size) break; current_position += current_size; if (head.is_complete) { *message_size = current_position; return 0; } if (current_position >= *message_size) break; } *message_size = 0; return -1; } static void send_heci_uma_message(const u64 heci_uma_addr, const unsigned int heci_uma_size) { volatile struct uma_reply { u8 group_id; u8 command; u8 reserved; u8 result; u8 field2; u8 unk3[0x48 - 4 - 1]; } __packed reply; /* FIXME: recv_heci_message() does not always initialize 'reply' */ reply.command = 0; struct uma_message { u8 group_id; u8 cmd; u8 reserved; u8 result; u32 c2; u64 heci_uma_addr; u32 heci_uma_size; u16 c3; } __packed msg = { .group_id = 0, .cmd = MKHI_SET_UMA, .reserved = 0, .result = 0, .c2 = 0x82, .heci_uma_addr = heci_uma_addr, .heci_uma_size = heci_uma_size, .c3 = 0, }; u32 reply_size; send_heci_message((u8 *) &msg, sizeof(msg), 0, 7); reply_size = sizeof(reply); if (recv_heci_message((u32 *) &reply, &reply_size) == -1) return; if (reply.command != (MKHI_SET_UMA | (1 << 7))) die("HECI init failed\n"); } static void setup_heci_uma(struct raminfo *info) { if (!info->memory_reserved_for_heci_mb && !(pci_read_config32(HECIDEV, 0x40) & 0x20)) return; const u64 heci_uma_addr = ((u64) ((((u64)pci_read_config16(NORTHBRIDGE, TOM)) << 6) - info->memory_reserved_for_heci_mb)) << 20; pci_read_config32(NORTHBRIDGE, DMIBAR); if (info->memory_reserved_for_heci_mb) { DMIBAR32(DMIVC0RCTL) &= ~0x80; RCBA32(0x14) &= ~0x80; DMIBAR32(DMIVC1RCTL) &= ~0x80; RCBA32(0x20) &= ~0x80; DMIBAR32(DMIVCPRCTL) &= ~0x80; RCBA32(0x30) &= ~0x80; DMIBAR32(DMIVCMRCTL) &= ~0x80; RCBA32(0x40) &= ~0x80; RCBA32(0x40) = 0x87000080; // OK DMIBAR32(DMIVCMRCTL) = 0x87000080; // OK while ((RCBA16(0x46) & 2) && DMIBAR16(DMIVCMRSTS) & VCMNP) ; } MCHBAR32(0x24) = 0x10000 + info->memory_reserved_for_heci_mb; send_heci_uma_message(heci_uma_addr, info->memory_reserved_for_heci_mb); pci_write_config32(HECIDEV, 0x10, 0x0); pci_write_config8(HECIDEV, 0x4, 0x0); } static int have_match_ranks(struct raminfo *info, int channel, int ranks) { int ranks_in_channel; ranks_in_channel = info->populated_ranks[channel][0][0] + info->populated_ranks[channel][0][1] + info->populated_ranks[channel][1][0] + info->populated_ranks[channel][1][1]; /* empty channel */ if (ranks_in_channel == 0) return 1; if (ranks_in_channel != ranks) return 0; /* single slot */ if (info->populated_ranks[channel][0][0] != info->populated_ranks[channel][1][0]) return 1; if (info->populated_ranks[channel][0][1] != info->populated_ranks[channel][1][1]) return 1; if (info->is_x16_module[channel][0] != info->is_x16_module[channel][1]) return 0; if (info->density[channel][0] != info->density[channel][1]) return 0; return 1; } static void read_4090(struct raminfo *info) { int i, channel, slot, rank, lane; for (i = 0; i < 2; i++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) for (lane = 0; lane < 9; lane++) info->training. lane_timings[0][i][slot][rank][lane] = 32; for (i = 1; i < 4; i++) for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) for (lane = 0; lane < 9; lane++) { info->training. lane_timings[i][channel] [slot][rank][lane] = read_500(info, channel, get_timing_register_addr (lane, i, slot, rank), 9) + (i == 1) * 11; // !!!! } } static u32 get_etalon2(int flip, u32 addr) { const u16 invmask[] = { 0xaaaa, 0x6db6, 0x4924, 0xeeee, 0xcccc, 0x8888, 0x7bde, 0x739c, 0x6318, 0x4210, 0xefbe, 0xcf3c, 0x8e38, 0x0c30, 0x0820 }; u32 ret; u32 comp4 = addr / 480; addr %= 480; u32 comp1 = addr & 0xf; u32 comp2 = (addr >> 4) & 1; u32 comp3 = addr >> 5; if (comp4) ret = 0x1010101 << (comp4 - 1); else ret = 0; if (flip ^ (((invmask[comp3] >> comp1) ^ comp2) & 1)) ret = ~ret; return ret; } static void disable_cache_region(void) { msr_t msr = {.lo = 0, .hi = 0 }; wrmsr(MTRR_PHYS_BASE(3), msr); wrmsr(MTRR_PHYS_MASK(3), msr); } static void enable_cache_region(unsigned int base, unsigned int size) { msr_t msr; msr.lo = base | MTRR_TYPE_WRPROT; msr.hi = 0; wrmsr(MTRR_PHYS_BASE(3), msr); msr.lo = ((~(ALIGN_DOWN(size + 4096, 4096) - 1) | MTRR_DEF_TYPE_EN) & 0xffffffff); msr.hi = 0x0000000f; wrmsr(MTRR_PHYS_MASK(3), msr); } static void flush_cache(u32 start, u32 size) { u32 end; u32 addr; end = start + (ALIGN_DOWN(size + 4096, 4096)); for (addr = start; addr < end; addr += 64) clflush((void *)(uintptr_t)addr); } static void clear_errors(void) { pci_write_config8(NORTHBRIDGE, 0xc0, 0x01); } static void write_testing(struct raminfo *info, int totalrank, int flip) { int nwrites = 0; /* in 8-byte units. */ u32 offset; u8 *base; base = (u8 *)(uintptr_t)(totalrank << 28); for (offset = 0; offset < 9 * 480; offset += 2) { write32(base + offset * 8, get_etalon2(flip, offset)); write32(base + offset * 8 + 4, get_etalon2(flip, offset)); write32(base + offset * 8 + 8, get_etalon2(flip, offset + 1)); write32(base + offset * 8 + 12, get_etalon2(flip, offset + 1)); nwrites += 4; if (nwrites >= 320) { clear_errors(); nwrites = 0; } } } static u8 check_testing(struct raminfo *info, u8 total_rank, int flip) { u8 failmask = 0; int i; int comp1, comp2, comp3; u32 failxor[2] = { 0, 0 }; enable_cache_region((total_rank << 28), 1728 * 5 * 4); for (comp3 = 0; comp3 < 9 && failmask != 0xff; comp3++) { for (comp1 = 0; comp1 < 4; comp1++) for (comp2 = 0; comp2 < 60; comp2++) { u32 re[4]; u32 curroffset = comp3 * 8 * 60 + 2 * comp1 + 8 * comp2; read128((total_rank << 28) | (curroffset << 3), (u64 *) re); failxor[0] |= get_etalon2(flip, curroffset) ^ re[0]; failxor[1] |= get_etalon2(flip, curroffset) ^ re[1]; failxor[0] |= get_etalon2(flip, curroffset | 1) ^ re[2]; failxor[1] |= get_etalon2(flip, curroffset | 1) ^ re[3]; } for (i = 0; i < 8; i++) if ((0xff << (8 * (i % 4))) & failxor[i / 4]) failmask |= 1 << i; } disable_cache_region(); flush_cache((total_rank << 28), 1728 * 5 * 4); return failmask; } const u32 seed1[0x18] = { 0x3a9d5ab5, 0x576cb65b, 0x555773b6, 0x2ab772ee, 0x555556ee, 0x3a9d5ab5, 0x576cb65b, 0x555773b6, 0x2ab772ee, 0x555556ee, 0x5155a555, 0x5155a555, 0x5155a555, 0x5155a555, 0x3a9d5ab5, 0x576cb65b, 0x555773b6, 0x2ab772ee, 0x555556ee, 0x55d6b4a5, 0x366d6b3a, 0x2ae5ddbb, 0x3b9ddbb7, 0x55d6b4a5, }; static u32 get_seed2(int a, int b) { const u32 seed2[5] = { 0x55555555, 0x33333333, 0x2e555a55, 0x55555555, 0x5b6db6db, }; u32 r; r = seed2[(a + (a >= 10)) / 5]; return b ? ~r : r; } static int make_shift(int comp2, int comp5, int x) { const u8 seed3[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x1c, 0x3c, 0x18, 0x38, 0x38, 0x38, 0x38, 0x38, 0x38, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, }; return (comp2 - ((seed3[comp5] >> (x & 7)) & 1)) & 0x1f; } static u32 get_etalon(int flip, u32 addr) { u32 mask_byte = 0; int comp1 = (addr >> 1) & 1; int comp2 = (addr >> 3) & 0x1f; int comp3 = (addr >> 8) & 0xf; int comp4 = (addr >> 12) & 0xf; int comp5 = (addr >> 16) & 0x1f; u32 mask_bit = ~(0x10001 << comp3); u32 part1; u32 part2; int byte; part2 = ((seed1[comp5] >> make_shift(comp2, comp5, (comp3 >> 3) | (comp1 << 2) | 2)) & 1) ^ flip; part1 = ((seed1[comp5] >> make_shift(comp2, comp5, (comp3 >> 3) | (comp1 << 2) | 0)) & 1) ^ flip; for (byte = 0; byte < 4; byte++) if ((get_seed2(comp5, comp4) >> make_shift(comp2, comp5, (byte | (comp1 << 2)))) & 1) mask_byte |= 0xff << (8 * byte); return (mask_bit & mask_byte) | (part1 << comp3) | (part2 << (comp3 + 16)); } static void write_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block, char flip) { int i; for (i = 0; i < 2048; i++) write32p((totalrank << 28) | (region << 25) | (block << 16) | (i << 2), get_etalon(flip, (block << 16) | (i << 2))); } static u8 check_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block, char flip) { u8 failmask = 0; u32 failxor[2]; int i; int comp1, comp2, comp3; failxor[0] = 0; failxor[1] = 0; enable_cache_region(totalrank << 28, 134217728); for (comp3 = 0; comp3 < 2 && failmask != 0xff; comp3++) { for (comp1 = 0; comp1 < 16; comp1++) for (comp2 = 0; comp2 < 64; comp2++) { u32 addr = (totalrank << 28) | (region << 25) | (block << 16) | (comp3 << 12) | (comp2 << 6) | (comp1 << 2); failxor[comp1 & 1] |= read32p(addr) ^ get_etalon(flip, addr); } for (i = 0; i < 8; i++) if ((0xff << (8 * (i % 4))) & failxor[i / 4]) failmask |= 1 << i; } disable_cache_region(); flush_cache((totalrank << 28) | (region << 25) | (block << 16), 16384); return failmask; } static int check_bounded(unsigned short *vals, u16 bound) { int i; for (i = 0; i < 8; i++) if (vals[i] < bound) return 0; return 1; } enum state { BEFORE_USABLE = 0, AT_USABLE = 1, AT_MARGIN = 2, COMPLETE = 3 }; static int validate_state(enum state *in) { int i; for (i = 0; i < 8; i++) if (in[i] != COMPLETE) return 0; return 1; } static void do_fsm(enum state *state, u16 *counter, u8 fail_mask, int margin, int uplimit, u8 *res_low, u8 *res_high, u8 val) { int lane; for (lane = 0; lane < 8; lane++) { int is_fail = (fail_mask >> lane) & 1; switch (state[lane]) { case BEFORE_USABLE: if (!is_fail) { counter[lane] = 1; state[lane] = AT_USABLE; break; } counter[lane] = 0; state[lane] = BEFORE_USABLE; break; case AT_USABLE: if (!is_fail) { ++counter[lane]; if (counter[lane] >= margin) { state[lane] = AT_MARGIN; res_low[lane] = val - margin + 1; break; } state[lane] = 1; break; } counter[lane] = 0; state[lane] = BEFORE_USABLE; break; case AT_MARGIN: if (is_fail) { state[lane] = COMPLETE; res_high[lane] = val - 1; } else { counter[lane]++; state[lane] = AT_MARGIN; if (val == uplimit) { state[lane] = COMPLETE; res_high[lane] = uplimit; } } break; case COMPLETE: break; } } } static void train_ram_at_178(struct raminfo *info, u8 channel, int slot, int rank, u8 total_rank, u8 reg_178, int first_run, int niter, timing_bounds_t * timings) { int lane; enum state state[8]; u16 count[8]; u8 lower_usable[8]; u8 upper_usable[8]; unsigned short num_successfully_checked[8]; u8 reg1b3; int i; for (i = 0; i < 8; i++) state[i] = BEFORE_USABLE; if (!first_run) { int is_all_ok = 1; for (lane = 0; lane < 8; lane++) if (timings[reg_178][channel][slot][rank][lane]. smallest == timings[reg_178][channel][slot][rank][lane]. largest) { timings[reg_178][channel][slot][rank][lane]. smallest = 0; timings[reg_178][channel][slot][rank][lane]. largest = 0; is_all_ok = 0; } if (is_all_ok) { for (i = 0; i < 8; i++) state[i] = COMPLETE; } } for (reg1b3 = 0; reg1b3 < 0x30 && !validate_state(state); reg1b3++) { u8 failmask = 0; write_1d0(reg1b3 ^ 32, 0x1b3, 6, 1); write_1d0(reg1b3 ^ 32, 0x1a3, 6, 1); failmask = check_testing(info, total_rank, 0); MCHBAR32_OR(0xfb0, 0x00030000); do_fsm(state, count, failmask, 5, 47, lower_usable, upper_usable, reg1b3); } if (reg1b3) { write_1d0(0, 0x1b3, 6, 1); write_1d0(0, 0x1a3, 6, 1); for (lane = 0; lane < 8; lane++) { if (state[lane] == COMPLETE) { timings[reg_178][channel][slot][rank][lane]. smallest = lower_usable[lane] + (info->training. lane_timings[0][channel][slot][rank][lane] & 0x3F) - 32; timings[reg_178][channel][slot][rank][lane]. largest = upper_usable[lane] + (info->training. lane_timings[0][channel][slot][rank][lane] & 0x3F) - 32; } } } if (!first_run) { for (lane = 0; lane < 8; lane++) if (state[lane] == COMPLETE) { write_500(info, channel, timings[reg_178][channel][slot][rank] [lane].smallest, get_timing_register_addr(lane, 0, slot, rank), 9, 1); write_500(info, channel, timings[reg_178][channel][slot][rank] [lane].smallest + info->training. lane_timings[1][channel][slot][rank] [lane] - info->training. lane_timings[0][channel][slot][rank] [lane], get_timing_register_addr(lane, 1, slot, rank), 9, 1); num_successfully_checked[lane] = 0; } else num_successfully_checked[lane] = -1; do { u8 failmask = 0; for (i = 0; i < niter; i++) { if (failmask == 0xFF) break; failmask |= check_testing_type2(info, total_rank, 2, i, 0); failmask |= check_testing_type2(info, total_rank, 3, i, 1); } MCHBAR32_OR(0xfb0, 0x00030000); for (lane = 0; lane < 8; lane++) if (num_successfully_checked[lane] != 0xffff) { if ((1 << lane) & failmask) { if (timings[reg_178][channel] [slot][rank][lane]. largest <= timings[reg_178][channel] [slot][rank][lane].smallest) num_successfully_checked [lane] = -1; else { num_successfully_checked [lane] = 0; timings[reg_178] [channel][slot] [rank][lane]. smallest++; write_500(info, channel, timings [reg_178] [channel] [slot][rank] [lane]. smallest, get_timing_register_addr (lane, 0, slot, rank), 9, 1); write_500(info, channel, timings [reg_178] [channel] [slot][rank] [lane]. smallest + info-> training. lane_timings [1][channel] [slot][rank] [lane] - info-> training. lane_timings [0][channel] [slot][rank] [lane], get_timing_register_addr (lane, 1, slot, rank), 9, 1); } } else num_successfully_checked[lane] ++; } } while (!check_bounded(num_successfully_checked, 2)) ; for (lane = 0; lane < 8; lane++) if (state[lane] == COMPLETE) { write_500(info, channel, timings[reg_178][channel][slot][rank] [lane].largest, get_timing_register_addr(lane, 0, slot, rank), 9, 1); write_500(info, channel, timings[reg_178][channel][slot][rank] [lane].largest + info->training. lane_timings[1][channel][slot][rank] [lane] - info->training. lane_timings[0][channel][slot][rank] [lane], get_timing_register_addr(lane, 1, slot, rank), 9, 1); num_successfully_checked[lane] = 0; } else num_successfully_checked[lane] = -1; do { int failmask = 0; for (i = 0; i < niter; i++) { if (failmask == 0xFF) break; failmask |= check_testing_type2(info, total_rank, 2, i, 0); failmask |= check_testing_type2(info, total_rank, 3, i, 1); } MCHBAR32_OR(0xfb0, 0x00030000); for (lane = 0; lane < 8; lane++) { if (num_successfully_checked[lane] != 0xffff) { if ((1 << lane) & failmask) { if (timings[reg_178][channel] [slot][rank][lane]. largest <= timings[reg_178][channel] [slot][rank][lane]. smallest) { num_successfully_checked [lane] = -1; } else { num_successfully_checked [lane] = 0; timings[reg_178] [channel][slot] [rank][lane]. largest--; write_500(info, channel, timings [reg_178] [channel] [slot][rank] [lane]. largest, get_timing_register_addr (lane, 0, slot, rank), 9, 1); write_500(info, channel, timings [reg_178] [channel] [slot][rank] [lane]. largest + info-> training. lane_timings [1][channel] [slot][rank] [lane] - info-> training. lane_timings [0][channel] [slot][rank] [lane], get_timing_register_addr (lane, 1, slot, rank), 9, 1); } } else num_successfully_checked[lane] ++; } } } while (!check_bounded(num_successfully_checked, 3)) ; for (lane = 0; lane < 8; lane++) { write_500(info, channel, info->training. lane_timings[0][channel][slot][rank][lane], get_timing_register_addr(lane, 0, slot, rank), 9, 1); write_500(info, channel, info->training. lane_timings[1][channel][slot][rank][lane], get_timing_register_addr(lane, 1, slot, rank), 9, 1); if (timings[reg_178][channel][slot][rank][lane]. largest <= timings[reg_178][channel][slot][rank][lane]. smallest) { timings[reg_178][channel][slot][rank][lane]. largest = 0; timings[reg_178][channel][slot][rank][lane]. smallest = 0; } } } } static void set_10b(struct raminfo *info, u8 val) { int channel; int slot, rank; int lane; if (read_1d0(0x10b, 6) == val) return; write_1d0(val, 0x10b, 6, 1); FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 9; lane++) { u16 reg_500; reg_500 = read_500(info, channel, get_timing_register_addr(lane, 0, slot, rank), 9); if (val == 1) { if (lut16[info->clock_speed_index] <= reg_500) reg_500 -= lut16[info->clock_speed_index]; else reg_500 = 0; } else { reg_500 += lut16[info->clock_speed_index]; } write_500(info, channel, reg_500, get_timing_register_addr(lane, 0, slot, rank), 9, 1); } } static void set_ecc(int onoff) { int channel; for (channel = 0; channel < NUM_CHANNELS; channel++) { u8 t; t = MCHBAR8((channel << 10) + 0x5f8); if (onoff) t |= 1; else t &= ~1; MCHBAR8((channel << 10) + 0x5f8) = t; } } static void set_178(u8 val) { if (val >= 31) val = val - 31; else val = 63 - val; write_1d0(2 * val, 0x178, 7, 1); } static void write_500_timings_type(struct raminfo *info, int channel, int slot, int rank, int type) { int lane; for (lane = 0; lane < 8; lane++) write_500(info, channel, info->training. lane_timings[type][channel][slot][rank][lane], get_timing_register_addr(lane, type, slot, rank), 9, 0); } static void try_timing_offsets(struct raminfo *info, int channel, int slot, int rank, int totalrank) { u16 count[8]; enum state state[8]; u8 lower_usable[8], upper_usable[8]; int lane; int i; int flip = 1; int timing_offset; for (i = 0; i < 8; i++) state[i] = BEFORE_USABLE; memset(count, 0, sizeof(count)); for (lane = 0; lane < 8; lane++) write_500(info, channel, info->training. lane_timings[2][channel][slot][rank][lane] + 32, get_timing_register_addr(lane, 3, slot, rank), 9, 1); for (timing_offset = 0; !validate_state(state) && timing_offset < 64; timing_offset++) { u8 failmask; write_1d0(timing_offset ^ 32, 0x1bb, 6, 1); failmask = 0; for (i = 0; i < 2 && failmask != 0xff; i++) { flip = !flip; write_testing(info, totalrank, flip); failmask |= check_testing(info, totalrank, flip); } do_fsm(state, count, failmask, 10, 63, lower_usable, upper_usable, timing_offset); } write_1d0(0, 0x1bb, 6, 1); dump_timings(info); if (!validate_state(state)) die("Couldn't discover DRAM timings (1)\n"); for (lane = 0; lane < 8; lane++) { u8 bias = 0; if (info->silicon_revision) { int usable_length; usable_length = upper_usable[lane] - lower_usable[lane]; if (usable_length >= 20) { bias = usable_length / 2 - 10; if (bias >= 2) bias = 2; } } write_500(info, channel, info->training. lane_timings[2][channel][slot][rank][lane] + (upper_usable[lane] + lower_usable[lane]) / 2 - bias, get_timing_register_addr(lane, 3, slot, rank), 9, 1); info->training.timing2_bounds[channel][slot][rank][lane][0] = info->training.lane_timings[2][channel][slot][rank][lane] + lower_usable[lane]; info->training.timing2_bounds[channel][slot][rank][lane][1] = info->training.lane_timings[2][channel][slot][rank][lane] + upper_usable[lane]; info->training.timing2_offset[channel][slot][rank][lane] = info->training.lane_timings[2][channel][slot][rank][lane]; } } static u8 choose_training(struct raminfo *info, int channel, int slot, int rank, int lane, timing_bounds_t * timings, u8 center_178) { u16 central_weight; u16 side_weight; unsigned int sum = 0, count = 0; u8 span; u8 lower_margin, upper_margin; u8 reg_178; u8 result; span = 12; central_weight = 20; side_weight = 20; if (info->silicon_revision == 1 && channel == 1) { central_weight = 5; side_weight = 20; if ((info-> populated_ranks_mask[1] ^ (info-> populated_ranks_mask[1] >> 2)) & 1) span = 18; } if ((info->populated_ranks_mask[0] & 5) == 5) { central_weight = 20; side_weight = 20; } if (info->clock_speed_index >= 2 && (info->populated_ranks_mask[0] & 5) == 5 && slot == 1) { if (info->silicon_revision == 1) { switch (channel) { case 0: if (lane == 1) { central_weight = 10; side_weight = 20; } break; case 1: if (lane == 6) { side_weight = 5; central_weight = 20; } break; } } if (info->silicon_revision == 0 && channel == 0 && lane == 0) { side_weight = 5; central_weight = 20; } } for (reg_178 = center_178 - span; reg_178 <= center_178 + span; reg_178 += span) { u8 smallest; u8 largest; largest = timings[reg_178][channel][slot][rank][lane].largest; smallest = timings[reg_178][channel][slot][rank][lane].smallest; if (largest - smallest + 1 >= 5) { unsigned int weight; if (reg_178 == center_178) weight = central_weight; else weight = side_weight; sum += weight * (largest + smallest); count += weight; } } dump_timings(info); if (count == 0) die("Couldn't discover DRAM timings (2)\n"); result = sum / (2 * count); lower_margin = result - timings[center_178][channel][slot][rank][lane].smallest; upper_margin = timings[center_178][channel][slot][rank][lane].largest - result; if (upper_margin < 10 && lower_margin > 10) result -= MIN(lower_margin - 10, 10 - upper_margin); if (upper_margin > 10 && lower_margin < 10) result += MIN(upper_margin - 10, 10 - lower_margin); return result; } #define STANDARD_MIN_MARGIN 5 static u8 choose_reg178(struct raminfo *info, timing_bounds_t * timings) { u16 margin[64]; int lane, rank, slot, channel; u8 reg178; int count = 0, sum = 0; for (reg178 = reg178_min[info->clock_speed_index]; reg178 < reg178_max[info->clock_speed_index]; reg178 += reg178_step[info->clock_speed_index]) { margin[reg178] = -1; FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) { int curmargin = timings[reg178][channel][slot][rank][lane].largest - timings[reg178][channel][slot][rank][lane]. smallest + 1; if (curmargin < margin[reg178]) margin[reg178] = curmargin; } if (margin[reg178] >= STANDARD_MIN_MARGIN) { u16 weight; weight = margin[reg178] - STANDARD_MIN_MARGIN; sum += weight * reg178; count += weight; } } dump_timings(info); if (count == 0) die("Couldn't discover DRAM timings (3)\n"); u8 threshold; for (threshold = 30; threshold >= 5; threshold--) { int usable_length = 0; int smallest_fount = 0; for (reg178 = reg178_min[info->clock_speed_index]; reg178 < reg178_max[info->clock_speed_index]; reg178 += reg178_step[info->clock_speed_index]) if (margin[reg178] >= threshold) { usable_length += reg178_step[info->clock_speed_index]; info->training.reg178_largest = reg178 - 2 * reg178_step[info->clock_speed_index]; if (!smallest_fount) { smallest_fount = 1; info->training.reg178_smallest = reg178 + reg178_step[info-> clock_speed_index]; } } if (usable_length >= 0x21) break; } return sum / count; } static int check_cached_sanity(struct raminfo *info) { int lane; int slot, rank; int channel; if (!info->cached_training) return 0; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) for (lane = 0; lane < 8 + info->use_ecc; lane++) { u16 cached_value, estimation_value; cached_value = info->cached_training-> lane_timings[1][channel][slot][rank] [lane]; if (cached_value >= 0x18 && cached_value <= 0x1E7) { estimation_value = info->training. lane_timings[1][channel] [slot][rank][lane]; if (estimation_value < cached_value - 24) return 0; if (estimation_value > cached_value + 24) return 0; } } return 1; } static int try_cached_training(struct raminfo *info) { u8 saved_243[2]; u8 tm; int channel, slot, rank, lane; int flip = 1; int i, j; if (!check_cached_sanity(info)) return 0; info->training.reg178_center = info->cached_training->reg178_center; info->training.reg178_smallest = info->cached_training->reg178_smallest; info->training.reg178_largest = info->cached_training->reg178_largest; memcpy(&info->training.timing_bounds, &info->cached_training->timing_bounds, sizeof(info->training.timing_bounds)); memcpy(&info->training.timing_offset, &info->cached_training->timing_offset, sizeof(info->training.timing_offset)); write_1d0(2, 0x142, 3, 1); saved_243[0] = MCHBAR8(0x243); saved_243[1] = MCHBAR8(0x643); MCHBAR8(0x243) = saved_243[0] | 2; MCHBAR8(0x643) = saved_243[1] | 2; set_ecc(0); pci_write_config16(NORTHBRIDGE, 0xc8, 3); if (read_1d0(0x10b, 6) & 1) set_10b(info, 0); for (tm = 0; tm < 2; tm++) { int totalrank; set_178(tm ? info->cached_training->reg178_largest : info-> cached_training->reg178_smallest); totalrank = 0; /* Check timing ranges. With i == 0 we check smallest one and with i == 1 the largest bound. With j == 0 we check that on the bound it still works whereas with j == 1 we check that just outside of bound we fail. */ FOR_POPULATED_RANKS_BACKWARDS { for (i = 0; i < 2; i++) { for (lane = 0; lane < 8; lane++) { write_500(info, channel, info->cached_training-> timing2_bounds[channel][slot] [rank][lane][i], get_timing_register_addr(lane, 3, slot, rank), 9, 1); if (!i) write_500(info, channel, info-> cached_training-> timing2_offset [channel][slot][rank] [lane], get_timing_register_addr (lane, 2, slot, rank), 9, 1); write_500(info, channel, i ? info->cached_training-> timing_bounds[tm][channel] [slot][rank][lane]. largest : info-> cached_training-> timing_bounds[tm][channel] [slot][rank][lane].smallest, get_timing_register_addr(lane, 0, slot, rank), 9, 1); write_500(info, channel, info->cached_training-> timing_offset[channel][slot] [rank][lane] + (i ? info->cached_training-> timing_bounds[tm][channel] [slot][rank][lane]. largest : info-> cached_training-> timing_bounds[tm][channel] [slot][rank][lane]. smallest) - 64, get_timing_register_addr(lane, 1, slot, rank), 9, 1); } for (j = 0; j < 2; j++) { u8 failmask; u8 expected_failmask; char reg1b3; reg1b3 = (j == 1) + 4; reg1b3 = j == i ? reg1b3 : (-reg1b3) & 0x3f; write_1d0(reg1b3, 0x1bb, 6, 1); write_1d0(reg1b3, 0x1b3, 6, 1); write_1d0(reg1b3, 0x1a3, 6, 1); flip = !flip; write_testing(info, totalrank, flip); failmask = check_testing(info, totalrank, flip); expected_failmask = j == 0 ? 0x00 : 0xff; if (failmask != expected_failmask) goto fail; } } totalrank++; } } set_178(info->cached_training->reg178_center); if (info->use_ecc) set_ecc(1); write_training_data(info); write_1d0(0, 322, 3, 1); info->training = *info->cached_training; write_1d0(0, 0x1bb, 6, 1); write_1d0(0, 0x1b3, 6, 1); write_1d0(0, 0x1a3, 6, 1); MCHBAR8(0x243) = saved_243[0]; MCHBAR8(0x643) = saved_243[1]; return 1; fail: FOR_POPULATED_RANKS { write_500_timings_type(info, channel, slot, rank, 1); write_500_timings_type(info, channel, slot, rank, 2); write_500_timings_type(info, channel, slot, rank, 3); } write_1d0(0, 0x1bb, 6, 1); write_1d0(0, 0x1b3, 6, 1); write_1d0(0, 0x1a3, 6, 1); MCHBAR8(0x243) = saved_243[0]; MCHBAR8(0x643) = saved_243[1]; return 0; } static void do_ram_training(struct raminfo *info) { u8 saved_243[2]; int totalrank = 0; u8 reg_178; int niter; timing_bounds_t *timings = timings_car; int lane, rank, slot, channel; u8 reg178_center; write_1d0(2, 0x142, 3, 1); saved_243[0] = MCHBAR8(0x243); saved_243[1] = MCHBAR8(0x643); MCHBAR8(0x243) = saved_243[0] | 2; MCHBAR8(0x643) = saved_243[1] | 2; switch (info->clock_speed_index) { case 0: niter = 5; break; case 1: niter = 10; break; default: niter = 19; break; } set_ecc(0); FOR_POPULATED_RANKS_BACKWARDS { int i; write_500_timings_type(info, channel, slot, rank, 0); write_testing(info, totalrank, 0); for (i = 0; i < niter; i++) { write_testing_type2(info, totalrank, 2, i, 0); write_testing_type2(info, totalrank, 3, i, 1); } pci_write_config8(NORTHBRIDGE, 0xc0, 0x01); totalrank++; } if (reg178_min[info->clock_speed_index] < reg178_max[info->clock_speed_index]) memset(timings[reg178_min[info->clock_speed_index]], 0, sizeof(timings[0]) * (reg178_max[info->clock_speed_index] - reg178_min[info->clock_speed_index])); for (reg_178 = reg178_min[info->clock_speed_index]; reg_178 < reg178_max[info->clock_speed_index]; reg_178 += reg178_step[info->clock_speed_index]) { totalrank = 0; set_178(reg_178); for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) { memset(&timings[reg_178][channel][slot] [rank][0].smallest, 0, 16); if (info-> populated_ranks[channel][slot] [rank]) { train_ram_at_178(info, channel, slot, rank, totalrank, reg_178, 1, niter, timings); totalrank++; } } } reg178_center = choose_reg178(info, timings); FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) { info->training.timing_bounds[0][channel][slot][rank][lane]. smallest = timings[info->training. reg178_smallest][channel][slot][rank][lane]. smallest; info->training.timing_bounds[0][channel][slot][rank][lane]. largest = timings[info->training. reg178_smallest][channel][slot][rank][lane].largest; info->training.timing_bounds[1][channel][slot][rank][lane]. smallest = timings[info->training. reg178_largest][channel][slot][rank][lane].smallest; info->training.timing_bounds[1][channel][slot][rank][lane]. largest = timings[info->training. reg178_largest][channel][slot][rank][lane].largest; info->training.timing_offset[channel][slot][rank][lane] = info->training.lane_timings[1][channel][slot][rank][lane] - info->training.lane_timings[0][channel][slot][rank][lane] + 64; } if (info->silicon_revision == 1 && (info-> populated_ranks_mask[1] ^ (info-> populated_ranks_mask[1] >> 2)) & 1) { int ranks_after_channel1; totalrank = 0; for (reg_178 = reg178_center - 18; reg_178 <= reg178_center + 18; reg_178 += 18) { totalrank = 0; set_178(reg_178); for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) { if (info-> populated_ranks[1][slot][rank]) { train_ram_at_178(info, 1, slot, rank, totalrank, reg_178, 0, niter, timings); totalrank++; } } } ranks_after_channel1 = totalrank; for (reg_178 = reg178_center - 12; reg_178 <= reg178_center + 12; reg_178 += 12) { totalrank = ranks_after_channel1; set_178(reg_178); for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) if (info-> populated_ranks[0][slot][rank]) { train_ram_at_178(info, 0, slot, rank, totalrank, reg_178, 0, niter, timings); totalrank++; } } } else { for (reg_178 = reg178_center - 12; reg_178 <= reg178_center + 12; reg_178 += 12) { totalrank = 0; set_178(reg_178); FOR_POPULATED_RANKS_BACKWARDS { train_ram_at_178(info, channel, slot, rank, totalrank, reg_178, 0, niter, timings); totalrank++; } } } set_178(reg178_center); FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) { u16 tm0; tm0 = choose_training(info, channel, slot, rank, lane, timings, reg178_center); write_500(info, channel, tm0, get_timing_register_addr(lane, 0, slot, rank), 9, 1); write_500(info, channel, tm0 + info->training. lane_timings[1][channel][slot][rank][lane] - info->training. lane_timings[0][channel][slot][rank][lane], get_timing_register_addr(lane, 1, slot, rank), 9, 1); } totalrank = 0; FOR_POPULATED_RANKS_BACKWARDS { try_timing_offsets(info, channel, slot, rank, totalrank); totalrank++; } MCHBAR8(0x243) = saved_243[0]; MCHBAR8(0x643) = saved_243[1]; write_1d0(0, 0x142, 3, 1); info->training.reg178_center = reg178_center; } static void ram_training(struct raminfo *info) { u16 saved_fc4; saved_fc4 = MCHBAR16(0xfc4); MCHBAR16(0xfc4) = 0xffff; if (info->revision >= 8) read_4090(info); if (!try_cached_training(info)) do_ram_training(info); if ((info->silicon_revision == 2 || info->silicon_revision == 3) && info->clock_speed_index < 2) set_10b(info, 1); MCHBAR16(0xfc4) = saved_fc4; } static unsigned int gcd(unsigned int a, unsigned int b) { unsigned int t; if (a > b) { t = a; a = b; b = t; } /* invariant a < b. */ while (a) { t = b % a; b = a; a = t; } return b; } static inline int div_roundup(int a, int b) { return DIV_ROUND_UP(a, b); } static unsigned int lcm(unsigned int a, unsigned int b) { return (a * b) / gcd(a, b); } struct stru1 { u8 freqs_reversed; u8 freq_diff_reduced; u8 freq_min_reduced; u8 divisor_f4_to_fmax; u8 divisor_f3_to_fmax; u8 freq4_to_max_remainder; u8 freq3_to_2_remainder; u8 freq3_to_2_remaindera; u8 freq4_to_2_remainder; int divisor_f3_to_f1, divisor_f4_to_f2; int common_time_unit_ps; int freq_max_reduced; }; static void compute_frequence_ratios(struct raminfo *info, u16 freq1, u16 freq2, int num_cycles_2, int num_cycles_1, int round_it, int add_freqs, struct stru1 *result) { int g; int common_time_unit_ps; int freq1_reduced, freq2_reduced; int freq_min_reduced; int freq_max_reduced; int freq3, freq4; g = gcd(freq1, freq2); freq1_reduced = freq1 / g; freq2_reduced = freq2 / g; freq_min_reduced = MIN(freq1_reduced, freq2_reduced); freq_max_reduced = MAX(freq1_reduced, freq2_reduced); common_time_unit_ps = div_roundup(900000, lcm(freq1, freq2)); freq3 = div_roundup(num_cycles_2, common_time_unit_ps) - 1; freq4 = div_roundup(num_cycles_1, common_time_unit_ps) - 1; if (add_freqs) { freq3 += freq2_reduced; freq4 += freq1_reduced; } if (round_it) { result->freq3_to_2_remainder = 0; result->freq3_to_2_remaindera = 0; result->freq4_to_max_remainder = 0; result->divisor_f4_to_f2 = 0; result->divisor_f3_to_f1 = 0; } else { if (freq2_reduced < freq1_reduced) { result->freq3_to_2_remainder = result->freq3_to_2_remaindera = freq3 % freq1_reduced - freq1_reduced + 1; result->freq4_to_max_remainder = -(freq4 % freq1_reduced); result->divisor_f3_to_f1 = freq3 / freq1_reduced; result->divisor_f4_to_f2 = (freq4 - (freq1_reduced - freq2_reduced)) / freq2_reduced; result->freq4_to_2_remainder = -(char)((freq1_reduced - freq2_reduced) + ((u8) freq4 - (freq1_reduced - freq2_reduced)) % (u8) freq2_reduced); } else { if (freq2_reduced > freq1_reduced) { result->freq4_to_max_remainder = (freq4 % freq2_reduced) - freq2_reduced + 1; result->freq4_to_2_remainder = freq4 % freq_max_reduced - freq_max_reduced + 1; } else { result->freq4_to_max_remainder = -(freq4 % freq2_reduced); result->freq4_to_2_remainder = -(char)(freq4 % freq_max_reduced); } result->divisor_f4_to_f2 = freq4 / freq2_reduced; result->divisor_f3_to_f1 = (freq3 - (freq2_reduced - freq1_reduced)) / freq1_reduced; result->freq3_to_2_remainder = -(freq3 % freq2_reduced); result->freq3_to_2_remaindera = -(char)((freq_max_reduced - freq_min_reduced) + (freq3 - (freq_max_reduced - freq_min_reduced)) % freq1_reduced); } } result->divisor_f3_to_fmax = freq3 / freq_max_reduced; result->divisor_f4_to_fmax = freq4 / freq_max_reduced; if (round_it) { if (freq2_reduced > freq1_reduced) { if (freq3 % freq_max_reduced) result->divisor_f3_to_fmax++; } if (freq2_reduced < freq1_reduced) { if (freq4 % freq_max_reduced) result->divisor_f4_to_fmax++; } } result->freqs_reversed = (freq2_reduced < freq1_reduced); result->freq_diff_reduced = freq_max_reduced - freq_min_reduced; result->freq_min_reduced = freq_min_reduced; result->common_time_unit_ps = common_time_unit_ps; result->freq_max_reduced = freq_max_reduced; } static void set_2d5x_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2, int num_cycles_2, int num_cycles_1, int num_cycles_3, int num_cycles_4, int reverse) { struct stru1 vv; char multiplier; compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1, 0, 1, &vv); multiplier = div_roundup(MAX (div_roundup(num_cycles_2, vv.common_time_unit_ps) + div_roundup(num_cycles_3, vv.common_time_unit_ps), div_roundup(num_cycles_1, vv.common_time_unit_ps) + div_roundup(num_cycles_4, vv.common_time_unit_ps)) + vv.freq_min_reduced - 1, vv.freq_max_reduced) - 1; u32 y = (u8) ((vv.freq_max_reduced - vv.freq_min_reduced) + vv.freq_max_reduced * multiplier) | (vv. freqs_reversed << 8) | ((u8) (vv.freq_min_reduced * multiplier) << 16) | ((u8) (vv. freq_min_reduced * multiplier) << 24); u32 x = vv.freq3_to_2_remaindera | (vv.freq4_to_2_remainder << 8) | (vv. divisor_f3_to_f1 << 16) | (vv.divisor_f4_to_f2 << 20) | (vv.freq_min_reduced << 24); if (reverse) { MCHBAR32(reg) = y; MCHBAR32(reg + 4) = x; } else { MCHBAR32(reg + 4) = y; MCHBAR32(reg) = x; } } static void set_6d_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2, int num_cycles_1, int num_cycles_2, int num_cycles_3, int num_cycles_4) { struct stru1 ratios1; struct stru1 ratios2; compute_frequence_ratios(info, freq1, freq2, num_cycles_1, num_cycles_2, 0, 1, &ratios2); compute_frequence_ratios(info, freq1, freq2, num_cycles_3, num_cycles_4, 0, 1, &ratios1); printk(RAM_SPEW, "[%x] <= %x\n", reg, ratios1.freq4_to_max_remainder | (ratios2. freq4_to_max_remainder << 8) | (ratios1.divisor_f4_to_fmax << 16) | (ratios2. divisor_f4_to_fmax << 20)); MCHBAR32(reg) = ratios1.freq4_to_max_remainder | (ratios2.freq4_to_max_remainder << 8) | (ratios1.divisor_f4_to_fmax << 16) | (ratios2.divisor_f4_to_fmax << 20); } static void set_2dx8_reg(struct raminfo *info, u16 reg, u8 mode, u16 freq1, u16 freq2, int num_cycles_2, int num_cycles_1, int round_it, int add_freqs) { struct stru1 ratios; compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1, round_it, add_freqs, &ratios); switch (mode) { case 0: MCHBAR32(reg + 4) = ratios.freq_diff_reduced | (ratios.freqs_reversed << 8); MCHBAR32(reg) = ratios.freq3_to_2_remainder | (ratios.freq4_to_max_remainder << 8) | (ratios.divisor_f3_to_fmax << 16) | (ratios.divisor_f4_to_fmax << 20) | (ratios.freq_min_reduced << 24); break; case 1: MCHBAR32(reg) = ratios.freq3_to_2_remainder | (ratios.divisor_f3_to_fmax << 16); break; case 2: MCHBAR32(reg) = ratios.freq3_to_2_remainder | (ratios.freq4_to_max_remainder << 8) | (ratios.divisor_f3_to_fmax << 16) | (ratios.divisor_f4_to_fmax << 20); break; case 4: MCHBAR32(reg) = (ratios.divisor_f3_to_fmax << 4) | (ratios.divisor_f4_to_fmax << 8) | (ratios.freqs_reversed << 12) | (ratios.freq_min_reduced << 16) | (ratios.freq_diff_reduced << 24); break; } } static void set_2dxx_series(struct raminfo *info, int s3resume) { set_2dx8_reg(info, 0x2d00, 0, 0x78, frequency_11(info) / 2, 1359, 1005, 0, 1); set_2dx8_reg(info, 0x2d08, 0, 0x78, 0x78, 3273, 5033, 1, 1); set_2dx8_reg(info, 0x2d10, 0, 0x78, info->fsb_frequency, 1475, 1131, 0, 1); set_2dx8_reg(info, 0x2d18, 0, 2 * info->fsb_frequency, frequency_11(info), 1231, 1524, 0, 1); set_2dx8_reg(info, 0x2d20, 0, 2 * info->fsb_frequency, frequency_11(info) / 2, 1278, 2008, 0, 1); set_2dx8_reg(info, 0x2d28, 0, info->fsb_frequency, frequency_11(info), 1167, 1539, 0, 1); set_2dx8_reg(info, 0x2d30, 0, info->fsb_frequency, frequency_11(info) / 2, 1403, 1318, 0, 1); set_2dx8_reg(info, 0x2d38, 0, info->fsb_frequency, 0x78, 3460, 5363, 1, 1); set_2dx8_reg(info, 0x2d40, 0, info->fsb_frequency, 0x3c, 2792, 5178, 1, 1); set_2dx8_reg(info, 0x2d48, 0, 2 * info->fsb_frequency, 0x78, 2738, 4610, 1, 1); set_2dx8_reg(info, 0x2d50, 0, info->fsb_frequency, 0x78, 2819, 5932, 1, 1); set_2dx8_reg(info, 0x6d4, 1, info->fsb_frequency, frequency_11(info) / 2, 4000, 0, 0, 0); set_2dx8_reg(info, 0x6d8, 2, info->fsb_frequency, frequency_11(info) / 2, 4000, 4000, 0, 0); if (s3resume) { printk(RAM_SPEW, "[6dc] <= %x\n", info->cached_training->reg_6dc); MCHBAR32(0x6dc) = info->cached_training->reg_6dc; } else set_6d_reg(info, 0x6dc, 2 * info->fsb_frequency, frequency_11(info), 0, info->delay46_ps[0], 0, info->delay54_ps[0]); set_2dx8_reg(info, 0x6e0, 1, 2 * info->fsb_frequency, frequency_11(info), 2500, 0, 0, 0); set_2dx8_reg(info, 0x6e4, 1, 2 * info->fsb_frequency, frequency_11(info) / 2, 3500, 0, 0, 0); if (s3resume) { printk(RAM_SPEW, "[6e8] <= %x\n", info->cached_training->reg_6e8); MCHBAR32(0x6e8) = info->cached_training->reg_6e8; } else set_6d_reg(info, 0x6e8, 2 * info->fsb_frequency, frequency_11(info), 0, info->delay46_ps[1], 0, info->delay54_ps[1]); set_2d5x_reg(info, 0x2d58, 0x78, 0x78, 864, 1195, 762, 786, 0); set_2d5x_reg(info, 0x2d60, 0x195, info->fsb_frequency, 1352, 725, 455, 470, 0); set_2d5x_reg(info, 0x2d68, 0x195, 0x3c, 2707, 5632, 3277, 2207, 0); set_2d5x_reg(info, 0x2d70, 0x195, frequency_11(info) / 2, 1276, 758, 454, 459, 0); set_2d5x_reg(info, 0x2d78, 0x195, 0x78, 1021, 799, 510, 513, 0); set_2d5x_reg(info, 0x2d80, info->fsb_frequency, 0xe1, 0, 2862, 2579, 2588, 0); set_2d5x_reg(info, 0x2d88, info->fsb_frequency, 0xe1, 0, 2690, 2405, 2405, 0); set_2d5x_reg(info, 0x2da0, 0x78, 0xe1, 0, 2560, 2264, 2251, 0); set_2d5x_reg(info, 0x2da8, 0x195, frequency_11(info), 1060, 775, 484, 480, 0); set_2d5x_reg(info, 0x2db0, 0x195, 0x78, 4183, 6023, 2217, 2048, 0); MCHBAR32(0x2dbc) = ((frequency_11(info) / 2) - 1) | 0xe00000; MCHBAR32(0x2db8) = ((info->fsb_frequency - 1) << 16) | 0x77; } static u16 get_max_timing(struct raminfo *info, int channel) { int slot, rank, lane; u16 ret = 0; if ((MCHBAR8(0x2ca8) >> 2) < 1) return 384; if (info->revision < 8) return 256; for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) if (info->populated_ranks[channel][slot][rank]) for (lane = 0; lane < 8 + info->use_ecc; lane++) ret = MAX(ret, read_500(info, channel, get_timing_register_addr (lane, 0, slot, rank), 9)); return ret; } static void set_274265(struct raminfo *info) { int delay_a_ps, delay_b_ps, delay_c_ps, delay_d_ps; int delay_e_ps, delay_e_cycles, delay_f_cycles; int delay_e_over_cycle_ps; int cycletime_ps; int channel; delay_a_ps = 4 * halfcycle_ps(info) + 6 * fsbcycle_ps(info); info->training.reg2ca9_bit0 = 0; for (channel = 0; channel < NUM_CHANNELS; channel++) { cycletime_ps = 900000 / lcm(2 * info->fsb_frequency, frequency_11(info)); delay_d_ps = (halfcycle_ps(info) * get_max_timing(info, channel) >> 6) - info->some_delay_3_ps_rounded + 200; if (! ((info->silicon_revision == 0 || info->silicon_revision == 1) && (info->revision >= 8))) delay_d_ps += halfcycle_ps(info) * 2; delay_d_ps += halfcycle_ps(info) * (!info->revision_flag_1 + info->some_delay_2_halfcycles_ceil + 2 * info->some_delay_1_cycle_floor + info->clock_speed_index + 2 * info->cas_latency - 7 + 11); delay_d_ps += info->revision >= 8 ? 2758 : 4428; MCHBAR32_AND_OR(0x140, 0xfaffffff, 0x2000000); MCHBAR32_AND_OR(0x138, 0xfaffffff, 0x2000000); if ((MCHBAR8(0x144) & 0x1f) > 0x13) delay_d_ps += 650; delay_c_ps = delay_d_ps + 1800; if (delay_c_ps <= delay_a_ps) delay_e_ps = 0; else delay_e_ps = cycletime_ps * div_roundup(delay_c_ps - delay_a_ps, cycletime_ps); delay_e_over_cycle_ps = delay_e_ps % (2 * halfcycle_ps(info)); delay_e_cycles = delay_e_ps / (2 * halfcycle_ps(info)); delay_f_cycles = div_roundup(2500 - delay_e_over_cycle_ps, 2 * halfcycle_ps(info)); if (delay_f_cycles > delay_e_cycles) { info->delay46_ps[channel] = delay_e_ps; delay_e_cycles = 0; } else { info->delay46_ps[channel] = delay_e_over_cycle_ps + 2 * halfcycle_ps(info) * delay_f_cycles; delay_e_cycles -= delay_f_cycles; } if (info->delay46_ps[channel] < 2500) { info->delay46_ps[channel] = 2500; info->training.reg2ca9_bit0 = 1; } delay_b_ps = halfcycle_ps(info) + delay_c_ps; if (delay_b_ps <= delay_a_ps) delay_b_ps = 0; else delay_b_ps -= delay_a_ps; info->delay54_ps[channel] = cycletime_ps * div_roundup(delay_b_ps, cycletime_ps) - 2 * halfcycle_ps(info) * delay_e_cycles; if (info->delay54_ps[channel] < 2500) info->delay54_ps[channel] = 2500; info->training.reg274265[channel][0] = delay_e_cycles; if (delay_d_ps + 7 * halfcycle_ps(info) <= 24 * halfcycle_ps(info)) info->training.reg274265[channel][1] = 0; else info->training.reg274265[channel][1] = div_roundup(delay_d_ps + 7 * halfcycle_ps(info), 4 * halfcycle_ps(info)) - 6; MCHBAR32((channel << 10) + 0x274) = info->training.reg274265[channel][1] | (info->training.reg274265[channel][0] << 16); info->training.reg274265[channel][2] = div_roundup(delay_c_ps + 3 * fsbcycle_ps(info), 4 * halfcycle_ps(info)) + 1; MCHBAR16((channel << 10) + 0x265) = info->training.reg274265[channel][2] << 8; } if (info->training.reg2ca9_bit0) MCHBAR8_OR(0x2ca9, 1); else MCHBAR8_AND(0x2ca9, ~1); } static void restore_274265(struct raminfo *info) { int channel; for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32((channel << 10) + 0x274) = (info->cached_training->reg274265[channel][0] << 16) | info->cached_training->reg274265[channel][1]; MCHBAR16((channel << 10) + 0x265) = info->cached_training->reg274265[channel][2] << 8; } if (info->cached_training->reg2ca9_bit0) MCHBAR8_OR(0x2ca9, 1); else MCHBAR8_AND(0x2ca9, ~1); } static void dmi_setup(void) { gav(DMIBAR8(0x254)); DMIBAR8(0x254) = 0x1; DMIBAR16(0x1b8) = 0x18f2; MCHBAR16_AND_OR(0x48, 0, 0x2); DMIBAR32(0xd68) |= 0x08000000; outl((gav(inl(DEFAULT_GPIOBASE | 0x38)) & ~0x140000) | 0x400000, DEFAULT_GPIOBASE | 0x38); gav(inb(DEFAULT_GPIOBASE | 0xe)); // = 0xfdcaff6e } void chipset_init(const int s3resume) { u8 x2ca8; u16 ggc; u8 gfxsize; x2ca8 = MCHBAR8(0x2ca8); if ((x2ca8 & 1) || (x2ca8 == 8 && !s3resume)) { printk(BIOS_DEBUG, "soft reset detected, rebooting properly\n"); MCHBAR8(0x2ca8) = 0; system_reset(); } dmi_setup(); MCHBAR16(0x1170) = 0xa880; MCHBAR8(0x11c1) = 0x1; MCHBAR16(0x1170) = 0xb880; MCHBAR8_AND_OR(0x1210, 0, 0x84); if (get_option(&gfxsize, "gfx_uma_size") != CB_SUCCESS) { /* 0 for 32MB */ gfxsize = 0; } ggc = 0xb00 | ((gfxsize + 5) << 4); pci_write_config16(NORTHBRIDGE, GGC, ggc | 2); u16 deven; deven = pci_read_config16(NORTHBRIDGE, DEVEN); // = 0x3 if (deven & 8) { MCHBAR8(0x2c30) = 0x20; pci_read_config8(NORTHBRIDGE, 0x8); // = 0x18 MCHBAR16_OR(0x2c30, 0x200); MCHBAR16(0x2c32) = 0x434; MCHBAR32_AND_OR(0x2c44, 0, 0x1053687); pci_read_config8(GMA, MSAC); // = 0x2 pci_write_config8(GMA, MSAC, 0x2); RCBA8(0x2318); RCBA8(0x2318) = 0x47; RCBA8(0x2320); RCBA8(0x2320) = 0xfc; } MCHBAR32_AND_OR(0x30, 0, 0x40); pci_write_config16(NORTHBRIDGE, GGC, ggc); gav(RCBA32(0x3428)); RCBA32(0x3428) = 0x1d; } void raminit(const int s3resume, const u8 *spd_addrmap) { unsigned int channel, slot, lane, rank; int i; struct raminfo info; u8 x2ca8; u16 deven; int cbmem_wasnot_inited; x2ca8 = MCHBAR8(0x2ca8); printk(RAM_DEBUG, "Scratchpad MCHBAR8(0x2ca8): 0x%04x\n", x2ca8); deven = pci_read_config16(NORTHBRIDGE, DEVEN); memset(&info, 0x5a, sizeof(info)); info.last_500_command[0] = 0; info.last_500_command[1] = 0; info.fsb_frequency = 135 * 2; info.board_lane_delay[0] = 0x14; info.board_lane_delay[1] = 0x07; info.board_lane_delay[2] = 0x07; info.board_lane_delay[3] = 0x08; info.board_lane_delay[4] = 0x56; info.board_lane_delay[5] = 0x04; info.board_lane_delay[6] = 0x04; info.board_lane_delay[7] = 0x05; info.board_lane_delay[8] = 0x10; info.training.reg_178 = 0; info.training.reg_10b = 0; /* Wait for some bit, maybe TXT clear. */ while (!(read8((u8 *)0xfed40000) & (1 << 7))) ; /* Wait for ME to be ready */ intel_early_me_init(); info.memory_reserved_for_heci_mb = intel_early_me_uma_size(); /* before SPD */ timestamp_add_now(101); if (!s3resume || 1) { // possible error memset(&info.populated_ranks, 0, sizeof(info.populated_ranks)); info.use_ecc = 1; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) { int v; int try; int addr; const u8 useful_addresses[] = { DEVICE_TYPE, MODULE_TYPE, DENSITY, RANKS_AND_DQ, MEMORY_BUS_WIDTH, TIMEBASE_DIVIDEND, TIMEBASE_DIVISOR, CYCLETIME, CAS_LATENCIES_LSB, CAS_LATENCIES_MSB, CAS_LATENCY_TIME, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, THERMAL_AND_REFRESH, 0x20, REFERENCE_RAW_CARD_USED, RANK1_ADDRESS_MAPPING, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95 }; if (!spd_addrmap[2 * channel + slot]) continue; for (try = 0; try < 5; try++) { v = smbus_read_byte(spd_addrmap[2 * channel + slot], DEVICE_TYPE); if (v >= 0) break; } if (v < 0) continue; for (addr = 0; addr < ARRAY_SIZE(useful_addresses); addr++) gav(info. spd[channel][0][useful_addresses [addr]] = smbus_read_byte(spd_addrmap[2 * channel + slot], useful_addresses [addr])); if (info.spd[channel][0][DEVICE_TYPE] != 11) die("Only DDR3 is supported"); v = info.spd[channel][0][RANKS_AND_DQ]; info.populated_ranks[channel][0][0] = 1; info.populated_ranks[channel][0][1] = ((v >> 3) & 7); if (((v >> 3) & 7) > 1) die("At most 2 ranks are supported"); if ((v & 7) == 0 || (v & 7) > 2) die("Only x8 and x16 modules are supported"); if ((info. spd[channel][slot][MODULE_TYPE] & 0xF) != 2 && (info. spd[channel][slot][MODULE_TYPE] & 0xF) != 3) die("Registered memory is not supported"); info.is_x16_module[channel][0] = (v & 7) - 1; info.density[channel][slot] = info.spd[channel][slot][DENSITY] & 0xF; if (! (info. spd[channel][slot][MEMORY_BUS_WIDTH] & 0x18)) info.use_ecc = 0; } gav(0x55); for (channel = 0; channel < NUM_CHANNELS; channel++) { int v = 0; for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) v |= info. populated_ranks[channel][slot][rank] << (2 * slot + rank); info.populated_ranks_mask[channel] = v; } gav(0x55); gav(pci_read_config32(NORTHBRIDGE, CAPID0 + 4)); } /* after SPD */ timestamp_add_now(102); MCHBAR8_AND(0x2ca8, 0xfc); collect_system_info(&info); calculate_timings(&info); if (!s3resume) { u8 reg8 = pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2); if (x2ca8 == 0 && (reg8 & 0x80)) { /* Don't enable S4-assertion stretch. Makes trouble on roda/rk9. reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08); */ /* Clear bit7. */ pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2, (reg8 & ~(1 << 7))); printk(BIOS_INFO, "Interrupted RAM init, reset required.\n"); system_reset(); } } if (!s3resume && x2ca8 == 0) pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2, pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) | 0x80); compute_derived_timings(&info); if (x2ca8 == 0) { gav(MCHBAR8(0x164)); MCHBAR8(0x164) = 0x26; MCHBAR16(0x2c20) = 0x10; } MCHBAR32_OR(0x18b4, 0x210000); MCHBAR32_OR(0x1890, 0x2000000); MCHBAR32_OR(0x18b4, 0x8000); gav(pci_read_config32(QPI_PHY_0, QPI_PLL_STATUS)); // !!!! pci_write_config8(QPI_PHY_0, QPI_PLL_RATIO, 0x12); gav(MCHBAR16(0x2c10)); MCHBAR16(0x2c10) = 0x412; gav(MCHBAR16(0x2c10)); MCHBAR16_OR(0x2c12, 0x100); gav(MCHBAR8(0x2ca8)); // !!!! MCHBAR32_AND_OR(0x1804, 0xfffffffc, 0x8400080); pci_read_config32(QPI_PHY_0, QPI_PHY_CONTROL); // !!!! pci_write_config32(QPI_PHY_0, QPI_PHY_CONTROL, 0x40a0a0); gav(MCHBAR32(0x1c04)); // !!!! gav(MCHBAR32(0x1804)); // !!!! if (x2ca8 == 0) { MCHBAR8_OR(0x2ca8, 1); } MCHBAR32(0x18d8) = 0x120000; MCHBAR32(0x18dc) = 0x30a484a; pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x0); pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x9444a); MCHBAR32(0x18d8) = 0x40000; MCHBAR32(0x18dc) = 0xb000000; pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x60000); pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x0); MCHBAR32(0x18d8) = 0x180000; MCHBAR32(0x18dc) = 0xc0000142; pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x20000); pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x142); MCHBAR32(0x18d8) = 0x1e0000; gav(MCHBAR32(0x18dc)); // !!!! MCHBAR32(0x18dc) = 0x3; gav(MCHBAR32(0x18dc)); // !!!! if (x2ca8 == 0) { MCHBAR8_OR(0x2ca8, 1); // guess } MCHBAR32(0x188c) = 0x20bc09; pci_write_config32(QPI_PHY_0, QPI_PHY_PWR_MGMT, 0x40b0c09); MCHBAR32(0x1a10) = 0x4200010e; MCHBAR32_OR(0x18b8, 0x200); gav(MCHBAR32(0x1918)); // !!!! MCHBAR32(0x1918) = 0x332; gav(MCHBAR32(0x18b8)); // !!!! MCHBAR32(0x18b8) = 0xe00; gav(MCHBAR32(0x182c)); // !!!! MCHBAR32(0x182c) = 0x10202; gav(pci_read_config32(QPI_PHY_0, QPI_PHY_PRIM_TIMEOUT)); // !!!! pci_write_config32(QPI_PHY_0, QPI_PHY_PRIM_TIMEOUT, 0x10202); MCHBAR32_AND(0x1a1c, 0x8fffffff); MCHBAR32_OR(0x1a70, 0x100000); MCHBAR32_AND(0x18b4, 0xffff7fff); gav(MCHBAR32(0x1a68)); // !!!! MCHBAR32(0x1a68) = 0x343800; gav(MCHBAR32(0x1e68)); // !!!! gav(MCHBAR32(0x1a68)); // !!!! if (x2ca8 == 0) { MCHBAR8_OR(0x2ca8, 1); // guess } pci_read_config32(QPI_LINK_0, QPI_QPILCL); // !!!! pci_write_config32(QPI_LINK_0, QPI_QPILCL, 0x140000); pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS); // !!!! pci_write_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS, 0x64555); pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS); // !!!! pci_read_config32(QPI_NON_CORE, MIRROR_PORT_CTL); // !!!! pci_write_config32(QPI_NON_CORE, MIRROR_PORT_CTL, 0x180); gav(MCHBAR32(0x1af0)); // !!!! gav(MCHBAR32(0x1af0)); // !!!! MCHBAR32(0x1af0) = 0x1f020003; gav(MCHBAR32(0x1af0)); // !!!! if (x2ca8 == 0) { MCHBAR8_OR(0x2ca8, 1); // guess } gav(MCHBAR32(0x1890)); // !!!! MCHBAR32(0x1890) = 0x80102; gav(MCHBAR32(0x18b4)); // !!!! MCHBAR32(0x18b4) = 0x216000; MCHBAR32(0x18a4) = 0x22222222; MCHBAR32(0x18a8) = 0x22222222; MCHBAR32(0x18ac) = 0x22222; udelay(1000); info.cached_training = get_cached_training(); if (x2ca8 == 0) { int j; if (s3resume && info.cached_training) { restore_274265(&info); printk(RAM_SPEW, "reg2ca9_bit0 = %x\n", info.cached_training->reg2ca9_bit0); for (i = 0; i < 2; i++) for (j = 0; j < 3; j++) printk(RAM_SPEW, "reg274265[%d][%d] = %x\n", i, j, info.cached_training->reg274265[i][j]); } else { set_274265(&info); printk(RAM_SPEW, "reg2ca9_bit0 = %x\n", info.training.reg2ca9_bit0); for (i = 0; i < 2; i++) for (j = 0; j < 3; j++) printk(RAM_SPEW, "reg274265[%d][%d] = %x\n", i, j, info.training.reg274265[i][j]); } set_2dxx_series(&info, s3resume); if (!(deven & 8)) { MCHBAR32_AND_OR(0x2cb0, 0, 0x40); } udelay(1000); if (deven & 8) { MCHBAR32_OR(0xff8, 0x1800); MCHBAR32_AND(0x2cb0, 0x00); pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4c); pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4c); pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4e); MCHBAR8(0x1150); MCHBAR8(0x1151); MCHBAR8(0x1022); MCHBAR8(0x16d0); MCHBAR32(0x1300) = 0x60606060; MCHBAR32(0x1304) = 0x60606060; MCHBAR32(0x1308) = 0x78797a7b; MCHBAR32(0x130c) = 0x7c7d7e7f; MCHBAR32(0x1310) = 0x60606060; MCHBAR32(0x1314) = 0x60606060; MCHBAR32(0x1318) = 0x60606060; MCHBAR32(0x131c) = 0x60606060; MCHBAR32(0x1320) = 0x50515253; MCHBAR32(0x1324) = 0x54555657; MCHBAR32(0x1328) = 0x58595a5b; MCHBAR32(0x132c) = 0x5c5d5e5f; MCHBAR32(0x1330) = 0x40414243; MCHBAR32(0x1334) = 0x44454647; MCHBAR32(0x1338) = 0x48494a4b; MCHBAR32(0x133c) = 0x4c4d4e4f; MCHBAR32(0x1340) = 0x30313233; MCHBAR32(0x1344) = 0x34353637; MCHBAR32(0x1348) = 0x38393a3b; MCHBAR32(0x134c) = 0x3c3d3e3f; MCHBAR32(0x1350) = 0x20212223; MCHBAR32(0x1354) = 0x24252627; MCHBAR32(0x1358) = 0x28292a2b; MCHBAR32(0x135c) = 0x2c2d2e2f; MCHBAR32(0x1360) = 0x10111213; MCHBAR32(0x1364) = 0x14151617; MCHBAR32(0x1368) = 0x18191a1b; MCHBAR32(0x136c) = 0x1c1d1e1f; MCHBAR32(0x1370) = 0x10203; MCHBAR32(0x1374) = 0x4050607; MCHBAR32(0x1378) = 0x8090a0b; MCHBAR32(0x137c) = 0xc0d0e0f; MCHBAR8(0x11cc) = 0x4e; MCHBAR32(0x1110) = 0x73970404; MCHBAR32(0x1114) = 0x72960404; MCHBAR32(0x1118) = 0x6f950404; MCHBAR32(0x111c) = 0x6d940404; MCHBAR32(0x1120) = 0x6a930404; MCHBAR32(0x1124) = 0x68a41404; MCHBAR32(0x1128) = 0x66a21404; MCHBAR32(0x112c) = 0x63a01404; MCHBAR32(0x1130) = 0x609e1404; MCHBAR32(0x1134) = 0x5f9c1404; MCHBAR32(0x1138) = 0x5c961404; MCHBAR32(0x113c) = 0x58a02404; MCHBAR32(0x1140) = 0x54942404; MCHBAR32(0x1190) = 0x900080a; MCHBAR16(0x11c0) = 0xc40b; MCHBAR16(0x11c2) = 0x303; MCHBAR16(0x11c4) = 0x301; MCHBAR32_AND_OR(0x1190, 0, 0x8900080a); MCHBAR32(0x11b8) = 0x70c3000; MCHBAR8(0x11ec) = 0xa; MCHBAR16(0x1100) = 0x800; MCHBAR32_AND_OR(0x11bc, 0, 0x1e84800); MCHBAR16(0x11ca) = 0xfa; MCHBAR32(0x11e4) = 0x4e20; MCHBAR8(0x11bc) = 0xf; MCHBAR16(0x11da) = 0x19; MCHBAR16(0x11ba) = 0x470c; MCHBAR32(0x1680) = 0xe6ffe4ff; MCHBAR32(0x1684) = 0xdeffdaff; MCHBAR32(0x1688) = 0xd4ffd0ff; MCHBAR32(0x168c) = 0xccffc6ff; MCHBAR32(0x1690) = 0xc0ffbeff; MCHBAR32(0x1694) = 0xb8ffb0ff; MCHBAR32(0x1698) = 0xa8ff0000; MCHBAR32(0x169c) = 0xc00; MCHBAR32(0x1290) = 0x5000000; } MCHBAR32(0x124c) = 0x15040d00; MCHBAR32(0x1250) = 0x7f0000; MCHBAR32(0x1254) = 0x1e220004; MCHBAR32(0x1258) = 0x4000004; MCHBAR32(0x1278) = 0x0; MCHBAR32(0x125c) = 0x0; MCHBAR32(0x1260) = 0x0; MCHBAR32(0x1264) = 0x0; MCHBAR32(0x1268) = 0x0; MCHBAR32(0x126c) = 0x0; MCHBAR32(0x1270) = 0x0; MCHBAR32(0x1274) = 0x0; } if ((deven & 8) && x2ca8 == 0) { MCHBAR16(0x1214) = 0x320; MCHBAR32(0x1600) = 0x40000000; MCHBAR32_AND_OR(0x11f4, 0, 0x10000000); MCHBAR16_AND_OR(0x1230, 0, 0x8000); MCHBAR32(0x1400) = 0x13040020; MCHBAR32(0x1404) = 0xe090120; MCHBAR32(0x1408) = 0x5120220; MCHBAR32(0x140c) = 0x5120330; MCHBAR32(0x1410) = 0xe090220; MCHBAR32(0x1414) = 0x1010001; MCHBAR32(0x1418) = 0x1110000; MCHBAR32(0x141c) = 0x9020020; MCHBAR32(0x1420) = 0xd090220; MCHBAR32(0x1424) = 0x2090220; MCHBAR32(0x1428) = 0x2090330; MCHBAR32(0x142c) = 0xd090220; MCHBAR32(0x1430) = 0x1010001; MCHBAR32(0x1434) = 0x1110000; MCHBAR32(0x1438) = 0x11040020; MCHBAR32(0x143c) = 0x4030220; MCHBAR32(0x1440) = 0x1060220; MCHBAR32(0x1444) = 0x1060330; MCHBAR32(0x1448) = 0x4030220; MCHBAR32(0x144c) = 0x1010001; MCHBAR32(0x1450) = 0x1110000; MCHBAR32(0x1454) = 0x4010020; MCHBAR32(0x1458) = 0xb090220; MCHBAR32(0x145c) = 0x1090220; MCHBAR32(0x1460) = 0x1090330; MCHBAR32(0x1464) = 0xb090220; MCHBAR32(0x1468) = 0x1010001; MCHBAR32(0x146c) = 0x1110000; MCHBAR32(0x1470) = 0xf040020; MCHBAR32(0x1474) = 0xa090220; MCHBAR32(0x1478) = 0x1120220; MCHBAR32(0x147c) = 0x1120330; MCHBAR32(0x1480) = 0xa090220; MCHBAR32(0x1484) = 0x1010001; MCHBAR32(0x1488) = 0x1110000; MCHBAR32(0x148c) = 0x7020020; MCHBAR32(0x1490) = 0x1010220; MCHBAR32(0x1494) = 0x10210; MCHBAR32(0x1498) = 0x10320; MCHBAR32(0x149c) = 0x1010220; MCHBAR32(0x14a0) = 0x1010001; MCHBAR32(0x14a4) = 0x1110000; MCHBAR32(0x14a8) = 0xd040020; MCHBAR32(0x14ac) = 0x8090220; MCHBAR32(0x14b0) = 0x1111310; MCHBAR32(0x14b4) = 0x1111420; MCHBAR32(0x14b8) = 0x8090220; MCHBAR32(0x14bc) = 0x1010001; MCHBAR32(0x14c0) = 0x1110000; MCHBAR32(0x14c4) = 0x3010020; MCHBAR32(0x14c8) = 0x7090220; MCHBAR32(0x14cc) = 0x1081310; MCHBAR32(0x14d0) = 0x1081420; MCHBAR32(0x14d4) = 0x7090220; MCHBAR32(0x14d8) = 0x1010001; MCHBAR32(0x14dc) = 0x1110000; MCHBAR32(0x14e0) = 0xb040020; MCHBAR32(0x14e4) = 0x2030220; MCHBAR32(0x14e8) = 0x1051310; MCHBAR32(0x14ec) = 0x1051420; MCHBAR32(0x14f0) = 0x2030220; MCHBAR32(0x14f4) = 0x1010001; MCHBAR32(0x14f8) = 0x1110000; MCHBAR32(0x14fc) = 0x5020020; MCHBAR32(0x1500) = 0x5090220; MCHBAR32(0x1504) = 0x2071310; MCHBAR32(0x1508) = 0x2071420; MCHBAR32(0x150c) = 0x5090220; MCHBAR32(0x1510) = 0x1010001; MCHBAR32(0x1514) = 0x1110000; MCHBAR32(0x1518) = 0x7040120; MCHBAR32(0x151c) = 0x2090220; MCHBAR32(0x1520) = 0x70b1210; MCHBAR32(0x1524) = 0x70b1310; MCHBAR32(0x1528) = 0x2090220; MCHBAR32(0x152c) = 0x1010001; MCHBAR32(0x1530) = 0x1110000; MCHBAR32(0x1534) = 0x1010110; MCHBAR32(0x1538) = 0x1081310; MCHBAR32(0x153c) = 0x5041200; MCHBAR32(0x1540) = 0x5041310; MCHBAR32(0x1544) = 0x1081310; MCHBAR32(0x1548) = 0x1010001; MCHBAR32(0x154c) = 0x1110000; MCHBAR32(0x1550) = 0x1040120; MCHBAR32(0x1554) = 0x4051210; MCHBAR32(0x1558) = 0xd051200; MCHBAR32(0x155c) = 0xd051200; MCHBAR32(0x1560) = 0x4051210; MCHBAR32(0x1564) = 0x1010001; MCHBAR32(0x1568) = 0x1110000; MCHBAR16(0x1222) = 0x220a; MCHBAR16(0x123c) = 0x1fc0; MCHBAR16(0x1220) = 0x1388; } MCHBAR32_AND_OR(0x2c80, 0, 0x1053688); // !!!! MCHBAR32(0x1c04); // !!!! MCHBAR32(0x1804) = 0x406080; MCHBAR8(0x2ca8); if (x2ca8 == 0) { MCHBAR8_AND(0x2ca8, ~3); MCHBAR8(0x2ca8) = MCHBAR8(0x2ca8) + 4; // "+" or "|"? /* This issues a CPU reset without resetting the platform */ printk(BIOS_DEBUG, "Issuing a CPU reset\n"); /* Write back the S3 state to PM1_CNT to let the reset CPU know it also needs to take the s3 path. */ if (s3resume) write_pmbase32(PM1_CNT, read_pmbase32(PM1_CNT) | (SLP_TYP_S3 << 10)); MCHBAR32_OR(0x1af0, 0x10); halt(); } MCHBAR8(0x2ca8) = MCHBAR8(0x2ca8); MCHBAR32_AND_OR(0x2c80, 0, 0x53688); // !!!! pci_write_config32(QPI_NON_CORE, MAX_RTIDS, 0x20220); MCHBAR16(0x2c20); // !!!! MCHBAR16(0x2c10); // !!!! MCHBAR16(0x2c00); // !!!! MCHBAR16(0x2c00) = 0x8c0; udelay(1000); write_1d0(0, 0x33d, 0, 0); write_500(&info, 0, 0, 0xb61, 0, 0); write_500(&info, 1, 0, 0xb61, 0, 0); MCHBAR32(0x1a30) = 0x0; MCHBAR32(0x1a34) = 0x0; MCHBAR16(0x614) = 0xb5b | (info.populated_ranks[1][0][0] * 0x404) | (info.populated_ranks[0][0][0] * 0xa0); MCHBAR16(0x616) = 0x26a; MCHBAR32(0x134) = 0x856000; MCHBAR32(0x160) = 0x5ffffff; MCHBAR32_AND_OR(0x114, 0, 0xc2024440); // !!!! MCHBAR32_AND_OR(0x118, 0, 0x4); // !!!! for (channel = 0; channel < NUM_CHANNELS; channel++) MCHBAR32(0x260 + (channel << 10)) = 0x30809ff | ((info.populated_ranks_mask[channel] & 3) << 20); for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR16(0x31c + (channel << 10)) = 0x101; MCHBAR16(0x360 + (channel << 10)) = 0x909; MCHBAR16(0x3a4 + (channel << 10)) = 0x101; MCHBAR16(0x3e8 + (channel << 10)) = 0x101; MCHBAR32(0x320 + (channel << 10)) = 0x29002900; MCHBAR32(0x324 + (channel << 10)) = 0x0; MCHBAR32(0x368 + (channel << 10)) = 0x32003200; MCHBAR16(0x352 + (channel << 10)) = 0x505; MCHBAR16(0x354 + (channel << 10)) = 0x3c3c; MCHBAR16(0x356 + (channel << 10)) = 0x1040; MCHBAR16(0x39a + (channel << 10)) = 0x73e4; MCHBAR16(0x3de + (channel << 10)) = 0x77ed; MCHBAR16(0x422 + (channel << 10)) = 0x1040; } write_1d0(0x4, 0x151, 4, 1); write_1d0(0, 0x142, 3, 1); rdmsr(0x1ac); // !!!! write_500(&info, 1, 1, 0x6b3, 4, 1); write_500(&info, 1, 1, 0x6cf, 4, 1); rmw_1d0(0x21c, 0x38, 0, 6); write_1d0(((!info.populated_ranks[1][0][0]) << 1) | ((!info. populated_ranks[0] [0][0]) << 0), 0x1d1, 3, 1); for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR16(0x38e + (channel << 10)) = 0x5f5f; MCHBAR16(0x3d2 + (channel << 10)) = 0x5f5f; } set_334(0); program_base_timings(&info); MCHBAR8_OR(0x5ff, 0x80); write_1d0(0x2, 0x1d5, 2, 1); write_1d0(0x20, 0x166, 7, 1); write_1d0(0x0, 0xeb, 3, 1); write_1d0(0x0, 0xf3, 6, 1); for (channel = 0; channel < NUM_CHANNELS; channel++) for (lane = 0; lane < 9; lane++) { u16 addr = 0x125 + get_lane_offset(0, 0, lane); u8 a; a = read_500(&info, channel, addr, 6); // = 0x20040080 //!!!! write_500(&info, channel, a, addr, 6, 1); } udelay(1000); if (s3resume) { if (info.cached_training == NULL) { u32 reg32; printk(BIOS_ERR, "Couldn't find training data. Rebooting\n"); reg32 = inl(DEFAULT_PMBASE + 0x04); outl(reg32 & ~(7 << 10), DEFAULT_PMBASE + 0x04); full_reset(); } int tm; info.training = *info.cached_training; for (tm = 0; tm < 4; tm++) for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) for (lane = 0; lane < 9; lane++) write_500(&info, channel, info.training. lane_timings [tm][channel] [slot][rank] [lane], get_timing_register_addr (lane, tm, slot, rank), 9, 0); write_1d0(info.cached_training->reg_178, 0x178, 7, 1); write_1d0(info.cached_training->reg_10b, 0x10b, 6, 1); } MCHBAR32_AND_OR(0x1f4, 0, 0x20000); // !!!! MCHBAR32(0x1f0) = 0x1d000200; MCHBAR8_AND_OR(0x1f0, 0, 0x1); // !!!! MCHBAR8(0x1f0); // !!!! program_board_delay(&info); MCHBAR8(0x5ff) = 0x0; MCHBAR8(0x5ff) = 0x80; MCHBAR8(0x5f4) = 0x1; MCHBAR32_AND(0x130, 0xfffffffd); // | 2 when ? while (MCHBAR32(0x130) & 1) ; gav(read_1d0(0x14b, 7)); // = 0x81023100 write_1d0(0x30, 0x14b, 7, 1); read_1d0(0xd6, 6); // = 0xfa008080 // !!!! write_1d0(7, 0xd6, 6, 1); read_1d0(0x328, 6); // = 0xfa018080 // !!!! write_1d0(7, 0x328, 6, 1); for (channel = 0; channel < NUM_CHANNELS; channel++) set_4cf(&info, channel, info.populated_ranks[channel][0][0] ? 8 : 0); read_1d0(0x116, 4); // = 0x4040432 // !!!! write_1d0(2, 0x116, 4, 1); read_1d0(0xae, 6); // = 0xe8088080 // !!!! write_1d0(0, 0xae, 6, 1); read_1d0(0x300, 4); // = 0x48088080 // !!!! write_1d0(0, 0x300, 6, 1); MCHBAR16_AND_OR(0x356, 0, 0x1040); // !!!! MCHBAR16_AND_OR(0x756, 0, 0x1040); // !!!! MCHBAR32_AND(0x140, ~0x07000000); MCHBAR32_AND(0x138, ~0x07000000); MCHBAR32(0x130) = 0x31111301; /* Wait until REG130b0 is 1. */ while (MCHBAR32(0x130) & 1) ; { u32 t; u8 val_a1; val_a1 = read_1d0(0xa1, 6); // = 0x1cf4040 // !!!! t = read_1d0(0x2f3, 6); // = 0x10a4040 // !!!! rmw_1d0(0x320, 0x07, (t & 4) | ((t & 8) >> 2) | ((t & 0x10) >> 4), 6); rmw_1d0(0x14b, 0x78, ((((val_a1 >> 2) & 4) | (val_a1 & 8)) >> 2) | (val_a1 & 4), 7); rmw_1d0(0xce, 0x38, ((((val_a1 >> 2) & 4) | (val_a1 & 8)) >> 2) | (val_a1 & 4), 6); } for (channel = 0; channel < NUM_CHANNELS; channel++) set_4cf(&info, channel, info.populated_ranks[channel][0][0] ? 9 : 1); rmw_1d0(0x116, 0xe, 1, 4); // = 0x4040432 // !!!! MCHBAR32(0x144); // !!!! write_1d0(2, 0xae, 6, 1); write_1d0(2, 0x300, 6, 1); write_1d0(2, 0x121, 3, 1); read_1d0(0xd6, 6); // = 0xfa00c0c7 // !!!! write_1d0(4, 0xd6, 6, 1); read_1d0(0x328, 6); // = 0xfa00c0c7 // !!!! write_1d0(4, 0x328, 6, 1); for (channel = 0; channel < NUM_CHANNELS; channel++) set_4cf(&info, channel, info.populated_ranks[channel][0][0] ? 9 : 0); MCHBAR32(0x130) = 0x11111301 | (info.populated_ranks[1][0][0] << 30) | (info.populated_ranks[0][0][0] << 29); while (MCHBAR8(0x130) & 1) ; read_1d0(0xa1, 6); // = 0x1cf4054 // !!!! read_1d0(0x2f3, 6); // = 0x10a4054 // !!!! read_1d0(0x21c, 6); // = 0xafa00c0 // !!!! write_1d0(0, 0x21c, 6, 1); read_1d0(0x14b, 7); // = 0x810231b0 // !!!! write_1d0(0x35, 0x14b, 7, 1); for (channel = 0; channel < NUM_CHANNELS; channel++) set_4cf(&info, channel, info.populated_ranks[channel][0][0] ? 0xb : 0x2); set_334(1); MCHBAR8(0x1e8) = 0x4; for (channel = 0; channel < NUM_CHANNELS; channel++) { write_500(&info, channel, 0x3 & ~(info.populated_ranks_mask[channel]), 0x6b7, 2, 1); write_500(&info, channel, 0x3, 0x69b, 2, 1); } MCHBAR32_AND_OR(0x2d0, 0xff2c01ff, 0x200000); MCHBAR16(0x6c0) = 0x14a0; MCHBAR32_AND_OR(0x6d0, 0xff0080ff, 0x8000); MCHBAR16(0x232) = 0x8; /* 0x40004 or 0 depending on ? */ MCHBAR32_AND_OR(0x234, 0xfffbfffb, 0x40004); MCHBAR32_AND_OR(0x34, 0xfffffffd, 5); MCHBAR32(0x128) = 0x2150d05; MCHBAR8(0x12c) = 0x1f; MCHBAR8(0x12d) = 0x56; MCHBAR8(0x12e) = 0x31; MCHBAR8(0x12f) = 0x0; MCHBAR8(0x271) = 0x2; MCHBAR8(0x671) = 0x2; MCHBAR8(0x1e8) = 0x4; for (channel = 0; channel < NUM_CHANNELS; channel++) MCHBAR32(0x294 + (channel << 10)) = (info.populated_ranks_mask[channel] & 3) << 16; MCHBAR32_AND_OR(0x134, 0xfc01ffff, 0x10000); MCHBAR32_AND_OR(0x134, 0xfc85ffff, 0x850000); for (channel = 0; channel < NUM_CHANNELS; channel++) MCHBAR32_AND_OR(0x260 + (channel << 10), ~0xf00000, 0x8000000 | ((info.populated_ranks_mask[channel] & 3) << 20)); if (!s3resume) jedec_init(&info); int totalrank = 0; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) if (info.populated_ranks[channel][slot][rank]) { jedec_read(&info, channel, slot, rank, totalrank, 0xa, 0x400); totalrank++; } MCHBAR8(0x12c) = 0x9f; MCHBAR8_AND_OR(0x271, 0, 0xe); // 2 // !!!! MCHBAR8_AND_OR(0x671, 0, 0xe); // !!!! if (!s3resume) { for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32(0x294 + (channel << 10)) = (info.populated_ranks_mask[channel] & 3) << 16; MCHBAR16(0x298 + (channel << 10)) = info.populated_ranks[channel][0][0] | (info.populated_ranks[channel][0][1] << 5); MCHBAR32(0x29c + (channel << 10)) = 0x77a; } MCHBAR32_AND_OR(0x2c0, 0, 0x6009cc00); // !!!! { u8 a, b; a = MCHBAR8(0x243); b = MCHBAR8(0x643); MCHBAR8(0x243) = a | 2; MCHBAR8(0x643) = b | 2; } write_1d0(7, 0x19b, 3, 1); write_1d0(7, 0x1c0, 3, 1); write_1d0(4, 0x1c6, 4, 1); write_1d0(4, 0x1cc, 4, 1); read_1d0(0x151, 4); // = 0x408c6d74 // !!!! write_1d0(4, 0x151, 4, 1); MCHBAR32(0x584) = 0xfffff; MCHBAR32(0x984) = 0xfffff; for (channel = 0; channel < NUM_CHANNELS; channel++) for (slot = 0; slot < NUM_SLOTS; slot++) for (rank = 0; rank < NUM_RANKS; rank++) if (info. populated_ranks[channel][slot] [rank]) config_rank(&info, s3resume, channel, slot, rank); MCHBAR8(0x243) = 0x1; MCHBAR8(0x643) = 0x1; } /* was == 1 but is common */ pci_write_config16(NORTHBRIDGE, 0xc8, 3); write_26c(0, 0x820); write_26c(1, 0x820); MCHBAR32_OR(0x130, 2); /* end */ if (s3resume) { for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32(0x294 + (channel << 10)) = (info.populated_ranks_mask[channel] & 3) << 16; MCHBAR16(0x298 + (channel << 10)) = info.populated_ranks[channel][0][0] | (info.populated_ranks[channel][0][1] << 5); MCHBAR32(0x29c + (channel << 10)) = 0x77a; } MCHBAR32_AND_OR(0x2c0, 0, 0x6009cc00); // !!!! } MCHBAR32_AND(0xfa4, ~0x01000002); MCHBAR32(0xfb0) = 0x2000e019; /* Before training. */ timestamp_add_now(103); if (!s3resume) ram_training(&info); /* After training. */ timestamp_add_now(104); dump_timings(&info); program_modules_memory_map(&info, 0); program_total_memory_map(&info); if (info.non_interleaved_part_mb != 0 && info.interleaved_part_mb != 0) MCHBAR8(0x111) = 0x20 | (0 << 2) | (1 << 6) | (0 << 7); else if (have_match_ranks(&info, 0, 4) && have_match_ranks(&info, 1, 4)) MCHBAR8(0x111) = 0x20 | (3 << 2) | (0 << 6) | (1 << 7); else if (have_match_ranks(&info, 0, 2) && have_match_ranks(&info, 1, 2)) MCHBAR8(0x111) = 0x20 | (3 << 2) | (0 << 6) | (0 << 7); else MCHBAR8(0x111) = 0x20 | (3 << 2) | (1 << 6) | (0 << 7); MCHBAR32_AND(0xfac, ~0x80000000); MCHBAR32(0xfb4) = 0x4800; MCHBAR32(0xfb8) = (info.revision < 8) ? 0x20 : 0x0; MCHBAR32(0xe94) = 0x7ffff; MCHBAR32(0xfc0) = 0x80002040; MCHBAR32(0xfc4) = 0x701246; MCHBAR8_AND(0xfc8, ~0x70); MCHBAR32_OR(0xe5c, 0x1000000); MCHBAR32_AND_OR(0x1a70, ~0x00100000, 0x00200000); MCHBAR32(0x50) = 0x700b0; MCHBAR32(0x3c) = 0x10; MCHBAR8(0x1aa8) = (MCHBAR8(0x1aa8) & ~0x35) | 0xa; MCHBAR8_OR(0xff4, 0x2); MCHBAR32_AND_OR(0xff8, ~0xe008, 0x1020); MCHBAR32(0xd00) = IOMMU_BASE2 | 1; MCHBAR32(0xd40) = IOMMU_BASE1 | 1; MCHBAR32(0xdc0) = IOMMU_BASE4 | 1; write32p(IOMMU_BASE1 | 0xffc, 0x80000000); write32p(IOMMU_BASE2 | 0xffc, 0xc0000000); write32p(IOMMU_BASE4 | 0xffc, 0x80000000); { u32 eax; eax = info.fsb_frequency / 9; MCHBAR32_AND_OR(0xfcc, 0xfffc0000, (eax * 0x280) | (eax * 0x5000) | eax | 0x40000); MCHBAR32(0x20) = 0x33001; } for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32_AND(0x220 + (channel << 10), ~0x7770); if (info.max_slots_used_in_channel == 1) MCHBAR16_OR(0x237 + (channel << 10), 0x0201); else MCHBAR16_AND(0x237 + (channel << 10), ~0x0201); MCHBAR8_OR(0x241 + (channel << 10), 1); if (info.clock_speed_index <= 1 && (info.silicon_revision == 2 || info.silicon_revision == 3)) MCHBAR32_OR(0x248 + (channel << 10), 0x00102000); else MCHBAR32_AND(0x248 + (channel << 10), ~0x00102000); } MCHBAR32_OR(0x115, 0x1000000); { u8 al; al = 0xd; if (!(info.silicon_revision == 0 || info.silicon_revision == 1)) al += 2; al |= ((1 << (info.max_slots_used_in_channel - 1)) - 1) << 4; MCHBAR32(0x210) = (al << 16) | 0x20; } for (channel = 0; channel < NUM_CHANNELS; channel++) { MCHBAR32(0x288 + (channel << 10)) = 0x70605040; MCHBAR32(0x28c + (channel << 10)) = 0xfffec080; MCHBAR32(0x290 + (channel << 10)) = 0x282091c | ((info.max_slots_used_in_channel - 1) << 0x16); } u32 reg1c; pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK reg1c = EPBAR32(EPVC1RCAP); // = 0x8001 // OK pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK EPBAR32(EPVC1RCAP) = reg1c; // OK MCHBAR8(0xe08); // = 0x0 pci_read_config32(NORTHBRIDGE, 0xe4); // = 0x316126 MCHBAR8_OR(0x1210, 2); MCHBAR32(0x1200) = 0x8800440; MCHBAR32(0x1204) = 0x53ff0453; MCHBAR32(0x1208) = 0x19002043; MCHBAR16(0x1214) = 0x320; if (info.revision == 0x10 || info.revision == 0x11) { MCHBAR16(0x1214) = 0x220; MCHBAR8_OR(0x1210, 0x40); } MCHBAR8_OR(0x1214, 0x4); MCHBAR8(0x120c) = 0x1; MCHBAR8(0x1218) = 0x3; MCHBAR8(0x121a) = 0x3; MCHBAR8(0x121c) = 0x3; MCHBAR16(0xc14) = 0x0; MCHBAR16(0xc20) = 0x0; MCHBAR32(0x1c) = 0x0; /* revision dependent here. */ MCHBAR16_OR(0x1230, 0x1f07); if (info.uma_enabled) MCHBAR32_OR(0x11f4, 0x10000000); MCHBAR16_OR(0x1230, 0x8000); MCHBAR8_OR(0x1214, 1); u8 bl, ebpb; u16 reg_1020; reg_1020 = MCHBAR32(0x1020); // = 0x6c733c // OK MCHBAR8(0x1070) = 0x1; MCHBAR32(0x1000) = 0x100; MCHBAR8(0x1007) = 0x0; if (reg_1020 != 0) { MCHBAR16(0x1018) = 0x0; bl = reg_1020 >> 8; ebpb = reg_1020 & 0xff; } else { ebpb = 0; bl = 8; } rdmsr(0x1a2); MCHBAR32(0x1014) = 0xffffffff; MCHBAR32(0x1010) = ((((ebpb + 0x7d) << 7) / bl) & 0xff) * (!!reg_1020); MCHBAR8(0x101c) = 0xb8; MCHBAR8(0x123e) = (MCHBAR8(0x123e) & 0xf) | 0x60; if (reg_1020 != 0) { MCHBAR32_AND_OR(0x123c, ~0x00900000, 0x600000); MCHBAR8(0x101c) = 0xb8; } setup_heci_uma(&info); if (info.uma_enabled) { u16 ax; MCHBAR32_OR(0x11b0, 0x4000); MCHBAR32_OR(0x11b4, 0x4000); MCHBAR16_OR(0x1190, 0x4000); ax = MCHBAR16(0x1190) & 0xf00; // = 0x480a // OK MCHBAR16(0x1170) = ax | (MCHBAR16(0x1170) & 0x107f) | 0x4080; MCHBAR16_OR(0x1170, 0x1000); udelay(1000); u16 ecx; for (ecx = 0xffff; ecx && (MCHBAR16(0x1170) & 0x1000); ecx--) ; MCHBAR16_AND(0x1190, ~0x4000); } pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2, pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) & ~0x80); udelay(10000); MCHBAR16(0x2ca8) = 0x8; udelay(1000); dump_timings(&info); cbmem_wasnot_inited = cbmem_recovery(s3resume); if (!s3resume) save_timings(&info); if (s3resume && cbmem_wasnot_inited) { printk(BIOS_ERR, "Failed S3 resume.\n"); ram_check_nodie(1 * MiB); /* Failed S3 resume, reset to come up cleanly */ full_reset(); } }