/* * This file is part of the coreboot project. * * Copyright (C) 2008-2010 Joseph Smith * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include "lib/debug.c" #include "i82830.h" /*----------------------------------------------------------------------------- Macros and definitions. -----------------------------------------------------------------------------*/ /* Debugging macros. */ #if CONFIG_DEBUG_RAM_SETUP #define PRINTK_DEBUG(x...) printk(BIOS_DEBUG, x) #define DUMPNORTH() dump_pci_device(PCI_DEV(0, 0, 0)) #else #define PRINTK_DEBUG(x...) #define DUMPNORTH() #endif /* DRC[10:8] - Refresh Mode Select (RMS). * 0x0 for Refresh Disabled (Self Refresh) * 0x1 for Refresh interval 15.6 us for 133MHz * 0x2 for Refresh interval 7.8 us for 133MHz * 0x7 for Refresh interval 128 Clocks. (Fast Refresh Mode) */ #define RAM_COMMAND_REFRESH 0x1 /* DRC[6:4] - SDRAM Mode Select (SMS). */ #define RAM_COMMAND_SELF_REFRESH 0x0 #define RAM_COMMAND_NOP 0x1 #define RAM_COMMAND_PRECHARGE 0x2 #define RAM_COMMAND_MRS 0x3 #define RAM_COMMAND_CBR 0x6 #define RAM_COMMAND_NORMAL 0x7 /* DRC[29] - Initialization Complete (IC). */ #define RAM_COMMAND_IC 0x1 /*----------------------------------------------------------------------------- DIMM-initialization functions. -----------------------------------------------------------------------------*/ static void do_ram_command(u32 command) { u32 reg32; /* Configure the RAM command. */ reg32 = pci_read_config32(NORTHBRIDGE, DRC); /* Clear bits 29, 10-8, 6-4. */ reg32 &= 0xdffff88f; reg32 |= command << 4; PRINTK_DEBUG(" Sending RAM command 0x%08x", reg32); pci_write_config32(NORTHBRIDGE, DRC, reg32); } static void ram_read32(u8 dimm_start, u32 offset) { u32 reg32, base_addr = 32 * 1024 * 1024 * dimm_start; if (offset == 0x55aa55aa) { reg32 = read32((u32 *)base_addr); PRINTK_DEBUG(" Reading RAM at 0x%08x => 0x%08x\n", base_addr, reg32); PRINTK_DEBUG(" Writing RAM at 0x%08x <= 0x%08x\n", base_addr, offset); write32((u32 *)base_addr, offset); reg32 = read32((u32 *)base_addr); PRINTK_DEBUG(" Reading RAM at 0x%08x => 0x%08x\n", base_addr, reg32); } else { PRINTK_DEBUG(" to 0x%08x\n", base_addr + offset); read32((u32 *)(base_addr + offset)); } } static void initialize_dimm_rows(void) { int i, row; u8 dimm_start, dimm_end; unsigned device; dimm_start = 0; for (row = 0; row < (DIMM_SOCKETS * 2); row++) { switch (row) { case 0: device = DIMM0; break; case 1: device = DIMM0; break; case 2: device = DIMM0 + 1; break; case 3: device = DIMM0 + 1; break; } dimm_end = pci_read_config8(NORTHBRIDGE, DRB + row); if (dimm_end > dimm_start) { printk(BIOS_DEBUG, "Initializing SDRAM Row %u\n", row); /* NOP command */ PRINTK_DEBUG(" NOP\n"); do_ram_command(RAM_COMMAND_NOP); ram_read32(dimm_start, 0); udelay(200); /* Pre-charge all banks (at least 200 us after NOP) */ PRINTK_DEBUG(" Pre-charging all banks\n"); do_ram_command(RAM_COMMAND_PRECHARGE); ram_read32(dimm_start, 0); udelay(1); /* 8 CBR refreshes (Auto Refresh) */ PRINTK_DEBUG(" 8 CBR refreshes\n"); for (i = 0; i < 8; i++) { do_ram_command(RAM_COMMAND_CBR); ram_read32(dimm_start, 0); udelay(1); } /* MRS command */ /* TODO: Set offset 0x1d0 according to DRT values */ PRINTK_DEBUG(" MRS\n"); do_ram_command(RAM_COMMAND_MRS); ram_read32(dimm_start, 0x1d0); udelay(2); /* Set GMCH-M Mode Select bits back to NORMAL operation mode */ PRINTK_DEBUG(" Normal operation mode\n"); do_ram_command(RAM_COMMAND_NORMAL); ram_read32(dimm_start, 0); udelay(1); /* Perform a dummy memory read/write cycle */ PRINTK_DEBUG(" Performing dummy read/write\n"); ram_read32(dimm_start, 0x55aa55aa); udelay(1); } /* Set the start of the next DIMM. */ dimm_start = dimm_end; } } /*----------------------------------------------------------------------------- DIMM-independent configuration functions. -----------------------------------------------------------------------------*/ struct dimm_size { unsigned int side1; unsigned int side2; }; static struct dimm_size spd_get_dimm_size(unsigned device) { struct dimm_size sz; int i, module_density, dimm_banks; sz.side1 = 0; module_density = spd_read_byte(device, SPD_DENSITY_OF_EACH_ROW_ON_MODULE); dimm_banks = spd_read_byte(device, SPD_NUM_DIMM_BANKS); /* Find the size of side1. */ /* Find the larger value. The larger value is always side1. */ for (i = 512; i >= 0; i >>= 1) { if ((module_density & i) == i) { sz.side1 = i; break; } } /* Set to 0 in case it's single sided. */ sz.side2 = 0; /* Test if it's a dual-sided DIMM. */ if (dimm_banks > 1) { /* Test to see if there's a second value, if so it's asymmetrical. */ if (module_density != i) { /* Find the second value, picking up where we left off. */ /* i >>= 1 done initially to make sure we don't get the same value again. */ for (i >>= 1; i >= 0; i >>= 1) { if (module_density == (sz.side1 | i)) { sz.side2 = i; break; } } /* If not, it's symmetrical */ } else { sz.side2 = sz.side1; } } /* SPD byte 31 is the memory size divided by 4 so we * need to multiply by 4 to get the total size. */ sz.side1 *= 4; sz.side2 *= 4; return sz; } static void set_dram_row_boundaries(void) { int i, value, drb1, drb2; for (i = 0; i < DIMM_SOCKETS; i++) { struct dimm_size sz; unsigned device; device = DIMM0 + i; drb1 = 0; drb2 = 0; /* First check if a DIMM is actually present. */ if (spd_read_byte(device, SPD_MEMORY_TYPE) == 0x4) { printk(BIOS_DEBUG, "Found DIMM in slot %u\n", i); sz = spd_get_dimm_size(device); printk(BIOS_DEBUG, " DIMM is %uMB on side 1\n", sz.side1); printk(BIOS_DEBUG, " DIMM is %uMB on side 2\n", sz.side2); /* - Memory compatibility checks - */ /* Test for PC133 (i82830 only supports PC133) */ /* PC133 SPD9 - cycle time is always 75 */ if (spd_read_byte(device, SPD_MIN_CYCLE_TIME_AT_CAS_MAX) != 0x75) { printk(BIOS_ERR, "SPD9 DIMM Is Not PC133 Compatable\n"); die("HALT\n"); } /* PC133 SPD10 - access time is always 54 */ if (spd_read_byte(device, SPD_ACCESS_TIME_FROM_CLOCK) != 0x54) { printk(BIOS_ERR, "SPD10 DIMM Is Not PC133 Compatable\n"); die("HALT\n"); } /* The i82830 only supports a symmetrical dual-sided dimms * and can't handle DIMMs smaller than 32MB per * side or larger than 256MB per side. */ if ((sz.side2 != 0) && (sz.side1 != sz.side2)) { printk(BIOS_ERR, "This northbridge only supports\n"); printk(BIOS_ERR, "symmetrical dual-sided DIMMs\n"); printk(BIOS_ERR, "booting as a single-sided DIMM\n"); sz.side2 = 0; } if ((sz.side1 < 32)) { printk(BIOS_ERR, "DIMMs smaller than 32MB per side\n"); printk(BIOS_ERR, "are not supported on this northbridge\n"); die("HALT\n"); } if ((sz.side1 > 256)) { printk(BIOS_ERR, "DIMMs larger than 256MB per side\n"); printk(BIOS_ERR, "are not supported on this northbridge\n"); die("HALT\n"); } /* - End Memory compatibility checks - */ /* We need to divide size by 32 to set up the * DRB registers. */ if (sz.side1) drb1 = sz.side1 / 32; if (sz.side2) drb2 = sz.side2 / 32; } else { printk(BIOS_DEBUG, "No DIMM found in slot %u\n", i); /* If there's no DIMM in the slot, set value to 0. */ drb1 = 0; drb2 = 0; } /* Set the value for DRAM Row Boundary Registers */ if (i == 0) { pci_write_config8(NORTHBRIDGE, DRB, drb1); pci_write_config8(NORTHBRIDGE, DRB + 1, drb1 + drb2); PRINTK_DEBUG(" DRB 0x%02x has been set to 0x%02x\n", DRB, drb1); PRINTK_DEBUG(" DRB1 0x%02x has been set to 0x%02x\n", DRB + 1, drb1 + drb2); } else if (i == 1) { value = pci_read_config8(NORTHBRIDGE, DRB + 1); pci_write_config8(NORTHBRIDGE, DRB + 2, value + drb1); pci_write_config8(NORTHBRIDGE, DRB + 3, value + drb1 + drb2); PRINTK_DEBUG(" DRB2 0x%02x has been set to 0x%02x\n", DRB + 2, value + drb1); PRINTK_DEBUG(" DRB3 0x%02x has been set to 0x%02x\n", DRB + 3, value + drb1 + drb2); /* We need to set the highest DRB value to 0x64 and 0x65. * These are supposed to be "Reserved" but memory will * not initialize properly if we don't. */ value = pci_read_config8(NORTHBRIDGE, DRB + 3); pci_write_config8(NORTHBRIDGE, DRB + 4, value); pci_write_config8(NORTHBRIDGE, DRB + 5, value); } } } static void set_dram_row_attributes(void) { int i, dra, col, width, value; for (i = 0; i < DIMM_SOCKETS; i++) { unsigned device; device = DIMM0 + i; /* First check if a DIMM is actually present. */ if (spd_read_byte(device, SPD_MEMORY_TYPE) == 0x4) { PRINTK_DEBUG("Found DIMM in slot %u\n", i); dra = 0x00; /* columns */ col = spd_read_byte(device, SPD_NUM_COLUMNS); /* data width */ width = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB); /* calculate page size in bits */ value = ((1 << col) * width); /* convert to Kilobytes */ dra = ((value / 8) >> 10); /* # of banks of DIMM (single or double sided) */ value = spd_read_byte(device, SPD_NUM_DIMM_BANKS); if (value == 1) { if (dra == 2) { dra = 0xF0; /* 2KB */ } else if (dra == 4) { dra = 0xF1; /* 4KB */ } else if (dra == 8) { dra = 0xF2; /* 8KB */ } else if (dra == 16) { dra = 0xF3; /* 16KB */ } else { printk(BIOS_ERR, "Page size not supported\n"); die("HALT\n"); } } else if (value == 2) { if (dra == 2) { dra = 0x00; /* 2KB */ } else if (dra == 4) { dra = 0x11; /* 4KB */ } else if (dra == 8) { dra = 0x22; /* 8KB */ } else if (dra == 16) { dra = 0x33; /* 16KB */ } else { printk(BIOS_ERR, "Page size not supported\n"); die("HALT\n"); } } else { printk(BIOS_ERR, "# of banks of DIMM not supported\n"); die("HALT\n"); } } else { PRINTK_DEBUG("No DIMM found in slot %u\n", i); /* If there's no DIMM in the slot, set dra value to 0xFF. */ dra = 0xFF; } /* Set the value for DRAM Row Attribute Registers */ pci_write_config8(NORTHBRIDGE, DRA + i, dra); PRINTK_DEBUG(" DRA 0x%02x has been set to 0x%02x\n", DRA + i, dra); } } static void set_dram_timing(void) { /* Set the value for DRAM Timing Register */ /* TODO: Configure the value according to SPD values. */ pci_write_config32(NORTHBRIDGE, DRT, 0x00000010); } static void set_dram_buffer_strength(void) { /* TODO: This needs to be set according to the DRAM tech * (x8, x16, or x32). Argh, Intel provides no docs on this! * Currently, it needs to be pulled from the output of * lspci -xxx Rx92 */ /* Set the value for System Memory Buffer Strength Control Registers */ pci_write_config32(NORTHBRIDGE, BUFF_SC, 0xFC9B491B); } /*----------------------------------------------------------------------------- Public interface. -----------------------------------------------------------------------------*/ static void sdram_set_registers(void) { printk(BIOS_DEBUG, "Setting initial SDRAM registers....\n"); /* Calculate the value for DRT DRAM Timing Register */ set_dram_timing(); /* Setup System Memory Buffer Strength Control Registers */ set_dram_buffer_strength(); /* Setup DRAM Row Boundary Registers */ set_dram_row_boundaries(); /* Setup DRAM Row Attribute Registers */ set_dram_row_attributes(); printk(BIOS_DEBUG, "Initial SDRAM registers have been set.\n"); } static void northbridge_set_registers(void) { u16 value; int igd_memory = 0; printk(BIOS_DEBUG, "Setting initial Northbridge registers....\n"); /* Set the value for Fixed DRAM Hole Control Register */ pci_write_config8(NORTHBRIDGE, FDHC, 0x00); /* Set the value for Programmable Attribute Map Registers * Ideally, this should be R/W for as many ranges as possible. */ pci_write_config8(NORTHBRIDGE, PAM0, 0x30); pci_write_config8(NORTHBRIDGE, PAM1, 0x33); pci_write_config8(NORTHBRIDGE, PAM2, 0x33); pci_write_config8(NORTHBRIDGE, PAM3, 0x33); pci_write_config8(NORTHBRIDGE, PAM4, 0x33); pci_write_config8(NORTHBRIDGE, PAM5, 0x33); pci_write_config8(NORTHBRIDGE, PAM6, 0x33); /* Set the value for System Management RAM Control Register */ pci_write_config8(NORTHBRIDGE, SMRAM, 0x02); /* Set the value for GMCH Control Register #0 */ pci_write_config16(NORTHBRIDGE, GCC0, 0xA072); /* Set the value for Aperture Base Configuration Register */ pci_write_config32(NORTHBRIDGE, APBASE, 0x00000008); /* Set the value for GMCH Control Register #1 */ switch (CONFIG_VIDEO_MB) { case 512: /* 512K of memory */ igd_memory = 0x2; break; case 1: /* 1M of memory */ igd_memory = 0x3; break; case 8: /* 8M of memory */ igd_memory = 0x4; break; default: /* No memory */ pci_write_config16(NORTHBRIDGE, GCC1, 0x0002); igd_memory = 0x0; } value = pci_read_config16(NORTHBRIDGE, GCC1); value |= igd_memory << 4; value |= 1; // 64MB aperture pci_write_config16(NORTHBRIDGE, GCC1, value); printk(BIOS_DEBUG, "Initial Northbridge registers have been set.\n"); } static void sdram_initialize(void) { u32 reg32; /* Setup Initial SDRAM Registers */ sdram_set_registers(); /* Wait until power/voltages and clocks are stable (200us). */ udelay(200); /* Initialize each row of memory one at a time */ initialize_dimm_rows(); /* Enable Refresh */ PRINTK_DEBUG("Enabling Refresh\n"); reg32 = pci_read_config32(NORTHBRIDGE, DRC); reg32 |= (RAM_COMMAND_REFRESH << 8); pci_write_config32(NORTHBRIDGE, DRC, reg32); /* Set initialization complete */ PRINTK_DEBUG("Setting initialization complete\n"); reg32 = pci_read_config32(NORTHBRIDGE, DRC); reg32 |= (RAM_COMMAND_IC << 29); pci_write_config32(NORTHBRIDGE, DRC, reg32); /* Setup Initial Northbridge Registers */ northbridge_set_registers(); PRINTK_DEBUG("Northbridge following SDRAM init:\n"); DUMPNORTH(); }