/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "raminit.h" #include "pei_data.h" #include "haswell.h" #define MRC_CACHE_VERSION 1 static void save_mrc_data(struct pei_data *pei_data) { /* Save the MRC S3 restore data to cbmem */ mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION, pei_data->mrc_output, pei_data->mrc_output_len); } static void prepare_mrc_cache(struct pei_data *pei_data) { size_t mrc_size; /* Preset just in case there is an error */ pei_data->mrc_input = NULL; pei_data->mrc_input_len = 0; pei_data->mrc_input = mrc_cache_current_mmap_leak(MRC_TRAINING_DATA, MRC_CACHE_VERSION, &mrc_size); if (!pei_data->mrc_input) /* Error message printed in find_current_mrc_cache */ return; pei_data->mrc_input_len = mrc_size; printk(BIOS_DEBUG, "%s: at %p, size %zx\n", __func__, pei_data->mrc_input, mrc_size); } static const char *const ecc_decoder[] = { "inactive", "active on IO", "disabled on IO", "active", }; /* Print out the memory controller configuration, as per the values in its registers. */ static void report_memory_config(void) { int i; const u32 addr_decoder_common = mchbar_read32(MAD_CHNL); printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n", (mchbar_read32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100); printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n", (addr_decoder_common >> 0) & 3, (addr_decoder_common >> 2) & 3, (addr_decoder_common >> 4) & 3); for (i = 0; i < NUM_CHANNELS; i++) { const u32 ch_conf = mchbar_read32(MAD_DIMM(i)); printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf); printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]); printk(BIOS_DEBUG, " enhanced interleave mode %s\n", ((ch_conf >> 22) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " rank interleave %s\n", ((ch_conf >> 21) & 1) ? "on" : "off"); printk(BIOS_DEBUG, " DIMMA %d MB width %s %s rank%s\n", ((ch_conf >> 0) & 0xff) * 256, ((ch_conf >> 19) & 1) ? "x16" : "x8 or x32", ((ch_conf >> 17) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? "" : ", selected"); printk(BIOS_DEBUG, " DIMMB %d MB width %s %s rank%s\n", ((ch_conf >> 8) & 0xff) * 256, ((ch_conf >> 20) & 1) ? "x16" : "x8 or x32", ((ch_conf >> 18) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? ", selected" : ""); } } /** * Find PEI executable in coreboot filesystem and execute it. * * @param pei_data: configuration data for UEFI PEI reference code */ static void sdram_initialize(struct pei_data *pei_data) { int (*entry)(struct pei_data *pei_data) __attribute__((regparm(1))); printk(BIOS_DEBUG, "Starting UEFI PEI System Agent\n"); /* * Always pass in mrc_cache data. The driver will determine * whether to use the data or not. */ prepare_mrc_cache(pei_data); /* If MRC data is not found, we cannot continue S3 resume */ if (pei_data->boot_mode == 2 && !pei_data->mrc_input) { post_code(POST_RESUME_FAILURE); printk(BIOS_DEBUG, "Giving up in %s: No MRC data\n", __func__); system_reset(); } /* Pass console handler in pei_data */ pei_data->tx_byte = do_putchar; /* * Locate and call UEFI System Agent binary. The binary needs to be at a fixed offset * in the flash and can therefore only reside in the COREBOOT fmap region. We don't care * about leaking the mapping. */ entry = cbfs_ro_map("mrc.bin", NULL); if (entry) { int rv = entry(pei_data); /* The mrc.bin reconfigures USB, so usbdebug needs to be reinitialized */ if (CONFIG(USBDEBUG_IN_PRE_RAM)) usbdebug_hw_init(true); if (rv) { switch (rv) { case -1: printk(BIOS_ERR, "PEI version mismatch.\n"); break; case -2: printk(BIOS_ERR, "Invalid memory frequency.\n"); break; default: printk(BIOS_ERR, "MRC returned %x.\n", rv); } die_with_post_code(POST_INVALID_VENDOR_BINARY, "Nonzero MRC return value.\n"); } } else { die("UEFI PEI System Agent not found.\n"); } /* Print the MRC version after executing the UEFI PEI stage */ u32 version = mchbar_read32(MRC_REVISION); printk(BIOS_DEBUG, "MRC Version %u.%u.%u Build %u\n", (version >> 24) & 0xff, (version >> 16) & 0xff, (version >> 8) & 0xff, (version >> 0) & 0xff); /* * MRC may return zero even when raminit did not complete successfully. * Ensure the mc_init_done_ack bit is set before continuing. Otherwise, * attempting to access memory will lock up the system. */ if (!(mchbar_read32(MC_INIT_STATE_G) & (1 << 5))) { printk(BIOS_EMERG, "Memory controller did not acknowledge raminit.\n"); die("MRC raminit failed\n"); } report_memory_config(); } static uint8_t nb_get_ecc_type(const uint32_t capid0_a) { return capid0_a & CAPID_ECCDIS ? MEMORY_ARRAY_ECC_NONE : MEMORY_ARRAY_ECC_SINGLE_BIT; } static uint16_t nb_slots_per_channel(const uint32_t capid0_a) { return !(capid0_a & CAPID_DDPCD) + 1; } static uint16_t nb_number_of_channels(const uint32_t capid0_a) { return !(capid0_a & CAPID_PDCD) + 1; } static uint32_t nb_max_chan_capacity_mib(const uint32_t capid0_a) { uint32_t ddrsz; /* Values from documentation, which assume two DIMMs per channel */ switch (CAPID_DDRSZ(capid0_a)) { case 1: ddrsz = 8192; break; case 2: ddrsz = 2048; break; case 3: ddrsz = 512; break; default: ddrsz = 16384; break; } /* Account for the maximum number of DIMMs per channel */ return (ddrsz / 2) * nb_slots_per_channel(capid0_a); } static void setup_sdram_meminfo(struct pei_data *pei_data) { struct memory_info *mem_info; struct dimm_info *dimm; int ch, d_num; int dimm_cnt = 0; mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info)); if (!mem_info) die("Failed to add memory info to CBMEM.\n"); memset(mem_info, 0, sizeof(struct memory_info)); const u32 ddr_frequency = (mchbar_read32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100; for (ch = 0; ch < NUM_CHANNELS; ch++) { const u32 ch_conf = mchbar_read32(MAD_DIMM(ch)); /* DIMMs A/B */ for (d_num = 0; d_num < NUM_SLOTS; d_num++) { const u32 dimm_size = ((ch_conf >> (d_num * 8)) & 0xff) * 256; if (dimm_size) { const int index = ch * NUM_SLOTS + d_num; dimm = &mem_info->dimm[dimm_cnt]; dimm->dimm_size = dimm_size; dimm->ddr_type = MEMORY_TYPE_DDR3; dimm->ddr_frequency = ddr_frequency; dimm->rank_per_dimm = 1 + ((ch_conf >> (17 + d_num)) & 1); dimm->channel_num = ch; dimm->dimm_num = d_num; dimm->bank_locator = ch * 2; memcpy(dimm->serial, &pei_data->spd_data[index][SPD_DIMM_SERIAL_NUM], SPD_DIMM_SERIAL_LEN); memcpy(dimm->module_part_number, &pei_data->spd_data[index][SPD_DIMM_PART_NUM], SPD_DIMM_PART_LEN); dimm->mod_id = (pei_data->spd_data[index][SPD_DIMM_MOD_ID2] << 8) | (pei_data->spd_data[index][SPD_DIMM_MOD_ID1] & 0xff); dimm->mod_type = SPD_SODIMM; dimm->bus_width = MEMORY_BUS_WIDTH_64; dimm_cnt++; } } } mem_info->dimm_cnt = dimm_cnt; const uint32_t capid0_a = pci_read_config32(HOST_BRIDGE, CAPID0_A); const uint16_t channels = nb_number_of_channels(capid0_a); mem_info->ecc_type = nb_get_ecc_type(capid0_a); mem_info->max_capacity_mib = channels * nb_max_chan_capacity_mib(capid0_a); mem_info->number_of_devices = channels * nb_slots_per_channel(capid0_a); } /* Copy SPD data for on-board memory */ static void copy_spd(struct pei_data *pei_data, struct spd_info *spdi) { if (!CONFIG(HAVE_SPD_IN_CBFS)) return; printk(BIOS_DEBUG, "SPD index %d\n", spdi->spd_index); size_t spd_file_len; uint8_t *spd_file = cbfs_map("spd.bin", &spd_file_len); if (!spd_file) die("SPD data not found."); if (spd_file_len < ((spdi->spd_index + 1) * SPD_LEN)) { printk(BIOS_ERR, "SPD index override to 0 - old hardware?\n"); spdi->spd_index = 0; } if (spd_file_len < SPD_LEN) die("Missing SPD data."); /* MRC only uses index 0, but coreboot uses the other indices */ memcpy(pei_data->spd_data[0], spd_file + (spdi->spd_index * SPD_LEN), SPD_LEN); for (size_t i = 1; i < ARRAY_SIZE(spdi->addresses); i++) { if (spdi->addresses[i] == SPD_MEMORY_DOWN) memcpy(pei_data->spd_data[i], pei_data->spd_data[0], SPD_LEN); } } /* * 0 = leave channel enabled * 1 = disable dimm 0 on channel * 2 = disable dimm 1 on channel * 3 = disable dimm 0+1 on channel */ static int make_channel_disabled_mask(const struct pei_data *pd, int ch) { return (!pd->spd_addresses[ch + ch] << 0) | (!pd->spd_addresses[ch + ch + 1] << 1); } static enum pei_usb2_port_location map_to_pei_usb2_location(const enum usb2_port_location loc) { static const enum pei_usb2_port_location map[] = { [USB_PORT_SKIP] = PEI_USB_PORT_SKIP, [USB_PORT_BACK_PANEL] = PEI_USB_PORT_BACK_PANEL, [USB_PORT_FRONT_PANEL] = PEI_USB_PORT_FRONT_PANEL, [USB_PORT_DOCK] = PEI_USB_PORT_DOCK, [USB_PORT_MINI_PCIE] = PEI_USB_PORT_MINI_PCIE, [USB_PORT_FLEX] = PEI_USB_PORT_FLEX, [USB_PORT_INTERNAL] = PEI_USB_PORT_INTERNAL, }; return loc >= ARRAY_SIZE(map) ? PEI_USB_PORT_SKIP : map[loc]; } static uint8_t map_to_pei_oc_pin(const uint8_t oc_pin) { return oc_pin >= USB_OC_PIN_SKIP ? PEI_USB_OC_PIN_SKIP : oc_pin; } void perform_raminit(const int s3resume) { const struct device *gbe = pcidev_on_root(0x19, 0); const struct northbridge_intel_haswell_config *cfg = config_of_soc(); struct pei_data pei_data = { .pei_version = PEI_VERSION, .mchbar = CONFIG_FIXED_MCHBAR_MMIO_BASE, .dmibar = CONFIG_FIXED_DMIBAR_MMIO_BASE, .epbar = CONFIG_FIXED_EPBAR_MMIO_BASE, .pciexbar = CONFIG_MMCONF_BASE_ADDRESS, .smbusbar = CONFIG_FIXED_SMBUS_IO_BASE, .hpet_address = CONFIG_HPET_ADDRESS, .rcba = CONFIG_FIXED_RCBA_MMIO_BASE, .pmbase = DEFAULT_PMBASE, .gpiobase = DEFAULT_GPIOBASE, .temp_mmio_base = 0xfed08000, .system_type = get_pch_platform_type(), .tseg_size = CONFIG_SMM_TSEG_SIZE, .ec_present = cfg->ec_present, .gbe_enable = gbe && gbe->enabled, .ddr_refresh_2x = CONFIG(ENABLE_DDR_2X_REFRESH), .dq_pins_interleaved = cfg->dq_pins_interleaved, .max_ddr3_freq = 1600, .usb_xhci_on_resume = cfg->usb_xhci_on_resume, }; for (size_t i = 0; i < ARRAY_SIZE(mainboard_usb2_ports); i++) { /* If a port is not enabled, skip it */ if (!mainboard_usb2_ports[i].enable) { pei_data.usb2_ports[i].over_current_pin = PEI_USB_OC_PIN_SKIP; pei_data.usb2_ports[i].location = PEI_USB_PORT_SKIP; continue; } const enum usb2_port_location loc = mainboard_usb2_ports[i].location; const uint8_t oc_pin = mainboard_usb2_ports[i].oc_pin; pei_data.usb2_ports[i].length = mainboard_usb2_ports[i].length; pei_data.usb2_ports[i].enable = mainboard_usb2_ports[i].enable; pei_data.usb2_ports[i].over_current_pin = map_to_pei_oc_pin(oc_pin); pei_data.usb2_ports[i].location = map_to_pei_usb2_location(loc); } for (size_t i = 0; i < ARRAY_SIZE(mainboard_usb3_ports); i++) { const uint8_t oc_pin = mainboard_usb3_ports[i].oc_pin; pei_data.usb3_ports[i].enable = mainboard_usb3_ports[i].enable; pei_data.usb3_ports[i].over_current_pin = map_to_pei_oc_pin(oc_pin); } /* MRC has hardcoded assumptions of 2 meaning S3 wake. Normalize it here. */ pei_data.boot_mode = s3resume ? 2 : 0; /* Obtain the SPD addresses from mainboard code */ struct spd_info spdi = {0}; mb_get_spd_map(&spdi); /* MRC expects left-aligned SMBus addresses, and 0xff for memory-down */ for (size_t i = 0; i < ARRAY_SIZE(spdi.addresses); i++) { const uint8_t addr = spdi.addresses[i]; pei_data.spd_addresses[i] = addr == SPD_MEMORY_DOWN ? 0xff : addr << 1; } /* Calculate unimplemented DIMM slots for each channel */ pei_data.dimm_channel0_disabled = make_channel_disabled_mask(&pei_data, 0); pei_data.dimm_channel1_disabled = make_channel_disabled_mask(&pei_data, 1); timestamp_add_now(TS_BEFORE_INITRAM); copy_spd(&pei_data, &spdi); sdram_initialize(&pei_data); timestamp_add_now(TS_AFTER_INITRAM); post_code(0x3b); intel_early_me_status(); int cbmem_was_initted = !cbmem_recovery(s3resume); if (s3resume && !cbmem_was_initted) { /* Failed S3 resume, reset to come up cleanly */ printk(BIOS_CRIT, "Failed to recover CBMEM in S3 resume.\n"); system_reset(); } /* Save data returned from MRC on non-S3 resumes. */ if (!s3resume) save_mrc_data(&pei_data); setup_sdram_meminfo(&pei_data); }