/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "haswell.h" static const char *northbridge_acpi_name(const struct device *dev) { if (dev->path.type == DEVICE_PATH_DOMAIN) return "PCI0"; if (!is_pci_dev_on_bus(dev, 0)) return NULL; switch (dev->path.pci.devfn) { case PCI_DEVFN(0, 0): return "MCHC"; } return NULL; } struct device_operations haswell_pci_domain_ops = { .read_resources = pci_domain_read_resources, .set_resources = pci_domain_set_resources, .scan_bus = pci_domain_scan_bus, .acpi_name = northbridge_acpi_name, .write_acpi_tables = northbridge_write_acpi_tables, }; static int get_bar(struct device *dev, unsigned int index, u32 *base, u32 *len) { u32 bar = pci_read_config32(dev, index); /* If not enabled don't report it */ if (!(bar & 0x1)) return 0; /* Knock down the enable bit */ *base = bar & ~1; return 1; } /* * There are special BARs that actually are programmed in the MCHBAR. These Intel special * features, but they do consume resources that need to be accounted for. */ static int get_bar_in_mchbar(struct device *dev, unsigned int index, u32 *base, u32 *len) { u32 bar = mchbar_read32(index); /* If not enabled don't report it */ if (!(bar & 0x1)) return 0; /* Knock down the enable bit */ *base = bar & ~1; return 1; } struct fixed_mmio_descriptor { unsigned int index; u32 size; int (*get_resource)(struct device *dev, unsigned int index, u32 *base, u32 *size); const char *description; }; struct fixed_mmio_descriptor mc_fixed_resources[] = { { MCHBAR, MCH_BASE_SIZE, get_bar, "MCHBAR" }, { DMIBAR, DMI_BASE_SIZE, get_bar, "DMIBAR" }, { EPBAR, EP_BASE_SIZE, get_bar, "EPBAR" }, { GDXCBAR, GDXC_BASE_SIZE, get_bar_in_mchbar, "GDXCBAR" }, { EDRAMBAR, EDRAM_BASE_SIZE, get_bar_in_mchbar, "EDRAMBAR" }, }; /* Add all known fixed MMIO ranges that hang off the host bridge/memory controller device. */ static void mc_add_fixed_mmio_resources(struct device *dev) { int i; for (i = 0; i < ARRAY_SIZE(mc_fixed_resources); i++) { u32 base; u32 size; struct resource *resource; unsigned int index; size = mc_fixed_resources[i].size; index = mc_fixed_resources[i].index; if (!mc_fixed_resources[i].get_resource(dev, index, &base, &size)) continue; resource = new_resource(dev, mc_fixed_resources[i].index); resource->base = base; resource->size = size; resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED; printk(BIOS_DEBUG, "%s: Adding %s @ %x 0x%08lx-0x%08lx.\n", __func__, mc_fixed_resources[i].description, index, (unsigned long)base, (unsigned long)(base + size - 1)); } mmconf_resource(dev, PCIEXBAR); } /* * Host Memory Map: * * +--------------------------+ TOUUD * | | * +--------------------------+ 4GiB * | PCI Address Space | * +--------------------------+ TOLUD (also maps into MC address space) * | iGD | * +--------------------------+ BDSM * | GTT | * +--------------------------+ BGSM * | TSEG | * +--------------------------+ TSEGMB * | DPR | * +--------------------------+ (DPR top - DPR size) * | Usage DRAM | * +--------------------------+ 0 * * Some of the base registers above can be equal, making the size of the regions within 0. * This is because the memory controller internally subtracts the base registers from each * other to determine sizes of the regions. In other words, the memory map regions are always * in a fixed order, no matter what sizes they have. */ struct map_entry { int reg; int is_64_bit; int is_limit; const char *description; }; static void read_map_entry(struct device *dev, struct map_entry *entry, uint64_t *result) { uint64_t value; uint64_t mask; /* All registers have a 1MiB granularity */ mask = ((1ULL << 20) - 1); mask = ~mask; value = 0; if (entry->is_64_bit) { value = pci_read_config32(dev, entry->reg + 4); value <<= 32; } value |= pci_read_config32(dev, entry->reg); value &= mask; if (entry->is_limit) value |= ~mask; *result = value; } #define MAP_ENTRY(reg_, is_64_, is_limit_, desc_) \ { \ .reg = reg_, \ .is_64_bit = is_64_, \ .is_limit = is_limit_, \ .description = desc_, \ } #define MAP_ENTRY_BASE_32(reg_, desc_) MAP_ENTRY(reg_, 0, 0, desc_) #define MAP_ENTRY_BASE_64(reg_, desc_) MAP_ENTRY(reg_, 1, 0, desc_) #define MAP_ENTRY_LIMIT_64(reg_, desc_) MAP_ENTRY(reg_, 1, 1, desc_) enum { TOM_REG, TOUUD_REG, MESEG_BASE_REG, MESEG_LIMIT_REG, REMAP_BASE_REG, REMAP_LIMIT_REG, TOLUD_REG, BGSM_REG, BDSM_REG, TSEG_REG, /* Must be last */ NUM_MAP_ENTRIES, }; static struct map_entry memory_map[NUM_MAP_ENTRIES] = { [TOM_REG] = MAP_ENTRY_BASE_64(TOM, "TOM"), [TOUUD_REG] = MAP_ENTRY_BASE_64(TOUUD, "TOUUD"), [MESEG_BASE_REG] = MAP_ENTRY_BASE_64(MESEG_BASE, "MESEG_BASE"), [MESEG_LIMIT_REG] = MAP_ENTRY_LIMIT_64(MESEG_LIMIT, "MESEG_LIMIT"), [REMAP_BASE_REG] = MAP_ENTRY_BASE_64(REMAPBASE, "REMAP_BASE"), [REMAP_LIMIT_REG] = MAP_ENTRY_LIMIT_64(REMAPLIMIT, "REMAP_LIMIT"), [TOLUD_REG] = MAP_ENTRY_BASE_32(TOLUD, "TOLUD"), [BDSM_REG] = MAP_ENTRY_BASE_32(BDSM, "BDSM"), [BGSM_REG] = MAP_ENTRY_BASE_32(BGSM, "BGSM"), [TSEG_REG] = MAP_ENTRY_BASE_32(TSEG, "TSEGMB"), }; static void mc_read_map_entries(struct device *dev, uint64_t *values) { int i; for (i = 0; i < NUM_MAP_ENTRIES; i++) { read_map_entry(dev, &memory_map[i], &values[i]); } } static void mc_report_map_entries(struct device *dev, uint64_t *values) { int i; for (i = 0; i < NUM_MAP_ENTRIES; i++) { printk(BIOS_DEBUG, "MC MAP: %s: 0x%llx\n", memory_map[i].description, values[i]); } /* One can validate the BDSM and BGSM against the GGC */ printk(BIOS_DEBUG, "MC MAP: GGC: 0x%x\n", pci_read_config16(dev, GGC)); } static void mc_add_dram_resources(struct device *dev, int *resource_cnt) { unsigned long base_k, size_k, index; struct resource *resource; uint64_t mc_values[NUM_MAP_ENTRIES]; /* Read in the MAP registers and report their values */ mc_read_map_entries(dev, &mc_values[0]); mc_report_map_entries(dev, &mc_values[0]); /* * DMA Protected Range can be reserved below TSEG for PCODE patch * or TXT/Boot Guard related data. Rather than report a base address, * the DPR register reports the TOP of the region, which is the same * as TSEG base. The region size is reported in MiB in bits 11:4. */ const union dpr_register dpr = { .raw = pci_read_config32(dev, DPR), }; printk(BIOS_DEBUG, "MC MAP: DPR: 0x%x\n", dpr.raw); /* * These are the host memory ranges that should be added: * - 0 -> 0xa0000: cacheable * - 0xc0000 -> TSEG: cacheable * - TSEG -> BGSM: cacheable with standard MTRRs and reserved * - BGSM -> TOLUD: not cacheable with standard MTRRs and reserved * - 4GiB -> TOUUD: cacheable * * The default SMRAM space is reserved so that the range doesn't have to be saved * during S3 Resume. Once marked reserved the OS cannot use the memory. This is a * bit of an odd place to reserve the region, but the CPU devices don't have * dev_ops->read_resources() called on them. * * The range 0xa0000 -> 0xc0000 does not have any resources associated with it to * handle legacy VGA memory. If this range is not omitted the mtrr code will setup * the area as cacheable, causing VGA access to not work. * * The TSEG region is mapped as cacheable so that one can perform SMRAM relocation * faster. Once the SMRR is enabled, the SMRR takes precedence over the existing * MTRRs covering this region. * * It should be noted that cacheable entry types need to be added in order. The reason * is that the current MTRR code assumes this and falls over itself if it isn't. * * The resource index starts low and should not meet or exceed PCI_BASE_ADDRESS_0. */ index = *resource_cnt; /* 0 - > 0xa0000 */ base_k = 0; size_k = (0xa0000 >> 10) - base_k; ram_resource_kb(dev, index++, base_k, size_k); /* 0xc0000 -> TSEG - DPR */ base_k = 0xc0000 >> 10; size_k = (unsigned long)(mc_values[TSEG_REG] >> 10) - base_k; size_k -= dpr.size * MiB / KiB; ram_resource_kb(dev, index++, base_k, size_k); /* TSEG - DPR -> BGSM */ resource = new_resource(dev, index++); resource->base = mc_values[TSEG_REG] - dpr.size * MiB; resource->size = mc_values[BGSM_REG] - (mc_values[TSEG_REG] - dpr.size * MiB); resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED | IORESOURCE_CACHEABLE; /* BGSM -> TOLUD. If the IGD is disabled, BGSM can equal TOLUD. */ if (mc_values[BGSM_REG] != mc_values[TOLUD_REG]) { resource = new_resource(dev, index++); resource->base = mc_values[BGSM_REG]; resource->size = mc_values[TOLUD_REG] - mc_values[BGSM_REG]; resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_RESERVE | IORESOURCE_ASSIGNED; } /* 4GiB -> TOUUD */ upper_ram_end(dev, index++, mc_values[TOUUD_REG]); /* Reserve everything between A segment and 1MB: * * 0xa0000 - 0xbffff: Legacy VGA * 0xc0000 - 0xfffff: RAM */ mmio_resource_kb(dev, index++, (0xa0000 >> 10), (0xc0000 - 0xa0000) >> 10); reserved_ram_resource_kb(dev, index++, (0xc0000 >> 10), (0x100000 - 0xc0000) >> 10); *resource_cnt = index; } static void mc_read_resources(struct device *dev) { int index = 0; const bool vtd_capable = !(pci_read_config32(dev, CAPID0_A) & VTD_DISABLE); /* Read standard PCI resources */ pci_dev_read_resources(dev); /* Add all fixed MMIO resources */ mc_add_fixed_mmio_resources(dev); /* Add VT-d MMIO resources, if capable */ if (vtd_capable) { mmio_resource_kb(dev, index++, GFXVT_BASE_ADDRESS / KiB, GFXVT_BASE_SIZE / KiB); mmio_resource_kb(dev, index++, VTVC0_BASE_ADDRESS / KiB, VTVC0_BASE_SIZE / KiB); } /* Calculate and add DRAM resources */ mc_add_dram_resources(dev, &index); } /* * The Mini-HD audio device is disabled whenever the IGD is. This is because it provides * audio over the integrated graphics port(s), which requires the IGD to be functional. */ static void disable_devices(void) { static const struct { const unsigned int devfn; const u32 mask; const char *const name; } nb_devs[] = { { PCI_DEVFN(1, 2), DEVEN_D1F2EN, "PEG12" }, { PCI_DEVFN(1, 1), DEVEN_D1F1EN, "PEG11" }, { PCI_DEVFN(1, 0), DEVEN_D1F0EN, "PEG10" }, { PCI_DEVFN(2, 0), DEVEN_D2EN | DEVEN_D3EN, "IGD" }, { PCI_DEVFN(3, 0), DEVEN_D3EN, "Mini-HD audio" }, { PCI_DEVFN(4, 0), DEVEN_D4EN, "\"device 4\"" }, { PCI_DEVFN(7, 0), DEVEN_D7EN, "\"device 7\"" }, }; struct device *host_dev = pcidev_on_root(0, 0); u32 deven; size_t i; if (!host_dev) return; deven = pci_read_config32(host_dev, DEVEN); for (i = 0; i < ARRAY_SIZE(nb_devs); i++) { struct device *dev = pcidev_path_on_root(nb_devs[i].devfn); if (!dev || !dev->enabled) { printk(BIOS_DEBUG, "Disabling %s.\n", nb_devs[i].name); deven &= ~nb_devs[i].mask; } } pci_write_config32(host_dev, DEVEN, deven); } static void init_egress(void) { /* VC0: Enable, ID0, TC0 */ epbar_write32(EPVC0RCTL, 1 << 31 | 0 << 24 | 1 << 0); /* No Low Priority Extended VCs, one Extended VC */ epbar_write32(EPPVCCAP1, 0 << 4 | 1 << 0); /* VC1: Enable, ID1, TC1 */ epbar_write32(EPVC1RCTL, 1 << 31 | 1 << 24 | 1 << 1); /* Poll the VC1 Negotiation Pending bit */ while ((epbar_read16(EPVC1RSTS) & (1 << 1)) != 0) ; } static void northbridge_dmi_init(void) { const bool is_haswell_h = !CONFIG(INTEL_LYNXPOINT_LP); /* Steps prior to DMI ASPM */ if (is_haswell_h) { /* Configure DMI De-Emphasis */ dmibar_setbits16(DMILCTL2, 1 << 6); /* 0b: -6.0 dB, 1b: -3.5 dB */ dmibar_setbits32(DMIL0SLAT, 1 << 31); dmibar_setbits32(DMILLTC, 1 << 29); dmibar_clrsetbits32(DMI_AFE_PM_TMR, 0x1f, 0x13); } /* Clear error status bits */ dmibar_write32(DMIUESTS, 0xffffffff); dmibar_write32(DMICESTS, 0xffffffff); if (is_haswell_h) { /* Enable ASPM L0s and L1 on SA link, should happen before PCH link */ dmibar_setbits16(DMILCTL, 1 << 1 | 1 << 0); } } static void northbridge_topology_init(void) { const u32 eple_a[3] = { EPLE2A, EPLE3A, EPLE4A }; const u32 eple_d[3] = { EPLE2D, EPLE3D, EPLE4D }; /* Set the CID1 Egress Port 0 Root Topology */ epbar_clrsetbits32(EPESD, 0xff << 16, 1 << 16); epbar_clrsetbits32(EPLE1D, 0xff << 16, 1 | 1 << 16); epbar_write32(EPLE1A, CONFIG_FIXED_DMIBAR_MMIO_BASE); epbar_write32(EPLE1A + 4, 0); for (unsigned int i = 0; i <= 2; i++) { const struct device *const dev = pcidev_on_root(1, i); if (!dev || !dev->enabled) continue; epbar_write32(eple_a[i], (u32)PCI_DEV(0, 1, i)); epbar_write32(eple_a[i] + 4, 0); epbar_clrsetbits32(eple_d[i], 0xff << 16, 1 | 1 << 16); pci_update_config32(dev, PEG_ESD, ~(0xff << 16), (1 << 16)); pci_write_config32(dev, PEG_LE1A, CONFIG_FIXED_EPBAR_MMIO_BASE); pci_write_config32(dev, PEG_LE1A + 4, 0); pci_update_config32(dev, PEG_LE1D, ~(0xff << 16), (1 << 16) | 1); /* Read and write to lock register */ pci_or_config32(dev, PEG_DCAP2, 0); } /* Set the CID1 DMI Port Root Topology */ dmibar_clrsetbits32(DMIESD, 0xff << 16, 1 << 16); dmibar_clrsetbits32(DMILE1D, 0xffff << 16, 1 | 2 << 16); dmibar_write32(DMILE1A, CONFIG_FIXED_RCBA_MMIO_BASE); dmibar_write32(DMILE1A + 4, 0); dmibar_write32(DMILE2A, CONFIG_FIXED_EPBAR_MMIO_BASE); dmibar_write32(DMILE2A + 4, 0); dmibar_clrsetbits32(DMILE2D, 0xff << 16, 1 | 1 << 16); /* Program RO and Write-Once Registers */ dmibar_setbits32(DMIPVCCAP1, 0); dmibar_setbits32(DMILCAP, 0); } static void northbridge_init(struct device *dev) { init_egress(); northbridge_dmi_init(); northbridge_topology_init(); /* Enable Power Aware Interrupt Routing. */ mchbar_clrsetbits8(INTRDIRCTL, 0x7, 0x4); /* Clear 2:0, set Fixed Priority */ disable_devices(); /* * Set bits 0 + 1 of BIOS_RESET_CPL to indicate to the CPU * that BIOS has initialized memory and power management. */ mchbar_setbits8(BIOS_RESET_CPL, 3); printk(BIOS_DEBUG, "Set BIOS_RESET_CPL\n"); /* Configure turbo power limits 1ms after reset complete bit. */ mdelay(1); set_power_limits(28); } static void northbridge_final(struct device *dev) { pci_or_config16(dev, GGC, 1 << 0); pci_or_config32(dev, DPR, 1 << 0); pci_or_config32(dev, MESEG_LIMIT, 1 << 10); pci_or_config32(dev, REMAPBASE, 1 << 0); pci_or_config32(dev, REMAPLIMIT, 1 << 0); pci_or_config32(dev, TOM, 1 << 0); pci_or_config32(dev, TOUUD, 1 << 0); pci_or_config32(dev, BDSM, 1 << 0); pci_or_config32(dev, BGSM, 1 << 0); pci_or_config32(dev, TSEG, 1 << 0); pci_or_config32(dev, TOLUD, 1 << 0); /* Memory Controller Lockdown */ mchbar_setbits32(MC_LOCK, 0x8f); mchbar_setbits32(MMIO_PAVP_MSG, 1 << 0); /* PAVP */ mchbar_setbits32(PCU_DDR_PTM_CTL, 1 << 5); /* DDR PTM */ mchbar_setbits32(DMIVCLIM, 1 << 31); mchbar_setbits32(CRDTLCK, 1 << 0); mchbar_setbits32(MCARBLCK, 1 << 0); mchbar_setbits32(REQLIM, 1 << 31); mchbar_setbits32(UMAGFXCTL, 1 << 0); /* UMA GFX */ mchbar_setbits32(VTDTRKLCK, 1 << 0); /* VTDTRK */ /* Read+write the following */ mchbar_setbits32(VDMBDFBARKVM, 0); mchbar_setbits32(VDMBDFBARPAVP, 0); mchbar_setbits32(HDAUDRID, 0); } static struct device_operations mc_ops = { .read_resources = mc_read_resources, .set_resources = pci_dev_set_resources, .enable_resources = pci_dev_enable_resources, .init = northbridge_init, .final = northbridge_final, .ops_pci = &pci_dev_ops_pci, }; static const unsigned short mc_pci_device_ids[] = { 0x0c00, /* Desktop */ 0x0c04, /* Mobile */ 0x0a04, /* ULT */ 0x0c08, /* Server */ 0x0d00, /* Crystal Well Desktop */ 0x0d04, /* Crystal Well Mobile */ 0x0d08, /* Crystal Well Server (by extrapolation) */ 0 }; static const struct pci_driver mc_driver_hsw __pci_driver = { .ops = &mc_ops, .vendor = PCI_VID_INTEL, .devices = mc_pci_device_ids, }; struct device_operations haswell_cpu_bus_ops = { .read_resources = noop_read_resources, .set_resources = noop_set_resources, .init = mp_cpu_bus_init, .acpi_fill_ssdt = generate_cpu_entries, }; struct chip_operations northbridge_intel_haswell_ops = { CHIP_NAME("Intel Haswell integrated Northbridge") };