/* * This file is part of the coreboot project. * * Copyright (C) 2007-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "raminit.h" #include "i945.h" /* Debugging macros. */ #if CONFIG_DEBUG_RAM_SETUP #define PRINTK_DEBUG(x...) printk_debug(x) #else #define PRINTK_DEBUG(x...) #endif #define RAM_INITIALIZATION_COMPLETE (1 << 19) #define RAM_COMMAND_SELF_REFRESH (0x0 << 16) #define RAM_COMMAND_NOP (0x1 << 16) #define RAM_COMMAND_PRECHARGE (0x2 << 16) #define RAM_COMMAND_MRS (0x3 << 16) #define RAM_COMMAND_EMRS (0x4 << 16) #define RAM_COMMAND_CBR (0x6 << 16) #define RAM_COMMAND_NORMAL (0x7 << 16) #define RAM_EMRS_1 (0x0 << 21) #define RAM_EMRS_2 (0x1 << 21) #define RAM_EMRS_3 (0x2 << 21) static void do_ram_command(u32 command) { u32 reg32; reg32 = MCHBAR32(DCC); reg32 &= ~( (3<<21) | (1<<20) | (1<<19) | (7 << 16) ); reg32 |= command; /* Also set Init Complete */ if (command == RAM_COMMAND_NORMAL) reg32 |= RAM_INITIALIZATION_COMPLETE; PRINTK_DEBUG(" Sending RAM command 0x%08x", reg32); MCHBAR32(DCC) = reg32; /* This is the actual magic */ PRINTK_DEBUG("...done\n"); } static void ram_read32(u32 offset) { PRINTK_DEBUG(" ram read: %08x\n", offset); read32(offset); } #if CONFIG_DEBUG_RAM_SETUP static void sdram_dump_mchbar_registers(void) { int i; printk_debug("Dumping MCHBAR Registers\n"); for (i=0; i<0xfff; i+=4) { if (MCHBAR32(i) == 0) continue; printk_debug("0x%04x: 0x%08x\n", i, MCHBAR32(i)); } } #endif static int memclk(void) { int offset = 0; #ifdef CHIPSET_I945GM offset++; #endif switch (((MCHBAR32(CLKCFG) >> 4) & 7) - offset) { case 1: return 400; case 2: return 533; case 3: return 667; default: printk_debug("memclk: unknown register value %x\n", ((MCHBAR32(CLKCFG) >> 4) & 7) - offset); } return -1; } #ifdef CHIPSET_I945GM static int fsbclk(void) { switch (MCHBAR32(CLKCFG) & 7) { case 0: return 400; case 1: return 533; case 3: return 667; default: printk_debug("fsbclk: unknown register value %x\n", MCHBAR32(CLKCFG) & 7); } return -1; } #endif #ifdef CHIPSET_I945GC static int fsbclk(void) { switch (MCHBAR32(CLKCFG) & 7) { case 0: return 1066; case 1: return 533; case 2: return 800; default: printk_debug("fsbclk: unknown register value %x\n", MCHBAR32(CLKCFG) & 7); } return -1; } #endif static int sdram_capabilities_max_supported_memory_frequency(void) { u32 reg32; #ifdef MAXIMUM_SUPPORTED_FREQUENCY return MAXIMUM_SUPPORTED_FREQUENCY; #endif reg32 = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xe4); reg32 &= (7 << 0); switch (reg32) { case 4: return 400; case 3: return 533; case 2: return 667; } /* Newer revisions of this chipset rather support faster memory clocks, * so if it's a reserved value, return the fastest memory clock that we * know of and can handle */ return 667; } /** * @brief determine whether chipset is capable of dual channel interleaved mode * * @return 1 if interleaving is supported, 0 otherwise */ static int sdram_capabilities_interleave(void) { u32 reg32; reg32 = pci_read_config8(PCI_DEV(0, 0x00,0), 0xe4); reg32 >>= 25; reg32 &= 1; return (!reg32); } /** * @brief determine whether chipset is capable of two memory channels * * @return 1 if dual channel operation is supported, 0 otherwise */ static int sdram_capabilities_dual_channel(void) { u32 reg32; reg32 = pci_read_config8(PCI_DEV(0, 0x00,0), 0xe4); reg32 >>= 24; reg32 &= 1; return (!reg32); } static int sdram_capabilities_enhanced_addressing_xor(void) { u8 reg8; reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */ reg8 &= (1 << 7); return (!reg8); } static int sdram_capabilities_two_dimms_per_channel(void) { u8 reg8; reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe8); /* CAPID0 + 8 */ reg8 &= (1 << 0); return (reg8 != 0); } static int sdram_capabilities_MEM4G_disable(void) { u8 reg8; reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); reg8 &= (1 << 0); return (reg8 != 0); } #define GFX_FREQUENCY_CAP_166MHZ 0x04 #define GFX_FREQUENCY_CAP_200MHZ 0x03 #define GFX_FREQUENCY_CAP_250MHZ 0x02 #define GFX_FREQUENCY_CAP_ALL 0x00 static int sdram_capabilities_core_frequencies(void) { u8 reg8; reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */ reg8 &= (1 << 3) | (1 << 2) | (1 << 1); reg8 >>= 1; return (reg8); } static void sdram_detect_errors(void) { u8 reg8; u8 do_reset = 0; reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2); if (reg8 & ((1<<7)|(1<<2))) { if (reg8 & (1<<2)) { printk_debug("SLP S4# Assertion Width Violation.\n"); /* Write back clears bit 2 */ pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8); do_reset = 1; } if (reg8 & (1<<7)) { printk_debug("DRAM initialization was interrupted.\n"); reg8 &= ~(1<<7); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8); do_reset = 1; } /* Set SLP_S3# Assertion Stretch Enable */ reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4); /* GEN_PMCON_3 */ reg8 |= (1 << 3); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8); if (do_reset) { printk_debug("Reset required.\n"); outb(0x00, 0xcf9); outb(0x0e, 0xcf9); for (;;) asm("hlt"); /* Wait for reset! */ } } /* Set DRAM initialization bit in ICH7 */ reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2); reg8 |= (1<<7); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8); } /** * @brief Get generic DIMM parameters. * @param sysinfo Central memory controller information structure * * This function gathers several pieces of information for each system DIMM: * o DIMM width (x8 / x16) * o DIMM sides (single sided / dual sided) * * Also, some non-supported scenarios are detected. */ static void sdram_get_dram_configuration(struct sys_info *sysinfo) { u32 dimm_mask = 0; int i; /** * i945 supports two DIMMs, in two configurations: * * - single channel with two dimms * - dual channel with one dimm per channel * * In practice dual channel mainboards have their spd at 0x50, 0x52 * whereas single channel configurations have their spd at 0x50/x51 * * The capability register knows a lot about the channel configuration * but for now we stick with the information we gather from the SPD * ROMs */ if (sdram_capabilities_dual_channel()) { sysinfo->dual_channel = 1; printk_debug("This mainboard supports Dual Channel Operation.\n"); } else { sysinfo->dual_channel = 0; printk_debug("This mainboard supports only Single Channel Operation.\n"); } /** * Since we only support two DIMMs in total, there is a limited number * of combinations. This function returns the type of DIMMs. * return value: * [0:7] lower DIMM population * [8-15] higher DIMM population * [16] dual channel? * * There are 5 different possible populations for a DIMM socket: * 1. x16 double sided (X16DS) * 2. x8 double sided (X8DS) * 3. x16 single sided (X16SS) * 4. x8 double stacked (X8DDS) * 5. not populated (NC) * * For the return value we start counting at zero. * */ for (i=0; i<(2 * DIMM_SOCKETS); i++) { u8 reg8, device = DIMM_SPD_BASE + i; /* Initialize the socket information with a sane value */ sysinfo->dimm[i] = SYSINFO_DIMM_NOT_POPULATED; /* Dual Channel not supported, but Channel 1? Bail out */ if (!sdram_capabilities_dual_channel() && (i >> 1)) continue; /* Two DIMMs per channel not supported, but odd DIMM number? */ if (!sdram_capabilities_two_dimms_per_channel() && (i& 1)) continue; printk_debug("DDR II Channel %d Socket %d: ", (i >> 1), (i & 1)); if (spd_read_byte(device, SPD_MEMORY_TYPE) != SPD_MEMORY_TYPE_SDRAM_DDR2) { printk_debug("N/A\n"); continue; } reg8 = spd_read_byte(device, SPD_DIMM_CONFIG_TYPE); if (reg8 == ERROR_SCHEME_ECC) die("Error: ECC memory not supported by this chipset\n"); reg8 = spd_read_byte(device, SPD_MODULE_ATTRIBUTES); if (reg8 & MODULE_BUFFERED) die("Error: Buffered memory not supported by this chipset\n"); if (reg8 & MODULE_REGISTERED) die("Error: Registered memory not supported by this chipset\n"); switch (spd_read_byte(device, SPD_PRIMARY_SDRAM_WIDTH)) { case 0x08: switch (spd_read_byte(device, SPD_NUM_DIMM_BANKS) & 0x0f) { case 1: printk_debug("x8DDS\n"); sysinfo->dimm[i] = SYSINFO_DIMM_X8DDS; break; case 0: printk_debug("x8DS\n"); sysinfo->dimm[i] = SYSINFO_DIMM_X8DS; break; default: printk_debug ("Unsupported.\n"); } break; case 0x10: switch (spd_read_byte(device, SPD_NUM_DIMM_BANKS) & 0x0f) { case 1: printk_debug("x16DS\n"); sysinfo->dimm[i] = SYSINFO_DIMM_X16DS; break; case 0: printk_debug("x16SS\n"); sysinfo->dimm[i] = SYSINFO_DIMM_X16SS; break; default: printk_debug ("Unsupported.\n"); } break; default: die("Unsupported DDR-II memory width.\n"); } dimm_mask |= (1 << i); } if (!dimm_mask) { die("No memory installed.\n"); } if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) { printk_info("Channel 0 has no memory populated.\n"); } } /** * @brief determine if any DIMMs are stacked * * @param sysinfo central sysinfo data structure. */ static void sdram_verify_package_type(struct sys_info * sysinfo) { int i; /* Assume no stacked DIMMs are available until we find one */ sysinfo->package = 0; for (i=0; i<2*DIMM_SOCKETS; i++) { if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; /* Is the current DIMM a stacked DIMM? */ if (spd_read_byte(DIMM_SPD_BASE + i, SPD_NUM_DIMM_BANKS) & (1 << 4)) sysinfo->package = 1; } } static u8 sdram_possible_cas_latencies(struct sys_info * sysinfo) { int i; u8 cas_mask; /* Setup CAS mask with all supported CAS Latencies */ cas_mask = SPD_CAS_LATENCY_DDR2_3 | SPD_CAS_LATENCY_DDR2_4 | SPD_CAS_LATENCY_DDR2_5; for (i=0; i<2*DIMM_SOCKETS; i++) { if (sysinfo->dimm[i] != SYSINFO_DIMM_NOT_POPULATED) cas_mask &= spd_read_byte(DIMM_SPD_BASE + i, SPD_ACCEPTABLE_CAS_LATENCIES); } if(!cas_mask) { die("No DDR-II modules with accepted CAS latencies found.\n"); } return cas_mask; } static void sdram_detect_cas_latency_and_ram_speed(struct sys_info * sysinfo, u8 cas_mask) { int i, j, idx; int lowest_common_cas = 0; int max_ram_speed = 0; const u8 ddr2_speeds_table[] = { 0x50, 0x60, /* DDR2 400: tCLK = 5.0ns tAC = 0.6ns */ 0x3d, 0x50, /* DDR2 533: tCLK = 3.75ns tAC = 0.5ns */ 0x30, 0x45, /* DDR2 667: tCLK = 3.0ns tAC = 0.45ns */ }; const u8 spd_lookup_table[] = { SPD_MIN_CYCLE_TIME_AT_CAS_MAX, SPD_ACCESS_TIME_FROM_CLOCK, SPD_SDRAM_CYCLE_TIME_2ND, SPD_ACCESS_TIME_FROM_CLOCK_2ND, SPD_SDRAM_CYCLE_TIME_3RD, SPD_ACCESS_TIME_FROM_CLOCK_3RD }; switch (sdram_capabilities_max_supported_memory_frequency()) { case 400: max_ram_speed = 0; break; case 533: max_ram_speed = 1; break; case 667: max_ram_speed = 2; break; } if (fsbclk() == 533) max_ram_speed = 1; sysinfo->memory_frequency = 0; sysinfo->cas = 0; if (cas_mask & SPD_CAS_LATENCY_DDR2_3) { lowest_common_cas = 3; } else if (cas_mask & SPD_CAS_LATENCY_DDR2_4) { lowest_common_cas = 4; } else if (cas_mask & SPD_CAS_LATENCY_DDR2_5) { lowest_common_cas = 5; } PRINTK_DEBUG("lowest common cas = %d\n", lowest_common_cas); for (j = max_ram_speed; j>=0; j--) { int freq_cas_mask = cas_mask; PRINTK_DEBUG("Probing Speed %d\n", j); for (i=0; i<2*DIMM_SOCKETS; i++) { int current_cas_mask; PRINTK_DEBUG(" DIMM: %d\n", i); if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) { continue; } current_cas_mask = spd_read_byte(DIMM_SPD_BASE + i, SPD_ACCEPTABLE_CAS_LATENCIES); while (current_cas_mask) { int highest_supported_cas = 0, current_cas = 0; PRINTK_DEBUG(" Current CAS mask: %04x; ", current_cas_mask); if (current_cas_mask & SPD_CAS_LATENCY_DDR2_5) { highest_supported_cas = 5; } else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_4) { highest_supported_cas = 4; } else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_3) { highest_supported_cas = 3; } if (current_cas_mask & SPD_CAS_LATENCY_DDR2_3) { current_cas = 3; } else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_4) { current_cas = 4; } else if (current_cas_mask & SPD_CAS_LATENCY_DDR2_5) { current_cas = 5; } idx = highest_supported_cas - current_cas; PRINTK_DEBUG("idx=%d, ", idx); PRINTK_DEBUG("tCLK=%x, ", spd_read_byte(DIMM_SPD_BASE + i, spd_lookup_table[2*idx])); PRINTK_DEBUG("tAC=%x", spd_read_byte(DIMM_SPD_BASE + i, spd_lookup_table[(2*idx)+1])); if (spd_read_byte(DIMM_SPD_BASE + i, spd_lookup_table[2*idx]) <= ddr2_speeds_table[2*j] && spd_read_byte(DIMM_SPD_BASE + i, spd_lookup_table[(2*idx)+1]) <= ddr2_speeds_table[(2*j)+1]) { PRINTK_DEBUG(": OK\n"); break; } PRINTK_DEBUG(": Not fast enough!\n"); current_cas_mask &= ~(1 << (current_cas)); } freq_cas_mask &= current_cas_mask; if (!current_cas_mask) { PRINTK_DEBUG(" No valid CAS for this speed on DIMM %d\n", i); break; } } PRINTK_DEBUG(" freq_cas_mask for speed %d: %04x\n", j, freq_cas_mask); if (freq_cas_mask) { switch (j) { case 0: sysinfo->memory_frequency = 400; break; case 1: sysinfo->memory_frequency = 533; break; case 2: sysinfo->memory_frequency = 667; break; } if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_3) { sysinfo->cas = 3; } else if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_4) { sysinfo->cas = 4; } else if (freq_cas_mask & SPD_CAS_LATENCY_DDR2_5) { sysinfo->cas = 5; } break; } } if (sysinfo->memory_frequency && sysinfo->cas) { printk_debug("Memory will be driven at %dMHz with CAS=%d clocks\n", sysinfo->memory_frequency, sysinfo->cas); } else { die("Could not find common memory frequency and CAS\n"); } } static void sdram_detect_smallest_tRAS(struct sys_info * sysinfo) { int i; int tRAS_time; int tRAS_cycles; int freq_multiplier = 0; switch (sysinfo->memory_frequency) { case 400: freq_multiplier = 0x14; break; /* 5ns */ case 533: freq_multiplier = 0x0f; break; /* 3.75ns */ case 667: freq_multiplier = 0x0c; break; /* 3ns */ } tRAS_cycles = 4; /* 4 clocks minimum */ tRAS_time = tRAS_cycles * freq_multiplier; for (i=0; i<2*DIMM_SOCKETS; i++) { u8 reg8; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; reg8 = spd_read_byte(DIMM_SPD_BASE + i, SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY); if (!reg8) { die("Invalid tRAS value.\n"); } while ((tRAS_time >> 2) < reg8) { tRAS_time += freq_multiplier; tRAS_cycles++; } } if(tRAS_cycles > 0x18) { die("DDR-II Module does not support this frequency (tRAS error)\n"); } printk_debug("tRAS = %d cycles\n", tRAS_cycles); sysinfo->tras = tRAS_cycles; } static void sdram_detect_smallest_tRP(struct sys_info * sysinfo) { int i; int tRP_time; int tRP_cycles; int freq_multiplier = 0; switch (sysinfo->memory_frequency) { case 400: freq_multiplier = 0x14; break; /* 5ns */ case 533: freq_multiplier = 0x0f; break; /* 3.75ns */ case 667: freq_multiplier = 0x0c; break; /* 3ns */ } tRP_cycles = 2; /* 2 clocks minimum */ tRP_time = tRP_cycles * freq_multiplier; for (i=0; i<2*DIMM_SOCKETS; i++) { u8 reg8; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; reg8 = spd_read_byte(DIMM_SPD_BASE + i, SPD_MIN_ROW_PRECHARGE_TIME); if (!reg8) { die("Invalid tRP value.\n"); } while (tRP_time < reg8) { tRP_time += freq_multiplier; tRP_cycles++; } } if(tRP_cycles > 6) { die("DDR-II Module does not support this frequency (tRP error)\n"); } printk_debug("tRP = %d cycles\n", tRP_cycles); sysinfo->trp = tRP_cycles; } static void sdram_detect_smallest_tRCD(struct sys_info * sysinfo) { int i; int tRCD_time; int tRCD_cycles; int freq_multiplier = 0; switch (sysinfo->memory_frequency) { case 400: freq_multiplier = 0x14; break; /* 5ns */ case 533: freq_multiplier = 0x0f; break; /* 3.75ns */ case 667: freq_multiplier = 0x0c; break; /* 3ns */ } tRCD_cycles = 2; /* 2 clocks minimum */ tRCD_time = tRCD_cycles * freq_multiplier; for (i=0; i<2*DIMM_SOCKETS; i++) { u8 reg8; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; reg8 = spd_read_byte(DIMM_SPD_BASE + i, SPD_MIN_RAS_TO_CAS_DELAY); if (!reg8) { die("Invalid tRCD value.\n"); } while (tRCD_time < reg8) { tRCD_time += freq_multiplier; tRCD_cycles++; } } if(tRCD_cycles > 6) { die("DDR-II Module does not support this frequency (tRCD error)\n"); } printk_debug("tRCD = %d cycles\n", tRCD_cycles); sysinfo->trcd = tRCD_cycles; } static void sdram_detect_smallest_tWR(struct sys_info * sysinfo) { int i; int tWR_time; int tWR_cycles; int freq_multiplier = 0; switch (sysinfo->memory_frequency) { case 400: freq_multiplier = 0x14; break; /* 5ns */ case 533: freq_multiplier = 0x0f; break; /* 3.75ns */ case 667: freq_multiplier = 0x0c; break; /* 3ns */ } tWR_cycles = 2; /* 2 clocks minimum */ tWR_time = tWR_cycles * freq_multiplier; for (i=0; i<2*DIMM_SOCKETS; i++) { u8 reg8; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; reg8 = spd_read_byte(DIMM_SPD_BASE + i, SPD_WRITE_RECOVERY_TIME); if (!reg8) { die("Invalid tWR value.\n"); } while (tWR_time < reg8) { tWR_time += freq_multiplier; tWR_cycles++; } } if(tWR_cycles > 5) { die("DDR-II Module does not support this frequency (tWR error)\n"); } printk_debug("tWR = %d cycles\n", tWR_cycles); sysinfo->twr = tWR_cycles; } static void sdram_detect_smallest_tRFC(struct sys_info * sysinfo) { int i, index = 0; const u8 tRFC_cycles[] = { /* 75 105 127.5 */ 15, 21, 26, /* DDR2-400 */ 20, 28, 34, /* DDR2-533 */ 25, 35, 43 /* DDR2-667 */ }; for (i=0; i<2*DIMM_SOCKETS; i++) { u8 reg8; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; reg8 = sysinfo->banksize[i*2]; switch (reg8) { case 0x04: reg8 = 0; break; case 0x08: reg8 = 1; break; case 0x10: reg8 = 2; break; case 0x20: reg8 = 3; break; } if (sysinfo->dimm[i] == SYSINFO_DIMM_X16DS || sysinfo->dimm[i] == SYSINFO_DIMM_X16SS) reg8++; if (reg8 > 3) { /* Can this happen? Go back to 127.5ns just to be sure * we don't run out of the array. This may be wrong */ printk_debug("DIMM %d is 1Gb x16.. Please report.\n", i); reg8 = 3; } if (reg8 > index) index = reg8; } index--; switch (sysinfo->memory_frequency) { case 667: index += 3; /* Fallthrough */ case 533: index += 3; /* Fallthrough */ case 400: break; } sysinfo->trfc = tRFC_cycles[index]; printk_debug("tRFC = %d cycles\n", tRFC_cycles[index]); } static void sdram_detect_smallest_refresh(struct sys_info * sysinfo) { int i; sysinfo->refresh = 0; for (i=0; i<2*DIMM_SOCKETS; i++) { int refresh; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; refresh = spd_read_byte(DIMM_SPD_BASE + i, SPD_REFRESH) & ~(1 << 7); /* 15.6us */ if (!refresh) continue; /* Refresh is slower than 15.6us, use 15.6us */ if (refresh > 2) continue; if (refresh == 2) { sysinfo->refresh = 1; break; } die("DDR-II module has unsupported refresh value\n"); } printk_debug("Refresh: %s\n", sysinfo->refresh?"7.8us":"15.6us"); } static void sdram_verify_burst_length(struct sys_info * sysinfo) { int i; for (i=0; i<2*DIMM_SOCKETS; i++) { if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; if (!(spd_read_byte(DIMM_SPD_BASE + i, SPD_SUPPORTED_BURST_LENGTHS) & SPD_BURST_LENGTH_8)) die("Only DDR-II RAM with burst length 8 is supported by this chipset.\n"); } } static void sdram_program_dram_width(struct sys_info * sysinfo) { u16 c0dramw=0, c1dramw=0; int idx; if (sysinfo->dual_channel) idx = 2; else idx = 1; switch (sysinfo->dimm[0]) { case 0: c0dramw = 0x0000; break; /* x16DS */ case 1: c0dramw = 0x0001; break; /* x8DS */ case 2: c0dramw = 0x0000; break; /* x16SS */ case 3: c0dramw = 0x0005; break; /* x8DDS */ case 4: c0dramw = 0x0000; break; /* NC */ } switch (sysinfo->dimm[idx]) { case 0: c1dramw = 0x0000; break; /* x16DS */ case 1: c1dramw = 0x0010; break; /* x8DS */ case 2: c1dramw = 0x0000; break; /* x16SS */ case 3: c1dramw = 0x0050; break; /* x8DDS */ case 4: c1dramw = 0x0000; break; /* NC */ } if ( !sdram_capabilities_dual_channel() ) { /* Single Channel */ c0dramw |= c1dramw; c1dramw = 0; } MCHBAR16(C0DRAMW) = c0dramw; MCHBAR16(C1DRAMW) = c1dramw; } static void sdram_write_slew_rates(u32 offset, const u32 *slew_rate_table) { int i; for (i=0; i<16; i++) MCHBAR32(offset+(i*4)) = slew_rate_table[i]; } static const u32 dq2030[] = { 0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e, 0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d, 0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f, 0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531 }; static const u32 dq2330[] = { 0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e, 0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d, 0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f, 0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531 }; static const u32 cmd2710[] = { 0x07060605, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1110100f, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f }; static const u32 cmd3210[] = { 0x0f0d0b0a, 0x17151311, 0x1f1d1b19, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x18171615, 0x1f1f1c1a, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f }; static const u32 clk2030[] = { 0x0e0d0d0c, 0x100f0f0e, 0x100f0e0d, 0x15131211, 0x1d1b1917, 0x2523211f, 0x2a282927, 0x32302e2c, 0x17161514, 0x1b1a1918, 0x1f1e1d1c, 0x23222120, 0x27262524, 0x2d2b2928, 0x3533312f, 0x3d3b3937 }; static const u32 ctl3215[] = { 0x01010000, 0x03020101, 0x07060504, 0x0b0a0908, 0x100f0e0d, 0x14131211, 0x18171615, 0x1c1b1a19, 0x05040403, 0x07060605, 0x0a090807, 0x0f0d0c0b, 0x14131211, 0x18171615, 0x1c1b1a19, 0x201f1e1d }; static const u32 ctl3220[] = { 0x05040403, 0x07060505, 0x0e0c0a08, 0x1a171411, 0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e, 0x09080807, 0x0b0a0a09, 0x0f0d0c0b, 0x1b171311, 0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e }; static const u32 nc[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; enum { DQ2030, DQ2330, CMD2710, CMD3210, CLK2030, CTL3215, CTL3220, NC, }; static const u8 dual_channel_slew_group_lookup[] = { DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710, DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710, DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC, DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710, DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC, DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210, DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210, DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710, DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, NC, NC, NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, NC, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210, NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, NC, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD2710 }; static const u8 single_channel_slew_group_lookup[] = { DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC, DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210, DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC, DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, DQ2330, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210, DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210, DQ2330, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD3210 }; static const u32 *slew_group_lookup(int dual_channel, int index) { const u8 *slew_group; /* Dual Channel needs different tables. */ if (dual_channel) slew_group = dual_channel_slew_group_lookup; else slew_group = single_channel_slew_group_lookup; switch (slew_group[index]) { case DQ2030: return dq2030; case DQ2330: return dq2330; case CMD2710: return cmd2710; case CMD3210: return cmd3210; case CLK2030: return clk2030; case CTL3215: return ctl3215; case CTL3220: return ctl3220; case NC: return nc; } return nc; } #ifdef CHIPSET_I945GM /* Strength multiplier tables */ static const u8 dual_channel_strength_multiplier[] = { 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22, 0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22, 0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00, 0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11, 0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22, 0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00, 0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11, 0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11, 0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22, 0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11, 0x00, 0x00, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11, 0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x44, 0x22 }; static const u8 single_channel_strength_multiplier[] = { 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00, 0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11, 0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11, 0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11, 0x33, 0x00, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11, 0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11, 0x33, 0x00, 0x11, 0x00, 0x44, 0x44, 0x33, 0x11 }; #endif #ifdef CHIPSET_I945GC static const u8 dual_channel_strength_multiplier[] = { 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22, 0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33 }; static const u8 single_channel_strength_multiplier[] = { 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00, 0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00 }; #endif static void sdram_rcomp_buffer_strength_and_slew(struct sys_info *sysinfo) { const u8 * strength_multiplier; int idx, dual_channel; /* Set Strength Multipliers */ /* Dual Channel needs different tables. */ if (sdram_capabilities_dual_channel()) { printk_debug("Programming Dual Channel RCOMP\n"); strength_multiplier = dual_channel_strength_multiplier; dual_channel = 1; idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[2]; } else { printk_debug("Programming Single Channel RCOMP\n"); strength_multiplier = single_channel_strength_multiplier; dual_channel = 0; idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[1]; } printk_debug("Table Index: %d\n", idx); MCHBAR8(G1SC) = strength_multiplier[idx * 8 + 0]; MCHBAR8(G2SC) = strength_multiplier[idx * 8 + 1]; MCHBAR8(G3SC) = strength_multiplier[idx * 8 + 2]; MCHBAR8(G4SC) = strength_multiplier[idx * 8 + 3]; MCHBAR8(G5SC) = strength_multiplier[idx * 8 + 4]; MCHBAR8(G6SC) = strength_multiplier[idx * 8 + 5]; MCHBAR8(G7SC) = strength_multiplier[idx * 8 + 6]; MCHBAR8(G8SC) = strength_multiplier[idx * 8 + 7]; /* Channel 0 */ sdram_write_slew_rates(G1SRPUT, slew_group_lookup(dual_channel, idx * 8 + 0)); sdram_write_slew_rates(G2SRPUT, slew_group_lookup(dual_channel, idx * 8 + 1)); if ((slew_group_lookup(dual_channel, idx * 8 + 2) != nc) && (sysinfo->package == SYSINFO_PACKAGE_STACKED)) { sdram_write_slew_rates(G3SRPUT, ctl3220); } else { sdram_write_slew_rates(G3SRPUT, slew_group_lookup(dual_channel, idx * 8 + 2)); } sdram_write_slew_rates(G4SRPUT, slew_group_lookup(dual_channel, idx * 8 + 3)); sdram_write_slew_rates(G5SRPUT, slew_group_lookup(dual_channel, idx * 8 + 4)); sdram_write_slew_rates(G6SRPUT, slew_group_lookup(dual_channel, idx * 8 + 5)); /* Channel 1 */ if (sysinfo->dual_channel) { sdram_write_slew_rates(G7SRPUT, slew_group_lookup(dual_channel, idx * 8 + 6)); sdram_write_slew_rates(G8SRPUT, slew_group_lookup(dual_channel, idx * 8 + 7)); } else { sdram_write_slew_rates(G7SRPUT, nc); sdram_write_slew_rates(G8SRPUT, nc); } } static void sdram_enable_rcomp(void) { u32 reg32; /* Enable Global Periodic RCOMP */ udelay(300); reg32 = MCHBAR32(GBRCOMPCTL); reg32 &= ~(1 << 23); MCHBAR32(GBRCOMPCTL) = reg32; } static void sdram_program_dll_timings(struct sys_info *sysinfo) { u32 chan0dll = 0, chan1dll = 0; int i; printk_debug ("Programming DLL Timings... \n"); MCHBAR16(DQSMT) &= ~( (3 << 12) | (1 << 10) | ( 0xf << 0) ); MCHBAR16(DQSMT) |= (1 << 13) | (0xc << 0); /* We drive both channels with the same speed */ switch (sysinfo->memory_frequency) { case 400: chan0dll = 0x26262626; chan1dll=0x26262626; break; /* 400MHz */ case 533: chan0dll = 0x22222222; chan1dll=0x22222222; break; /* 533MHz */ case 667: chan0dll = 0x11111111; chan1dll=0x11111111; break; /* 667MHz */ } for (i=0; i < 4; i++) { MCHBAR32(C0R0B00DQST + (i * 0x10) + 0) = chan0dll; MCHBAR32(C0R0B00DQST + (i * 0x10) + 4) = chan0dll; MCHBAR32(C1R0B00DQST + (i * 0x10) + 0) = chan1dll; MCHBAR32(C1R0B00DQST + (i * 0x10) + 4) = chan1dll; } } static void sdram_force_rcomp(void) { u32 reg32; u8 reg8; reg32 = MCHBAR32(ODTC); reg32 |= (1 << 28); MCHBAR32(ODTC) = reg32; reg32 = MCHBAR32(SMSRCTL); reg32 |= (1 << 0); MCHBAR32(SMSRCTL) = reg32; /* Start initial RCOMP */ reg32 = MCHBAR32(GBRCOMPCTL); reg32 |= (1 << 8); MCHBAR32(GBRCOMPCTL) = reg32; reg8 = i945_silicon_revision(); if ((reg8 == 0 && (MCHBAR32(DCC) & (3 << 0)) == 0) || (reg8 == 1)) { reg32 = MCHBAR32(GBRCOMPCTL); reg32 |= (3 << 5); MCHBAR32(GBRCOMPCTL) = reg32; } } static void sdram_initialize_system_memory_io(struct sys_info *sysinfo) { u8 reg8; u32 reg32; printk_debug ("Initializing System Memory IO... \n"); /* Enable Data Half Clock Pushout */ reg8 = MCHBAR8(C0HCTC); reg8 &= ~0x1f; reg8 |= ( 1 << 0); MCHBAR8(C0HCTC) = reg8; reg8 = MCHBAR8(C1HCTC); reg8 &= ~0x1f; reg8 |= ( 1 << 0); MCHBAR8(C1HCTC) = reg8; MCHBAR16(WDLLBYPMODE) &= ~( (1 << 9) | (1 << 6) | (1 << 4) | (1 << 3) | (1 << 1) ); MCHBAR16(WDLLBYPMODE) |= (1 << 8) | (1 << 7) | (1 << 5) | (1 << 2) | (1 << 0); MCHBAR8(C0WDLLCMC) = 0; MCHBAR8(C1WDLLCMC) = 0; /* Program RCOMP Settings */ sdram_program_dram_width(sysinfo); sdram_rcomp_buffer_strength_and_slew(sysinfo); /* Indicate that RCOMP programming is done */ reg32 = MCHBAR32(GBRCOMPCTL); reg32 &= ~( (1 << 29) | (1 << 26) | (3 << 21) | (3 << 2) ); reg32 |= (3 << 27) | (3 << 0); MCHBAR32(GBRCOMPCTL) = reg32; MCHBAR32(GBRCOMPCTL) |= (1 << 10); /* Program DLL Timings */ sdram_program_dll_timings(sysinfo); /* Force RCOMP cycle */ sdram_force_rcomp(); } static void sdram_enable_system_memory_io(struct sys_info *sysinfo) { u32 reg32; printk_debug ("Enabling System Memory IO... \n"); reg32 = MCHBAR32(RCVENMT); reg32 &= ~(0x3f << 6); MCHBAR32(RCVENMT) = reg32; /* [11:6] = 0 */ reg32 |= (1 << 11) | (1 << 9); MCHBAR32(RCVENMT) = reg32; reg32 = MCHBAR32(DRTST); reg32 |= (1 << 3) | (1 << 2); MCHBAR32(DRTST) = reg32; reg32 = MCHBAR32(DRTST); reg32 |= (1 << 6) | (1 << 4); MCHBAR32(DRTST) = reg32; asm volatile ("nop; nop;"); reg32 = MCHBAR32(DRTST); /* Is channel 0 populated? */ if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) reg32 |= (1 << 7) | (1 << 5); else reg32 |= (1 << 31); /* Is channel 1 populated? */ if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED) reg32 |= (1 << 9) | (1 << 8); else reg32 |= (1 << 30); MCHBAR32(DRTST) = reg32; /* Activate DRAM Channel IO Buffers */ if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) { reg32 = MCHBAR32(C0DRC1); reg32 |= (1 << 8); MCHBAR32(C0DRC1) = reg32; } if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED) { reg32 = MCHBAR32(C1DRC1); reg32 |= (1 << 8); MCHBAR32(C1DRC1) = reg32; } } struct dimm_size { unsigned long side1; unsigned long side2; }; static struct dimm_size sdram_get_dimm_size(u16 device) { /* Calculate the log base 2 size of a DIMM in bits */ struct dimm_size sz; int value, low, rows, columns; sz.side1 = 0; sz.side2 = 0; rows = spd_read_byte(device, SPD_NUM_ROWS); /* rows */ if (rows < 0) goto hw_err; if ((rows & 0xf) == 0) goto val_err; sz.side1 += rows & 0xf; columns = spd_read_byte(device, SPD_NUM_COLUMNS); /* columns */ if (columns < 0) goto hw_err; if ((columns & 0xf) == 0) goto val_err; sz.side1 += columns & 0xf; value = spd_read_byte(device, SPD_NUM_BANKS_PER_SDRAM); /* banks */ if (value < 0) goto hw_err; if ((value & 0xff) == 0) goto val_err; sz.side1 += log2(value & 0xff); /* Get the module data width and convert it to a power of two */ value = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_MSB); /* (high byte) */ if (value < 0) goto hw_err; value &= 0xff; value <<= 8; low = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB); /* (low byte) */ if (low < 0) goto hw_err; value = value | (low & 0xff); if ((value != 72) && (value != 64)) goto val_err; sz.side1 += log2(value); /* side 2 */ value = spd_read_byte(device, SPD_NUM_DIMM_BANKS); /* number of physical banks */ if (value < 0) goto hw_err; value &= 7; value++; if (value == 1) goto out; if (value != 2) goto val_err; /* Start with the symmetrical case */ sz.side2 = sz.side1; if ((rows & 0xf0) == 0) goto out; /* If symmetrical we are done */ /* Don't die here, I have not come across any of these to test what * actually happens. */ printk_err("Assymetric DIMMs are not supported by this chipset\n"); sz.side2 -= (rows & 0x0f); /* Subtract out rows on side 1 */ sz.side2 += ((rows >> 4) & 0x0f); /* Add in rows on side 2 */ sz.side2 -= (columns & 0x0f); /* Subtract out columns on side 1 */ sz.side2 += ((columns >> 4) & 0x0f); /* Add in columns on side 2 */ goto out; val_err: die("Bad SPD value\n"); hw_err: /* If a hardware error occurs the spd rom probably does not exist. * In this case report that there is no memory */ sz.side1 = 0; sz.side2 = 0; out: return sz; } static void sdram_detect_dimm_size(struct sys_info * sysinfo) { int i; for(i = 0; i < 2 * DIMM_SOCKETS; i++) { struct dimm_size sz; sysinfo->banksize[i * 2] = 0; sysinfo->banksize[(i * 2) + 1] = 0; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; sz = sdram_get_dimm_size(DIMM_SPD_BASE + i); sysinfo->banks[i] = spd_read_byte(DIMM_SPD_BASE + i, SPD_NUM_BANKS_PER_SDRAM); /* banks */ if (sz.side1 < 30) die("DDR-II rank size smaller than 128MB is not supported.\n"); sysinfo->banksize[i * 2] = 1 << (sz.side1 - 28); printk_debug("DIMM %d side 0 = %d MB\n", i, sysinfo->banksize[i * 2] * 32 ); if (!sz.side2) continue; /* If there is a second side, it has to have at least 128M, too */ if (sz.side2 < 30) die("DDR-II rank size smaller than 128MB is not supported.\n"); sysinfo->banksize[(i * 2) + 1] = 1 << (sz.side2 - 28); printk_debug("DIMM %d side 1 = %d MB\n", i, sysinfo->banksize[(i * 2) + 1] * 32); } } static int sdram_program_row_boundaries(struct sys_info *sysinfo) { int i; int cum0, cum1, tolud, tom; printk_debug ("Setting RAM size... \n"); cum0 = 0; for(i = 0; i < 2 * DIMM_SOCKETS; i++) { cum0 += sysinfo->banksize[i]; MCHBAR8(C0DRB0+i) = cum0; } /* Assume we continue in Channel 1 where we stopped in Channel 0 */ cum1 = cum0; /* Exception: Interleaved starts from the beginning */ if (sysinfo->interleaved) cum1 = 0; #if 0 /* Exception: Channel 1 is not populated. C1DRB stays zero */ if (sysinfo->dimm[2] == SYSINFO_DIMM_NOT_POPULATED && sysinfo->dimm[3] == SYSINFO_DIMM_NOT_POPULATED) cum1 = 0; #endif for(i = 0; i < 2 * DIMM_SOCKETS; i++) { cum1 += sysinfo->banksize[i + 4]; MCHBAR8(C1DRB0+i) = cum1; } /* Set TOLUD Top Of Low Usable DRAM */ if (sysinfo->interleaved) tolud = (cum0 + cum1) << 1; else tolud = (cum1 ? cum1 : cum0) << 1; /* The TOM register has a different format */ tom = tolud >> 3; /* Limit the value of TOLUD to leave some space for PCI memory. */ if (tolud > 0xd0) tolud = 0xd0; /* 3.25GB : 0.75GB */ pci_write_config8(PCI_DEV(0,0,0), TOLUD, tolud); printk_debug("C0DRB = 0x%08x\n", MCHBAR32(C0DRB0)); printk_debug("C1DRB = 0x%08x\n", MCHBAR32(C1DRB0)); printk_debug("TOLUD = 0x%04x\n", pci_read_config8(PCI_DEV(0,0,0), TOLUD)); pci_write_config16(PCI_DEV(0,0,0), TOM, tom); return 0; } static int sdram_set_row_attributes(struct sys_info *sysinfo) { int i, value; u16 dra0=0, dra1=0, dra = 0; printk_debug ("Setting row attributes... \n"); for(i=0; i < 2 * DIMM_SOCKETS; i++) { u16 device; u8 columnsrows; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) { continue; } device = DIMM_SPD_BASE + i; value = spd_read_byte(device, SPD_NUM_ROWS); /* rows */ columnsrows = (value & 0x0f); value = spd_read_byte(device, SPD_NUM_COLUMNS); /* columns */ columnsrows |= (value & 0xf) << 4; switch (columnsrows) { case 0x9d: dra = 2; break; case 0xad: dra = 3; break; case 0xbd: dra = 4; break; case 0xae: dra = 3; break; case 0xbe: dra = 4; break; default: die("Unsupported Rows/Columns. (DRA)"); } /* Double Sided DIMMs? */ if (sysinfo->banksize[(2 * i) + 1] != 0) { dra = (dra << 4) | dra; } if (i < DIMM_SOCKETS) dra0 |= (dra << (i*8)); else dra1 |= (dra << ((i - DIMM_SOCKETS)*8)); } MCHBAR16(C0DRA0) = dra0; MCHBAR16(C1DRA0) = dra1; printk_debug("C0DRA = 0x%04x\n", dra0); printk_debug("C1DRA = 0x%04x\n", dra1); return 0; } static void sdram_set_bank_architecture(struct sys_info *sysinfo) { u32 off32; int i; MCHBAR16(C1BNKARC) &= 0xff00; MCHBAR16(C0BNKARC) &= 0xff00; off32 = C0BNKARC; for (i=0; i < 2 * DIMM_SOCKETS; i++) { /* Switch to second channel */ if (i == DIMM_SOCKETS) off32 = C1BNKARC; if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED) continue; if (sysinfo->banks[i] != 8) continue; printk_spew("DIMM%d has 8 banks.\n", i); if (i & 1) MCHBAR16(off32) |= 0x50; else MCHBAR16(off32) |= 0x05; } } #define REFRESH_7_8US 1 #define REFRESH_15_6US 0 static void sdram_program_refresh_rate(struct sys_info *sysinfo) { u32 reg32; if (sysinfo->refresh == REFRESH_7_8US) { reg32 = (2 << 8); /* Refresh enabled at 7.8us */ } else { reg32 = (1 << 8); /* Refresh enabled at 15.6us */ } MCHBAR32(C0DRC0) &= ~(7 << 8); MCHBAR32(C0DRC0) |= reg32; MCHBAR32(C1DRC0) &= ~(7 << 8); MCHBAR32(C1DRC0) |= reg32; } static void sdram_program_cke_tristate(struct sys_info *sysinfo) { u32 reg32; int i; reg32 = MCHBAR32(C0DRC1); for (i=0; i < 4; i++) { if (sysinfo->banksize[i] == 0) { reg32 |= (1 << (16 + i)); } } reg32 |= (1 << 12); reg32 |= (1 << 11); MCHBAR32(C0DRC1) = reg32; /* Do we have to do this if we're in Single Channel Mode? */ reg32 = MCHBAR32(C1DRC1); for (i=4; i < 8; i++) { if (sysinfo->banksize[i] == 0) { reg32 |= (1 << (12 + i)); } } reg32 |= (1 << 12); reg32 |= (1 << 11); MCHBAR32(C1DRC1) = reg32; } static void sdram_program_odt_tristate(struct sys_info *sysinfo) { u32 reg32; int i; reg32 = MCHBAR32(C0DRC2); for (i=0; i < 4; i++) { if (sysinfo->banksize[i] == 0) { reg32 |= (1 << (24 + i)); } } MCHBAR32(C0DRC2) = reg32; reg32 = MCHBAR32(C1DRC2); for (i=4; i < 8; i++) { if (sysinfo->banksize[i] == 0) { reg32 |= (1 << (20 + i)); } } MCHBAR32(C1DRC2) = reg32; } static void sdram_set_timing_and_control(struct sys_info *sysinfo) { u32 reg32, off32; u32 tWTR; u32 temp_drt; int i, page_size; static const u8 const drt0_table[] = { /* CL 3, 4, 5 */ 3, 4, 5, /* FSB533/400, DDR533/400 */ 4, 5, 6, /* FSB667, DDR533/400 */ 4, 5, 6, /* FSB667, DDR667 */ }; static const u8 const cas_table[] = { 2, 1, 0, 3 }; reg32 = MCHBAR32(C0DRC0); reg32 |= (1 << 2); /* Burst Length 8 */ reg32 &= ~( (1 << 13) | (1 << 12) ); MCHBAR32(C0DRC0) = reg32; reg32 = MCHBAR32(C1DRC0); reg32 |= (1 << 2); /* Burst Length 8 */ reg32 &= ~( (1 << 13) | (1 << 12) ); MCHBAR32(C1DRC0) = reg32; if (!sysinfo->dual_channel && sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) { reg32 = MCHBAR32(C0DRC0); reg32 |= (1 << 15); MCHBAR32(C0DRC0) = reg32; } sdram_program_refresh_rate(sysinfo); sdram_program_cke_tristate(sysinfo); sdram_program_odt_tristate(sysinfo); /* Calculate DRT0 */ temp_drt = 0; /* B2B Write Precharge (same bank) = CL-1 + BL/2 + tWR */ reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + sysinfo->twr; temp_drt |= (reg32 << 28); /* Write Auto Precharge (same bank) = CL-1 + BL/2 + tWR + tRP */ reg32 += sysinfo->trp; temp_drt |= (reg32 << 4); if (sysinfo->memory_frequency == 667) { tWTR = 3; /* 667MHz */ } else { tWTR = 2; /* 400 and 533 */ } /* B2B Write to Read Command Spacing */ reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + tWTR; temp_drt |= (reg32 << 24); /* CxDRT0 [23:22], [21:20], [19:18] [16] have fixed values */ temp_drt |= ( (1 << 22) | (3 << 20) | (1 << 18) | (0 << 16) ); /* Program Write Auto Precharge to Activate */ off32 = 0; if (sysinfo->fsb_frequency == 667) { /* 667MHz FSB */ off32 += 3; } if (sysinfo->memory_frequency == 667) { off32 += 3; } off32 += sysinfo->cas - 3; reg32 = drt0_table[off32]; temp_drt |= (reg32 << 11); /* Read Auto Precharge to Activate */ temp_drt |= (8 << 0); MCHBAR32(C0DRT0) = temp_drt; MCHBAR32(C1DRT0) = temp_drt; /* Calculate DRT1 */ temp_drt = MCHBAR32(C0DRT1) & 0x00020088; /* DRAM RASB Precharge */ temp_drt |= (sysinfo->trp - 2) << 0; /* DRAM RASB to CASB Delay */ temp_drt |= (sysinfo->trcd - 2) << 4; /* CASB Latency */ temp_drt |= (cas_table[sysinfo->cas - 3]) << 8; /* Refresh Cycle Time */ temp_drt |= (sysinfo->trfc) << 10; /* Pre-All to Activate Delay */ temp_drt |= (0 << 16); /* Precharge to Precharge Delay stays at 1 clock */ temp_drt |= (0 << 18); /* Activate to Precharge Delay */ temp_drt |= (sysinfo->tras << 19); /* Read to Precharge (tRTP) */ if (sysinfo->memory_frequency == 667) { temp_drt |= (1 << 28); } else { temp_drt |= (0 << 28); } /* Determine page size */ reg32 = 0; page_size = 1; /* Default: 1k pagesize */ for (i=0; i< 2*DIMM_SOCKETS; i++) { if (sysinfo->dimm[i] == SYSINFO_DIMM_X16DS || sysinfo->dimm[i] == SYSINFO_DIMM_X16SS) page_size = 2; /* 2k pagesize */ } if (sysinfo->memory_frequency == 533 && page_size == 2) { reg32 = 1; } if (sysinfo->memory_frequency == 667) { reg32 = page_size; } temp_drt |= (reg32 << 30); MCHBAR32(C0DRT1) = temp_drt; MCHBAR32(C1DRT1) = temp_drt; /* Program DRT2 */ reg32 = MCHBAR32(C0DRT2); reg32 &= ~(1 << 8); MCHBAR32(C0DRT2) = reg32; reg32 = MCHBAR32(C1DRT2); reg32 &= ~(1 << 8); MCHBAR32(C1DRT2) = reg32; /* Calculate DRT3 */ temp_drt = MCHBAR32(C0DRT3) & ~0x07ffffff; /* Get old tRFC value */ reg32 = MCHBAR32(C0DRT1) >> 10; reg32 &= 0x3f; /* 788nS - tRFC */ switch (sysinfo->memory_frequency) { case 400: /* 5nS */ reg32 = ((78800 / 500) - reg32) & 0x1ff; reg32 |= (0x8c << 16) | (0x0c << 10); /* 1 us */ break; case 533: /* 3.75nS */ reg32 = ((78800 / 375) - reg32) & 0x1ff; reg32 |= (0xba << 16) | (0x10 << 10); /* 1 us */ break; case 667: /* 3nS */ reg32 = ((78800 / 300) - reg32) & 0x1ff; reg32 |= (0xe9 << 16) | (0x14 << 10); /* 1 us */ break; } temp_drt |= reg32; MCHBAR32(C0DRT3) = temp_drt; MCHBAR32(C1DRT3) = temp_drt; } static void sdram_set_channel_mode(struct sys_info *sysinfo) { u32 reg32; printk_debug("Setting mode of operation for memory channels..."); if (sdram_capabilities_interleave() && ( ( sysinfo->banksize[0] + sysinfo->banksize[1] + sysinfo->banksize[2] + sysinfo->banksize[3] ) == ( sysinfo->banksize[4] + sysinfo->banksize[5] + sysinfo->banksize[6] + sysinfo->banksize[7] ) ) ) { /* Both channels equipped with DIMMs of the same size */ sysinfo->interleaved = 1; } else { sysinfo->interleaved = 0; } reg32 = MCHBAR32(DCC); reg32 &= ~(7 << 0); if(sysinfo->interleaved) { /* Dual Channel Interleaved */ printk_debug("Dual Channel Interleaved.\n"); reg32 |= (1 << 1); } else if (sysinfo->dimm[0] == SYSINFO_DIMM_NOT_POPULATED && sysinfo->dimm[1] == SYSINFO_DIMM_NOT_POPULATED) { /* Channel 1 only */ printk_debug("Single Channel 1 only.\n"); reg32 |= (1 << 2); } else if (sdram_capabilities_dual_channel() && sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED) { /* Dual Channel Assymetric */ printk_debug("Dual Channel Assymetric.\n"); reg32 |= (1 << 0); } else { /* All bits 0 means Single Channel 0 operation */ printk_debug("Single Channel 0 only.\n"); } reg32 |= (1 << 10); MCHBAR32(DCC) = reg32; PRINTK_DEBUG("DCC=0x%08x\n", MCHBAR32(DCC)); } static void sdram_program_pll_settings(struct sys_info *sysinfo) { volatile u16 reg16; MCHBAR32(PLLMON) = 0x80800000; sysinfo->fsb_frequency = fsbclk(); if (sysinfo->fsb_frequency == -1) die("Unsupported FSB speed"); /* Program CPCTL according to FSB speed */ /* Only write the lower byte */ switch (sysinfo->fsb_frequency) { case 400: MCHBAR8(CPCTL) = 0x90; break; /* FSB400 */ case 533: MCHBAR8(CPCTL) = 0x95; break; /* FSB533 */ case 667: MCHBAR8(CPCTL) = 0x8d; break; /* FSB667 */ } MCHBAR16(CPCTL) &= ~(1 << 11); reg16 = MCHBAR16(CPCTL); /* Read back register to activate settings */ } static void sdram_program_graphics_frequency(struct sys_info *sysinfo) { u8 reg8; u16 reg16; u8 freq, second_vco, voltage; #define CRCLK_166MHz 0x00 #define CRCLK_200MHz 0x01 #define CRCLK_250MHz 0x03 #define CRCLK_400MHz 0x05 #define CDCLK_200MHz 0x00 #define CDCLK_320MHz 0x40 #define VOLTAGE_1_05 0x00 #define VOLTAGE_1_50 0x01 printk_debug ("Setting Graphics Frequency... \n"); printk_debug("FSB: %d MHz ", sysinfo->fsb_frequency); voltage = VOLTAGE_1_05; if (MCHBAR32(DFT_STRAP1) & (1 << 20)) voltage = VOLTAGE_1_50; printk_debug("Voltage: %s ", (voltage==VOLTAGE_1_05)?"1.05V":"1.5V"); /* Gate graphics hardware for frequency change */ reg8 = pci_read_config16(PCI_DEV(0,2,0), GCFC + 1); reg8 = (1<<3) | (1<<1); /* disable crclk, gate cdclk */ pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8); /* Get graphics frequency capabilities */ reg8 = sdram_capabilities_core_frequencies(); freq = CRCLK_250MHz; switch (reg8) { case GFX_FREQUENCY_CAP_ALL: if (voltage == VOLTAGE_1_05) freq = CRCLK_250MHz; else freq = CRCLK_400MHz; break; case GFX_FREQUENCY_CAP_250MHZ: freq = CRCLK_250MHz; break; case GFX_FREQUENCY_CAP_200MHZ: freq = CRCLK_200MHz; break; case GFX_FREQUENCY_CAP_166MHZ: freq = CRCLK_166MHz; break; } if (freq != CRCLK_400MHz) { /* What chipset are we? Force 166MHz for GMS */ reg8 = (pci_read_config8(PCI_DEV(0, 0x00,0), 0xe7) & 0x70) >> 4; if (reg8==2) freq = CRCLK_166MHz; } printk_debug("Render: "); switch (freq) { case CRCLK_166MHz: printk_debug("166Mhz"); break; case CRCLK_200MHz: printk_debug("200Mhz"); break; case CRCLK_250MHz: printk_debug("250Mhz"); break; case CRCLK_400MHz: printk_debug("400Mhz"); break; } if (i945_silicon_revision() == 0) { sysinfo->mvco4x = 1; } else { sysinfo->mvco4x = 0; } second_vco = 0; if (voltage == VOLTAGE_1_50) { second_vco = 1; } else if ((i945_silicon_revision() > 0) && (freq == CRCLK_250MHz)) { u16 mem = sysinfo->memory_frequency; u16 fsb = sysinfo->fsb_frequency; if ( (fsb == 667 && mem == 533) || (fsb == 533 && mem == 533) || (fsb == 533 && mem == 400)) { second_vco = 1; } if (fsb == 667 && mem == 533) sysinfo->mvco4x = 1; } if (second_vco) { sysinfo->clkcfg_bit7=1; } else { sysinfo->clkcfg_bit7=0; } /* Graphics Core Render Clock */ reg16 = pci_read_config16(PCI_DEV(0,2,0), GCFC); reg16 &= ~( (7 << 0) | (1 << 13) ); reg16 |= freq; pci_write_config16(PCI_DEV(0,2,0), GCFC, reg16); /* Graphics Core Display Clock */ reg8 = pci_read_config8(PCI_DEV(0,2,0), GCFC); reg8 &= ~( (1<<7) | (7<<4) ); if (voltage == VOLTAGE_1_05) { reg8 |= CDCLK_200MHz; printk_debug(" Display: 200MHz\n"); } else { reg8 |= CDCLK_320MHz; printk_debug(" Display: 320MHz\n"); } pci_write_config8(PCI_DEV(0,2,0), GCFC, reg8); reg8 = pci_read_config8(PCI_DEV(0,2,0), GCFC + 1); reg8 |= (1<<3) | (1<<1); pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8); reg8 |= 0x0f; pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8); /* Ungate core render and display clocks */ reg8 &= 0xf0; pci_write_config8(PCI_DEV(0,2,0), GCFC + 1, reg8); } static void sdram_program_memory_frequency(struct sys_info *sysinfo) { u32 clkcfg; u8 reg8; u8 offset = 0; #ifdef CHIPSET_I945GM offset++; #endif printk_debug ("Setting Memory Frequency... "); clkcfg = MCHBAR32(CLKCFG); printk_debug("CLKCFG=0x%08x, ", clkcfg); clkcfg &= ~( (1 << 12) | (1 << 7) | ( 7 << 4) ); if (sysinfo->mvco4x) { printk_debug("MVCO 4x, "); clkcfg &= ~(1 << 12); } if (sysinfo->clkcfg_bit7) { printk_debug("second VCO, "); clkcfg |= (1 << 7); } switch (sysinfo->memory_frequency) { case 400: clkcfg |= ((1+offset) << 4); break; case 533: clkcfg |= ((2+offset) << 4); break; case 667: clkcfg |= ((3+offset) << 4); break; default: die("Target Memory Frequency Error"); } if (MCHBAR32(CLKCFG) == clkcfg) { printk_debug ("ok (unchanged)\n"); return; } MCHBAR32(CLKCFG) = clkcfg; /* Make sure the following code is in the * cache before we execute it. */ goto cache_code; vco_update: reg8 = pci_read_config8(PCI_DEV(0,0x1f,0), 0xa2); reg8 &= ~(1 << 7); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8); clkcfg &= ~(1 << 10); MCHBAR32(CLKCFG) = clkcfg; clkcfg |= (1 << 10); MCHBAR32(CLKCFG) = clkcfg; __asm__ __volatile__ ( " movl $0x100, %%ecx\n" "delay_update:\n" " nop\n" " nop\n" " nop\n" " nop\n" " loop delay_update\n" : /* No outputs */ : /* No inputs */ : "%ecx" ); clkcfg &= ~(1 << 10); MCHBAR32(CLKCFG) = clkcfg; goto out; cache_code: goto vco_update; out: printk_debug("CLKCFG=0x%08x, ", MCHBAR32(CLKCFG)); printk_debug ("ok\n"); } static void sdram_program_clock_crossing(void) { int idx = 0; /** * We add the indices according to our clocks from CLKCFG. */ #ifdef CHIPSET_I945GM static const u32 data_clock_crossing[] = { 0x00100401, 0x00000000, /* DDR400 FSB400 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x08040120, 0x00000000, /* DDR400 FSB533 */ 0x00100401, 0x00000000, /* DDR533 FSB533 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x04020120, 0x00000010, /* DDR400 FSB667 */ 0x10040280, 0x00000040, /* DDR533 FSB667 */ 0x00100401, 0x00000000, /* DDR667 FSB667 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ }; static const u32 command_clock_crossing[] = { 0x04020208, 0x00000000, /* DDR400 FSB400 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x00060108, 0x00000000, /* DDR400 FSB533 */ 0x04020108, 0x00000000, /* DDR533 FSB533 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x00040318, 0x00000000, /* DDR400 FSB667 */ 0x04020118, 0x00000000, /* DDR533 FSB667 */ 0x02010804, 0x00000000, /* DDR667 FSB667 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ }; #endif #ifdef CHIPSET_I945GC /* i945 G/P */ static const u32 data_clock_crossing[] = { 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x10080201, 0x00000000, /* DDR400 FSB533 */ 0x00100401, 0x00000000, /* DDR533 FSB533 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x04020108, 0x00000000, /* DDR400 FSB800 */ 0x00020108, 0x00000000, /* DDR533 FSB800 */ 0x00080201, 0x00000000, /* DDR667 FSB800 */ 0x00010402, 0x00000000, /* DDR400 FSB1066 */ 0x04020108, 0x00000000, /* DDR533 FSB1066 */ 0x08040110, 0x00000000, /* DDR667 FSB1066 */ }; static const u32 command_clock_crossing[] = { 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x00010800, 0x00000402, /* DDR400 FSB533 */ 0x01000400, 0x00000200, /* DDR533 FSB533 */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0xffffffff, 0xffffffff, /* nonexistant */ 0x02010804, 0x00000000, /* DDR400 FSB800 */ 0x00010402, 0x00000000, /* DDR533 FSB800 */ 0x04020180, 0x00000008, /* DDR667 FSB800 */ 0x00020904, 0x00000000, /* DDR400 FSB1066 */ 0x02010804, 0x00000000, /* DDR533 FSB1066 */ 0x180601c0, 0x00000020, /* DDR667 FSB1066 */ }; #endif printk_debug("Programming Clock Crossing..."); printk_debug("MEM="); switch (memclk()) { case 400: printk_debug("400"); idx += 0; break; case 533: printk_debug("533"); idx += 2; break; case 667: printk_debug("667"); idx += 4; break; default: printk_debug("RSVD %x", memclk()); return; } printk_debug(" FSB="); switch (fsbclk()) { case 400: printk_debug("400"); idx += 0; break; case 533: printk_debug("533"); idx += 6; break; case 667: printk_debug("667"); idx += 12; break; case 800: printk_debug("800"); idx += 18; break; case 1066: printk_debug("1066"); idx += 24; break; default: printk_debug("RSVD %x\n", fsbclk()); return; } if (command_clock_crossing[idx]==0xffffffff) { printk_debug("Invalid MEM/FSB combination!\n"); } MCHBAR32(CCCFT + 0) = command_clock_crossing[idx]; MCHBAR32(CCCFT + 4) = command_clock_crossing[idx + 1]; MCHBAR32(C0DCCFT + 0) = data_clock_crossing[idx]; MCHBAR32(C0DCCFT + 4) = data_clock_crossing[idx + 1]; MCHBAR32(C1DCCFT + 0) = data_clock_crossing[idx]; MCHBAR32(C1DCCFT + 4) = data_clock_crossing[idx + 1]; printk_debug("... ok\n"); } static void sdram_disable_fast_dispatch(void) { u32 reg32; reg32 = MCHBAR32(FSBPMC3); reg32 |= (1 << 1); MCHBAR32(FSBPMC3) = reg32; reg32 = MCHBAR32(SBTEST); reg32 |= (3 << 1); MCHBAR32(SBTEST) = reg32; } static void sdram_pre_jedec_initialization(void) { u32 reg32; reg32 = MCHBAR32(WCC); reg32 &= 0x113ff3ff; reg32 |= (4 << 29) | (3 << 25) | (1 << 10); MCHBAR32(WCC) = reg32; MCHBAR32(SMVREFC) |= (1 << 6); MCHBAR32(MMARB0) &= ~(3 << 17); MCHBAR32(MMARB0) |= (1 << 21) | (1 << 16); MCHBAR32(MMARB1) &= ~(7 << 8); MCHBAR32(MMARB1) |= (3 << 8); /* Adaptive Idle Timer Control */ MCHBAR32(C0AIT) = 0x000006c4; MCHBAR32(C0AIT+4) = 0x871a066d; MCHBAR32(C1AIT) = 0x000006c4; MCHBAR32(C1AIT+4) = 0x871a066d; } #define EA_DUALCHANNEL_XOR_BANK_RANK_MODE (0xd4 << 24) #define EA_DUALCHANNEL_XOR_BANK_MODE (0xf4 << 24) #define EA_DUALCHANNEL_BANK_RANK_MODE (0xc2 << 24) #define EA_DUALCHANNEL_BANK_MODE (0xe2 << 24) #define EA_SINGLECHANNEL_XOR_BANK_RANK_MODE (0x91 << 24) #define EA_SINGLECHANNEL_XOR_BANK_MODE (0xb1 << 24) #define EA_SINGLECHANNEL_BANK_RANK_MODE (0x80 << 24) #define EA_SINGLECHANNEL_BANK_MODE (0xa0 << 24) static void sdram_enhanced_addressing_mode(struct sys_info *sysinfo) { u32 chan0 = 0, chan1 = 0; int chan0_dualsided, chan1_dualsided, chan0_populated, chan1_populated; chan0_populated = (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED); chan1_populated = (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED || sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED); chan0_dualsided = (sysinfo->banksize[1] || sysinfo->banksize[3]); chan1_dualsided = (sysinfo->banksize[5] || sysinfo->banksize[7]); if (sdram_capabilities_enhanced_addressing_xor()) { if (!sysinfo->interleaved) { /* Single Channel & Dual Channel Assymetric */ if (chan0_populated) { if (chan0_dualsided) { chan0 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE; } else { chan0 = EA_SINGLECHANNEL_XOR_BANK_MODE; } } if (chan1_populated) { if (chan1_dualsided) { chan1 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE; } else { chan1 = EA_SINGLECHANNEL_XOR_BANK_MODE; } } } else { /* Interleaved has always both channels populated */ if (chan0_dualsided) { chan0 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE; } else { chan0 = EA_DUALCHANNEL_XOR_BANK_MODE; } if (chan1_dualsided) { chan1 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE; } else { chan1 = EA_DUALCHANNEL_XOR_BANK_MODE; } } } else { if (!sysinfo->interleaved) { /* Single Channel & Dual Channel Assymetric */ if (chan0_populated) { if (chan0_dualsided) { chan0 = EA_SINGLECHANNEL_BANK_RANK_MODE; } else { chan0 = EA_SINGLECHANNEL_BANK_MODE; } } if (chan1_populated) { if (chan1_dualsided) { chan1 = EA_SINGLECHANNEL_BANK_RANK_MODE; } else { chan1 = EA_SINGLECHANNEL_BANK_MODE; } } } else { /* Interleaved has always both channels populated */ if (chan0_dualsided) { chan0 = EA_DUALCHANNEL_BANK_RANK_MODE; } else { chan0 = EA_DUALCHANNEL_BANK_MODE; } if (chan1_dualsided) { chan1 = EA_DUALCHANNEL_BANK_RANK_MODE; } else { chan1 = EA_DUALCHANNEL_BANK_MODE; } } } MCHBAR32(C0DRC1) &= 0x00ffffff; MCHBAR32(C0DRC1) |= chan0; MCHBAR32(C1DRC1) &= 0x00ffffff; MCHBAR32(C1DRC1) |= chan1; } static void sdram_post_jedec_initialization(struct sys_info *sysinfo) { u32 reg32; /* Enable Channel XORing for Dual Channel Interleave */ if (sysinfo->interleaved) { reg32 = MCHBAR32(DCC); #if CHANNEL_XOR_RANDOMIZATION reg32 &= ~(1 << 10); reg32 |= (1 << 9); #else reg32 &= ~(1 << 9); #endif MCHBAR32(DCC) = reg32; } /* DRAM mode optimizations */ sdram_enhanced_addressing_mode(sysinfo); reg32 = MCHBAR32(FSBPMC3); reg32 &= ~(1 << 1); MCHBAR32(FSBPMC3) = reg32; reg32 = MCHBAR32(SBTEST); reg32 &= ~(1 << 2); MCHBAR32(SBTEST) = reg32; reg32 = MCHBAR32(SBOCC); reg32 &= 0xffbdb6ff; reg32 |= (0xbdb6 << 8) | (1 << 0); MCHBAR32(SBOCC) = reg32; } static void sdram_power_management(struct sys_info *sysinfo) { u8 reg8; u16 reg16; u32 reg32; int integrated_graphics = 1; int i; reg32 = MCHBAR32(C0DRT2); reg32 &= 0xffffff00; /* Idle timer = 8 clocks, CKE idle timer = 16 clocks */ reg32 |= (1 << 5) | (1 << 4); MCHBAR32(C0DRT2) = reg32; reg32 = MCHBAR32(C1DRT2); reg32 &= 0xffffff00; /* Idle timer = 8 clocks, CKE idle timer = 16 clocks */ reg32 |= (1 << 5) | (1 << 4); MCHBAR32(C1DRT2) = reg32; reg32 = MCHBAR32(C0DRC1); reg32 |= (1 << 12) | (1 << 11); MCHBAR32(C0DRC1) = reg32; reg32 = MCHBAR32(C1DRC1); reg32 |= (1 << 12) | (1 << 11); MCHBAR32(C1DRC1) = reg32; if (i945_silicon_revision()>1) { /* FIXME bits 5 and 0 only if PCIe graphics is disabled */ u16 peg_bits = (1 << 5) | (1 << 0); MCHBAR16(UPMC1) = 0x1010 | peg_bits; } else { /* FIXME bits 5 and 0 only if PCIe graphics is disabled */ u16 peg_bits = (1 << 5) | (1 << 0); /* Rev 0 and 1 */ MCHBAR16(UPMC1) = 0x0010 | peg_bits; } reg16 = MCHBAR16(UPMC2); reg16 &= 0xfc00; reg16 |= 0x0100; MCHBAR16(UPMC2) = reg16; MCHBAR32(UPMC3) = 0x000f06ff; for (i=0; i<5; i++) { MCHBAR32(UPMC3) &= ~(1 << 16); MCHBAR32(UPMC3) |= (1 << 16); } MCHBAR32(GIPMC1) = 0x8000000c; reg16 = MCHBAR16(CPCTL); reg16 &= ~(7 << 11); if (i945_silicon_revision()>2) { reg16 |= (6 << 11); } else { reg16 |= (4 << 11); } MCHBAR16(CPCTL) = reg16; #if 0 if ((MCHBAR32(ECO) & (1 << 16)) != 0) { #else if (i945_silicon_revision() != 0) { #endif switch (sysinfo->fsb_frequency) { case 667: MCHBAR32(HGIPMC2) = 0x0d590d59; break; case 533: MCHBAR32(HGIPMC2) = 0x155b155b; break; } } else { switch (sysinfo->fsb_frequency) { case 667: MCHBAR32(HGIPMC2) = 0x09c409c4; break; case 533: MCHBAR32(HGIPMC2) = 0x0fa00fa0; break; } } MCHBAR32(FSBPMC1) = 0x8000000c; reg32 = MCHBAR32(C2C3TT); reg32 &= 0xffff0000; switch (sysinfo->fsb_frequency) { case 667: reg32 |= 0x0600; break; case 533: reg32 |= 0x0480; break; } MCHBAR32(C2C3TT) = reg32; reg32 = MCHBAR32(C3C4TT); reg32 &= 0xffff0000; switch (sysinfo->fsb_frequency) { case 667: reg32 |= 0x0b80; break; case 533: reg32 |= 0x0980; break; } MCHBAR32(C3C4TT) = reg32; if (i945_silicon_revision() == 0) { MCHBAR32(ECO) &= ~(1 << 16); } else { MCHBAR32(ECO) |= (1 << 16); } #if 0 if (i945_silicon_revision() == 0) { MCHBAR32(FSBPMC3) &= ~(1 << 29); } else { MCHBAR32(FSBPMC3) |= (1 << 29); } #endif MCHBAR32(FSBPMC3) &= ~(1 << 29); MCHBAR32(FSBPMC3) |= (1 << 21); MCHBAR32(FSBPMC3) &= ~(1 << 19); MCHBAR32(FSBPMC3) &= ~(1 << 13); reg32 = MCHBAR32(FSBPMC4); reg32 &= ~(3 << 24); reg32 |= ( 2 << 24); MCHBAR32(FSBPMC4) = reg32; MCHBAR32(FSBPMC4) |= (1 << 21); MCHBAR32(FSBPMC4) |= (1 << 5); if ((i945_silicon_revision() < 2) /* || cpuid() = 0x6e8 */ ) { /* stepping 0 and 1 or CPUID 6e8 */ MCHBAR32(FSBPMC4) &= ~(1 << 4); } else { MCHBAR32(FSBPMC4) |= (1 << 4); } reg8 = pci_read_config8(PCI_DEV(0,0x0,0), 0xfc); reg8 |= (1 << 4); pci_write_config8(PCI_DEV(0, 0x0, 0), 0xfc, reg8); reg8 = pci_read_config8(PCI_DEV(0,0x2,0), 0xc1); reg8 |= (1 << 2); pci_write_config8(PCI_DEV(0, 0x2, 0), 0xc1, reg8); #ifdef C2_SELF_REFRESH_DISABLE if (integrated_graphics) { printk_debug("C2 self-refresh with IGD\n"); MCHBAR16(MIPMC4) = 0x0468; MCHBAR16(MIPMC5) = 0x046c; MCHBAR16(MIPMC6) = 0x046c; } else { MCHBAR16(MIPMC4) = 0x6468; MCHBAR16(MIPMC5) = 0x646c; MCHBAR16(MIPMC6) = 0x646c; } #else if (integrated_graphics) { MCHBAR16(MIPMC4) = 0x04f8; MCHBAR16(MIPMC5) = 0x04fc; MCHBAR16(MIPMC6) = 0x04fc; } else { MCHBAR16(MIPMC4) = 0x64f8; MCHBAR16(MIPMC5) = 0x64fc; MCHBAR16(MIPMC6) = 0x64fc; } #endif reg32 = MCHBAR32(PMCFG); reg32 &= ~(3 << 17); reg32 |= (2 << 17); MCHBAR32(PMCFG) = reg32; MCHBAR32(PMCFG) |= (1 << 4); reg32 = MCHBAR32(0xc30); reg32 &= 0xffffff00; reg32 |= 0x01; MCHBAR32(0xc30) = reg32; MCHBAR32(0xb18) &= ~(1 << 21); } static void sdram_thermal_management(void) { MCHBAR8(TCO1) = 0x00; MCHBAR8(TCO0) = 0x00; /* The Thermal Sensors for DIMMs at 0x50, 0x52 are at I2C addr * 0x30/0x32. */ } static void sdram_save_receive_enable(void) { int i; u32 reg32; u8 values[4]; /* The following values are stored to an unused CMOS * area and restored instead of recalculated in case * of an S3 resume. * * C0WL0REOST [7:0] -> 8 bit * C1WL0REOST [7:0] -> 8 bit * RCVENMT [11:8] [3:0] -> 8 bit * C0DRT1 [27:24] -> 4 bit * C1DRT1 [27:24] -> 4 bit */ values[0] = MCHBAR8(C0WL0REOST); values[1] = MCHBAR8(C1WL0REOST); reg32 = MCHBAR32(RCVENMT); values[2] = (u8)((reg32 >> (8 - 4)) & 0xf0) | (reg32 & 0x0f); reg32 = MCHBAR32(C0DRT1); values[3] = (reg32 >> 24) & 0x0f; reg32 = MCHBAR32(C1DRT1); values[3] |= (reg32 >> (24 - 4)) & 0xf0; /* coreboot only uses bytes 0 - 127 for its CMOS values so far * so we grad bytes 128 - 131 to save the receive enable values */ for (i=0; i<4; i++) cmos_write(values[i], 128 + i); } static void sdram_recover_receive_enable(void) { int i; u32 reg32; u8 values[4]; for (i=0; i<4; i++) values[i] = cmos_read(128 + i); MCHBAR8(C0WL0REOST) = values[0]; MCHBAR8(C1WL0REOST) = values[1]; reg32 = MCHBAR32(RCVENMT); reg32 &= ~((0x0f << 8) | (0x0f << 0)); reg32 |= ((u32)(values[2] & 0xf0) << (8 - 4)) | (values[2] & 0x0f); MCHBAR32(RCVENMT) = reg32; reg32 = MCHBAR32(C0DRT1) & ~(0x0f << 24); reg32 |= (u32)(values[3] & 0x0f) << 24; MCHBAR32(C0DRT1) = reg32; reg32 = MCHBAR32(C1DRT1) & ~(0x0f << 24); reg32 |= (u32)(values[3] & 0xf0) << (24 - 4); MCHBAR32(C1DRT1) = reg32; } #include "rcven.c" static void sdram_program_receive_enable(struct sys_info *sysinfo) { MCHBAR32(REPC) |= (1 << 0); /* enable upper CMOS */ RCBA32(0x3400) = (1 << 2); /* Program Receive Enable Timings */ if (sysinfo->boot_path == BOOT_PATH_RESUME) { sdram_recover_receive_enable(); } else { receive_enable_adjust(sysinfo); sdram_save_receive_enable(); } MCHBAR32(C0DRC1) |= (1 << 6); MCHBAR32(C1DRC1) |= (1 << 6); MCHBAR32(C0DRC1) &= ~(1 << 6); MCHBAR32(C1DRC1) &= ~(1 << 6); MCHBAR32(MIPMC3) |= (0x0f << 0); } /** * @brief Enable On-Die Termination for DDR2. * */ static void sdram_on_die_termination(struct sys_info *sysinfo) { static const u32 odt[] = { 0x00024911, 0xe0010000, 0x00049211, 0xe0020000, 0x0006db11, 0xe0030000, }; u32 reg32; int cas; reg32 = MCHBAR32(ODTC); reg32 &= ~(3 << 16); reg32 |= (1 << 14) | (1 << 6) | (2 << 16); MCHBAR32(ODTC) = reg32; if ( !(sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED && sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) ) { printk_debug("one dimm per channel config.. \n"); reg32 = MCHBAR32(C0ODT); reg32 &= ~(7 << 28); MCHBAR32(C0ODT) = reg32; reg32 = MCHBAR32(C1ODT); reg32 &= ~(7 << 28); MCHBAR32(C1ODT) = reg32; } cas = sysinfo->cas; reg32 = MCHBAR32(C0ODT) & 0xfff00000; reg32 |= odt[(cas-3) * 2]; MCHBAR32(C0ODT) = reg32; reg32 = MCHBAR32(C1ODT) & 0xfff00000; reg32 |= odt[(cas-3) * 2]; MCHBAR32(C1ODT) = reg32; reg32 = MCHBAR32(C0ODT + 4) & 0x1fc8ffff; reg32 |= odt[((cas-3) * 2) + 1]; MCHBAR32(C0ODT + 4) = reg32; reg32 = MCHBAR32(C1ODT + 4) & 0x1fc8ffff; reg32 |= odt[((cas-3) * 2) + 1]; MCHBAR32(C1ODT + 4) = reg32; } /** * @brief Enable clocks to populated sockets */ static void sdram_enable_memory_clocks(struct sys_info *sysinfo) { u8 clocks[2] = { 0, 0 }; #ifdef CHIPSET_I945GM #define CLOCKS_WIDTH 2 #endif #ifdef CHIPSET_I945GC #define CLOCKS_WIDTH 3 #endif if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED) clocks[0] |= (1 << CLOCKS_WIDTH)-1; if (sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) clocks[0] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH; if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED) clocks[1] |= (1 << CLOCKS_WIDTH)-1; if (sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED) clocks[1] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH; #ifdef OVERRIDE_CLOCK_DISABLE /* Usually system firmware turns off system memory clock signals * to unused SO-DIMM slots to reduce EMI and power consumption. * However, the Kontron 986LCD-M does not like unused clock * signals to be disabled. * If other similar mainboard occur, it would make sense to make * this an entry in the sysinfo structure, and pre-initialize that * structure in the mainboard's romstage.c main() function. * For now an #ifdef will do. */ clocks[0] = 0xf; /* force all clock gate pairs to enable */ clocks[1] = 0xf; /* force all clock gate pairs to enable */ #endif MCHBAR8(C0DCLKDIS) = clocks[0]; MCHBAR8(C1DCLKDIS) = clocks[1]; } #define RTT_ODT_NONE 0 #define RTT_ODT_50_OHM ( (1 << 9) | (1 << 5) ) #define RTT_ODT_75_OHM (1 << 5) #define RTT_ODT_150_OHM (1 << 9) #define EMRS_OCD_DEFAULT ( (1 << 12) | (1 << 11) | (1 << 10) ) #define MRS_CAS_3 (3 << 7) #define MRS_CAS_4 (4 << 7) #define MRS_CAS_5 (5 << 7) #define MRS_TWR_3 (2 << 12) #define MRS_TWR_4 (3 << 12) #define MRS_TWR_5 (4 << 12) #define MRS_BT (1 << 6) #define MRS_BL4 (2 << 3) #define MRS_BL8 (3 << 3) static void sdram_jedec_enable(struct sys_info *sysinfo) { int i, nonzero; u32 bankaddr = 0, tmpaddr, mrsaddr = 0; for (i = 0, nonzero = -1; i < 8; i++) { if (sysinfo->banksize[i] == 0) { continue; } printk_debug("jedec enable sequence: bank %d\n", i); switch (i) { case 0: /* Start at address 0 */ bankaddr = 0; break; case 4: if (sysinfo->interleaved) { bankaddr = 0x40; break; } default: if (nonzero != -1) { printk_debug("bankaddr from bank size of rank %d\n", nonzero); bankaddr += sysinfo->banksize[nonzero] << (sysinfo->interleaved ? 26 : 25); break; } /* No populated bank hit before. Start at address 0 */ bankaddr = 0; } /* We have a bank with a non-zero size.. Remember it * for the next offset we have to calculate */ nonzero = i; /* Get CAS latency set up */ switch (sysinfo->cas) { case 5: mrsaddr = MRS_CAS_5; break; case 4: mrsaddr = MRS_CAS_4; break; case 3: mrsaddr = MRS_CAS_3; break; default: die("Jedec Error (CAS).\n"); } /* Get tWR set */ switch (sysinfo->twr) { case 5: mrsaddr |= MRS_TWR_5; break; case 4: mrsaddr |= MRS_TWR_4; break; case 3: mrsaddr |= MRS_TWR_3; break; default: die("Jedec Error (tWR).\n"); } /* Set "Burst Type" */ mrsaddr |= MRS_BT; /* Interleaved */ if (sysinfo->interleaved) { mrsaddr = mrsaddr << 1; } /* Only burst length 8 supported */ mrsaddr |= MRS_BL8; /* Apply NOP */ PRINTK_DEBUG("Apply NOP\n"); do_ram_command(RAM_COMMAND_NOP); ram_read32(bankaddr); /* Precharge all banks */ PRINTK_DEBUG("All Banks Precharge\n"); do_ram_command(RAM_COMMAND_PRECHARGE); ram_read32(bankaddr); /* Extended Mode Register Set (2) */ PRINTK_DEBUG("Extended Mode Register Set(2)\n"); do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_2); ram_read32(bankaddr); /* Extended Mode Register Set (3) */ PRINTK_DEBUG("Extended Mode Register Set(3)\n"); do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_3); ram_read32(bankaddr); /* Extended Mode Register Set */ PRINTK_DEBUG("Extended Mode Register Set\n"); do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1); tmpaddr = bankaddr; if (!sdram_capabilities_dual_channel()) { tmpaddr |= RTT_ODT_75_OHM; } else if (sysinfo->interleaved) { tmpaddr |= (RTT_ODT_150_OHM << 1); } else { tmpaddr |= RTT_ODT_150_OHM; } ram_read32(tmpaddr); /* Mode Register Set: Reset DLLs */ PRINTK_DEBUG("MRS: Reset DLLs\n"); do_ram_command(RAM_COMMAND_MRS); tmpaddr = bankaddr; tmpaddr |= mrsaddr; /* Set DLL reset bit */ if (sysinfo->interleaved) tmpaddr |= (1 << 12); else tmpaddr |= (1 << 11); ram_read32(tmpaddr); /* Precharge all banks */ PRINTK_DEBUG("All Banks Precharge\n"); do_ram_command(RAM_COMMAND_PRECHARGE); ram_read32(bankaddr); /* CAS before RAS Refresh */ PRINTK_DEBUG("CAS before RAS\n"); do_ram_command(RAM_COMMAND_CBR); /* CBR wants two READs */ ram_read32(bankaddr); ram_read32(bankaddr); /* Mode Register Set: Enable DLLs */ PRINTK_DEBUG("MRS: Enable DLLs\n"); do_ram_command(RAM_COMMAND_MRS); tmpaddr = bankaddr; tmpaddr |= mrsaddr; ram_read32(tmpaddr); /* Extended Mode Register Set */ PRINTK_DEBUG("Extended Mode Register Set: ODT/OCD\n"); do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1); tmpaddr = bankaddr; if (!sdram_capabilities_dual_channel()) { tmpaddr |= RTT_ODT_75_OHM | EMRS_OCD_DEFAULT; } else if (sysinfo->interleaved) { tmpaddr |= ((RTT_ODT_150_OHM | EMRS_OCD_DEFAULT) << 1); } else { tmpaddr |= RTT_ODT_150_OHM | EMRS_OCD_DEFAULT; } ram_read32(tmpaddr); /* Extended Mode Register Set */ PRINTK_DEBUG("Extended Mode Register Set: OCD Exit\n"); do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1); tmpaddr = bankaddr; if (!sdram_capabilities_dual_channel()) { tmpaddr |= RTT_ODT_75_OHM; } else if (sysinfo->interleaved) { tmpaddr |= (RTT_ODT_150_OHM << 1); } else { tmpaddr |= RTT_ODT_150_OHM; } ram_read32(tmpaddr); } } static void sdram_init_complete(void) { PRINTK_DEBUG("Normal Operation\n"); do_ram_command(RAM_COMMAND_NORMAL); } static void sdram_setup_processor_side(void) { if (i945_silicon_revision() == 0) MCHBAR32(FSBPMC3) |= (1 << 2); MCHBAR8(0xb00) |= 1; if (i945_silicon_revision() == 0) MCHBAR32(SLPCTL) |= (1 << 8); } /** * @param boot_path: 0 = normal, 1 = reset, 2 = resume from s3 */ void sdram_initialize(int boot_path) { struct sys_info sysinfo; u8 reg8, cas_mask; sdram_detect_errors(); printk_debug ("Setting up RAM controller.\n"); memset(&sysinfo, 0, sizeof(sysinfo)); sysinfo.boot_path = boot_path; /* Look at the type of DIMMs and verify all DIMMs are x8 or x16 width */ sdram_get_dram_configuration(&sysinfo); /* Check whether we have stacked DIMMs */ sdram_verify_package_type(&sysinfo); /* Determine common CAS */ cas_mask = sdram_possible_cas_latencies(&sysinfo); /* Choose Common Frequency */ sdram_detect_cas_latency_and_ram_speed(&sysinfo, cas_mask); /* Determine smallest common tRAS */ sdram_detect_smallest_tRAS(&sysinfo); /* Determine tRP */ sdram_detect_smallest_tRP(&sysinfo); /* Determine tRCD */ sdram_detect_smallest_tRCD(&sysinfo); /* Determine smallest refresh period */ sdram_detect_smallest_refresh(&sysinfo); /* Verify all DIMMs support burst length 8 */ sdram_verify_burst_length(&sysinfo); /* determine tWR */ sdram_detect_smallest_tWR(&sysinfo); /* Determine DIMM size parameters (rows, columns banks) */ sdram_detect_dimm_size(&sysinfo); /* determine tRFC */ sdram_detect_smallest_tRFC(&sysinfo); /* Program PLL settings */ sdram_program_pll_settings(&sysinfo); /* Program Graphics Frequency */ sdram_program_graphics_frequency(&sysinfo); /* Program System Memory Frequency */ sdram_program_memory_frequency(&sysinfo); /* Determine Mode of Operation (Interleaved etc) */ sdram_set_channel_mode(&sysinfo); /* Program Clock Crossing values */ sdram_program_clock_crossing(); /* Disable fast dispatch */ sdram_disable_fast_dispatch(); /* Enable WIODLL Power Down in ACPI states */ MCHBAR32(C0DMC) |= (1 << 24); MCHBAR32(C1DMC) |= (1 << 24); /* Program DRAM Row Boundary/Attribute Registers */ /* program row size DRB and set TOLUD */ sdram_program_row_boundaries(&sysinfo); /* program page size DRA */ sdram_set_row_attributes(&sysinfo); /* Program CxBNKARC */ sdram_set_bank_architecture(&sysinfo); /* Program DRAM Timing and Control registers based on SPD */ sdram_set_timing_and_control(&sysinfo); /* On-Die Termination Adjustment */ sdram_on_die_termination(&sysinfo); /* Pre Jedec Initialization */ sdram_pre_jedec_initialization(); /* Perform System Memory IO Initialization */ sdram_initialize_system_memory_io(&sysinfo); /* Perform System Memory IO Buffer Enable */ sdram_enable_system_memory_io(&sysinfo); /* Enable System Memory Clocks */ sdram_enable_memory_clocks(&sysinfo); if (boot_path == BOOT_PATH_NORMAL) { /* Jedec Initialization sequence */ sdram_jedec_enable(&sysinfo); } /* Program Power Management Registers */ sdram_power_management(&sysinfo); /* Post Jedec Init */ sdram_post_jedec_initialization(&sysinfo); /* Program DRAM Throttling */ sdram_thermal_management(); /* Normal Operations */ sdram_init_complete(); /* Program Receive Enable Timings */ sdram_program_receive_enable(&sysinfo); /* Enable Periodic RCOMP */ sdram_enable_rcomp(); /* Tell ICH7 that we're done */ reg8 = pci_read_config8(PCI_DEV(0,0x1f,0), 0xa2); reg8 &= ~(1 << 7); pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8); printk_debug("RAM initialization finished.\n"); sdram_setup_processor_side(); } unsigned long get_top_of_ram(void) { /* This will not work if TSEG is in place! */ u32 tom = pci_read_config32(PCI_DEV(0,2,0), 0x5c); return (unsigned long) tom; }