/* * This file is part of the coreboot project. * * converted to C 6/2004 yhlu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* This was originally for the e7500, modified for e7501 * The primary differences are that 7501 apparently can * support single channel RAM (i haven't tested), * CAS1.5 is no longer supported, The ECC scrubber * now supports a mode to zero RAM and init ECC in one step * and the undocumented registers at 0x80 require new * (undocumented) values determined by guesswork and * comparison w/ OEM BIOS values. * Steven James 02/06/2003 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "raminit.h" #include "e7505.h" #include "debug.h" /*----------------------------------------------------------------------------- Definitions: -----------------------------------------------------------------------------*/ // Uncomment this to enable run-time checking of DIMM parameters // for dual-channel operation // Unfortunately the code seems to chew up several K of space. //#define VALIDATE_DIMM_COMPATIBILITY #if IS_ENABLED(CONFIG_DEBUG_RAM_SETUP) #define RAM_DEBUG_MESSAGE(x) printk(BIOS_DEBUG, x) #define RAM_DEBUG_HEX32(x) printk(BIOS_DEBUG, "%08x", x) #define RAM_DEBUG_HEX8(x) printk(BIOS_DEBUG, "%02x", x) #define DUMPNORTH() dump_pci_device(MCHDEV) #else #define RAM_DEBUG_MESSAGE(x) #define RAM_DEBUG_HEX32(x) #define RAM_DEBUG_HEX8(x) #define DUMPNORTH() #endif #define E7501_SDRAM_MODE (SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4) #define SPD_ERROR "Error reading SPD info\n" #define MCHDEV PCI_DEV(0, 0, 0) #define RASDEV PCI_DEV(0, 0, 1) #define AGPDEV PCI_DEV(0, 1, 0) #define D060DEV PCI_DEV(0, 6, 0) // NOTE: This used to be 0x100000. // That doesn't work on systems where A20M# is asserted, because // attempts to access 0x1000NN end up accessing 0x0000NN. #define RCOMP_MMIO ((u8 *)0x200000) struct dimm_size { unsigned long side1; unsigned long side2; }; static const uint32_t refresh_frequency[] = { /* Relative frequency (array value) of each E7501 Refresh Mode Select * (RMS) value (array index) * 0 == least frequent refresh (longest interval between refreshes) * [0] disabled -> 0 * [1] 15.6 usec -> 2 * [2] 7.8 usec -> 3 * [3] 64 usec -> 1 * [4] reserved -> 0 * [5] reserved -> 0 * [6] reserved -> 0 * [7] 64 clocks -> 4 */ 0, 2, 3, 1, 0, 0, 0, 4 }; static const uint32_t refresh_rate_map[] = { /* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode * Select values (array value) * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0 * The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and * 64 clock (481 ns) (7) refresh. * [0] == 15.625 us -> 15.6 us * [1] == 3.9 us -> 481 ns * [2] == 7.8 us -> 7.8 us * [3] == 31.3 us -> 15.6 us * [4] == 62.5 us -> 15.6 us * [5] == 125 us -> 64 us */ 1, 7, 2, 1, 1, 3 }; #define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1) #ifdef VALIDATE_DIMM_COMPATIBILITY // SPD parameters that must match for dual-channel operation static const uint8_t dual_channel_parameters[] = { SPD_MEMORY_TYPE, SPD_MODULE_VOLTAGE, SPD_NUM_COLUMNS, SPD_NUM_ROWS, SPD_NUM_DIMM_BANKS, SPD_PRIMARY_SDRAM_WIDTH, SPD_NUM_BANKS_PER_SDRAM }; #endif /* VALIDATE_DIMM_COMPATIBILITY */ /* Comments here are remains of e7501 or even 855PM. * They might be partially (in)correct for e7505. */ /* (DRAM Read Timing Control, if similar to 855PM?) * 0x80 - 0x81 documented differently for e7505 * This register has something to do with CAS latencies, * possibly this is the real chipset control. * At 0x00 CAS latency 1.5 works. * At 0x06 CAS latency 2.5 works. * At 0x01 CAS latency 2.0 works. * * This is still undocumented in e7501, but with different values * CAS 2.0 values taken from Intel BIOS settings, others are a guess * and may be terribly wrong. Old values preserved as comments until I * figure this out for sure. * e7501 docs claim that CAS1.5 is unsupported, so it may or may not * work at all. * Steven James 02/06/2003 * * NOTE: values now configured in configure_e7501_cas_latency() based * on SPD info and total number of DIMMs (per Intel) */ /* FDHC - Fixed DRAM Hole Control ??? * 0x58 undocumented for e7505, memory hole in southbridge configuration? * [7:7] Hole_Enable * 0 == No memory Hole * 1 == Memory Hole from 15MB to 16MB * [6:0] Reserved */ /* Another Intel undocumented register * 0x88 - 0x8B * [31:31] Purpose unknown * [26:26] Master DLL Reset? * 0 == Normal operation? * 1 == Reset? * [07:07] Periodic memory recalibration? * 0 == Disabled? * 1 == Enabled? * [04:04] Receive FIFO RE-Sync? * 0 == Normal operation? * 1 == Reset? */ /* DDR RECOMP tables */ // Slew table for 2x drive? static const uint32_t slew_2x[] = { 0x00000000, 0x76543210, 0xffffeca8, 0xffffffff, 0x21000000, 0xa8765432, 0xffffffec, 0xffffffff, }; // Pull Up / Pull Down offset table, if analogous to IXP2800? static const uint32_t pull_updown_offset_table[] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x88888888, 0x88888888, 0x88888888, 0x88888888, }; /*----------------------------------------------------------------------------- Delay functions: -----------------------------------------------------------------------------*/ /* Estimate that SLOW_DOWN_IO takes about 1 us */ #define SLOW_DOWN_IO inb(0x80) static void local_udelay(int i) { while (i--) { SLOW_DOWN_IO; } } /* delay for 200us */ #define DO_DELAY local_udelay(200) #define EXTRA_DELAY DO_DELAY /*----------------------------------------------------------------------------- Handle (undocumented) control bits MCHTST and PCI_DEV(0,6,0) -----------------------------------------------------------------------------*/ typedef enum { MCHTST_CMD_0, D060_ENABLE, D060_DISABLE, RCOMP_BAR_ENABLE, RCOMP_BAR_DISABLE, } mchtst_cc; typedef enum { D060_CMD_0, D060_CMD_1, } d060_cc; typedef enum { RCOMP_HOLD, RCOMP_RELEASE, RCOMP_SMR_00, RCOMP_SMR_01, } rcomp_smr_cc; /** * MCHTST - 0xF4 - 0xF7 -- Based on similarity to 855PM * * [31:31] Purpose unknown * [30:30] Purpose unknown * [29:23] Unknown - not used? * [22:22] System Memory MMR Enable * 0 == Disable: mem space and BAR at 0x14 are not accessible * 1 == Enable: mem space and BAR at 0x14 are accessible * [21:20] Purpose unknown * [19:02] Unknown - not used? * [01:01] D6EN (Device #6 enable) * 0 == Disable * 1 == Enable * [00:00] Unknown - not used? */ static void mchtest_control(mchtst_cc cmd) { uint32_t dword = pci_read_config32(MCHDEV, MCHTST); switch (cmd) { case MCHTST_CMD_0: dword &= ~(3 << 30); break; case RCOMP_BAR_ENABLE: dword |= (1 << 22); break; case RCOMP_BAR_DISABLE: dword &= ~(1 << 22); break; case D060_ENABLE: dword |= (1 << 1); break; case D060_DISABLE: dword &= ~(1 << 1); break; }; pci_write_config32(MCHDEV, MCHTST, dword); } /** * */ static void d060_control(d060_cc cmd) { mchtest_control(D060_ENABLE); uint32_t dword = pci_read_config32(D060DEV, 0xf0); switch (cmd) { case D060_CMD_0: dword |= (1 << 2); break; case D060_CMD_1: dword |= (3 << 27); break; } pci_write_config32(D060DEV, 0xf0, dword); mchtest_control(D060_DISABLE); } /** * */ static void rcomp_smr_control(rcomp_smr_cc cmd) { uint32_t dword = read32(RCOMP_MMIO + SMRCTL); switch (cmd) { case RCOMP_HOLD: dword |= (1 << 9); break; case RCOMP_RELEASE: dword &= ~((1 << 9) | (3 << 0)); dword |= (1 << 10) | (1 << 0); break; case RCOMP_SMR_00: dword &= ~(1 << 8); break; case RCOMP_SMR_01: dword |= (1 << 10) | (1 << 8); break; } write32(RCOMP_MMIO + SMRCTL, dword); } /*----------------------------------------------------------------------------- Serial presence detect (SPD) functions: -----------------------------------------------------------------------------*/ static void die_on_spd_error(int spd_return_value) { if (spd_return_value < 0) die("Error reading SPD info\n"); } /** * Calculate the page size for each physical bank of the DIMM: * log2(page size) = (# columns) + log2(data width) * * NOTE: Page size is the total number of data bits in a row. * * @param dimm_socket_address SMBus address of DIMM socket to interrogate. * @return log2(page size) for each side of the DIMM. */ static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address) { uint16_t module_data_width; int value; struct dimm_size pgsz; pgsz.side1 = 0; pgsz.side2 = 0; // Side 1 value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS); if (value < 0) goto hw_err; pgsz.side1 = value & 0xf; // # columns in bank 1 /* Get the module data width and convert it to a power of two */ value = spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB); if (value < 0) goto hw_err; module_data_width = (value & 0xff) << 8; value = spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB); if (value < 0) goto hw_err; module_data_width |= (value & 0xff); pgsz.side1 += log2(module_data_width); /* side two */ value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS); if (value < 0) goto hw_err; if (value > 2) die("Bad SPD value\n"); if (value == 2) { pgsz.side2 = pgsz.side1; // Assume symmetric banks until we know differently value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS); if (value < 0) goto hw_err; if ((value & 0xf0) != 0) { // Asymmetric banks pgsz.side2 -= value & 0xf; /* Subtract out columns on side 1 */ pgsz.side2 += (value >> 4) & 0xf; /* Add in columns on side 2 */ } } return pgsz; hw_err: die(SPD_ERROR); return pgsz; // Never reached } /** * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16). * * @param dimm_socket_address SMBus address of DIMM socket to interrogate. * @return Width in bits of each DIMM side's DRAMs. */ static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address) { int value; struct dimm_size width; width.side1 = 0; width.side2 = 0; value = spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH); die_on_spd_error(value); width.side1 = value & 0x7f; // Mask off bank 2 flag if (value & 0x80) { width.side2 = width.side1 << 1; // Bank 2 exists and is double-width } else { // If bank 2 exists, it's the same width as bank 1 value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS); die_on_spd_error(value); if (value == 2) width.side2 = width.side1; } return width; } /** * Calculate the log base 2 size in bits of both DIMM sides. * * log2(# bits) = (# columns) + log2(data width) + * (# rows) + log2(banks per SDRAM) * * Note that it might be easier to use SPD byte 31 here, it has the DIMM size * as a multiple of 4MB. The way we do it now we can size both sides of an * asymmetric DIMM. * * @param dimm_socket_address SMBus address of DIMM socket to interrogate. * @return log2(number of bits) for each side of the DIMM. */ static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address) { int value; // Start with log2(page size) struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address); if (sz.side1 > 0) { value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS); die_on_spd_error(value); sz.side1 += value & 0xf; if (sz.side2 > 0) { // Double-sided DIMM if (value & 0xF0) sz.side2 += value >> 4; // Asymmetric else sz.side2 += value; // Symmetric } value = spd_read_byte(dimm_socket_address, SPD_NUM_BANKS_PER_SDRAM); die_on_spd_error(value); value = log2(value); sz.side1 += value; if (sz.side2 > 0) sz.side2 += value; } return sz; } #ifdef VALIDATE_DIMM_COMPATIBILITY /** * Determine whether two DIMMs have the same value for an SPD parameter. * * @param spd_byte_number The SPD byte number to compare in both DIMMs. * @param dimm0_address SMBus address of the 1st DIMM socket to interrogate. * @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate. * @return 1 if both DIMM sockets report the same value for the specified * SPD parameter, 0 if the values differed or an error occurred. */ static uint8_t are_spd_values_equal(uint8_t spd_byte_number, uint16_t dimm0_address, uint16_t dimm1_address) { uint8_t bEqual = 0; int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number); int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number); if ((dimm0_value >= 0) && (dimm1_value >= 0) && (dimm0_value == dimm1_value)) bEqual = 1; return bEqual; } #endif /** * Scan for compatible DIMMs. * * The code in this module only supports dual-channel operation, so we test * that compatible DIMMs are paired. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @return A bitmask indicating which of the possible sockets for each channel * was found to contain a compatible DIMM. * Bit 0 corresponds to the closest socket for channel 0 * Bit 1 to the next socket for channel 0 * ... * Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0 * Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1 * ... * Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1 */ static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl) { int i; uint8_t dimm_mask = 0; // Have to increase size of dimm_mask if this assertion is violated ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4); // Find DIMMs we can support on channel 0. // Then see if the corresponding channel 1 DIMM has the same parameters, // since we only support dual-channel. for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) { uint16_t channel0_dimm = ctrl->channel0[i]; uint16_t channel1_dimm = ctrl->channel1[i]; uint8_t bDualChannel = 1; #ifdef VALIDATE_DIMM_COMPATIBILITY struct dimm_size page_size; struct dimm_size sdram_width; #endif int spd_value; if (channel0_dimm == 0) continue; // No such socket on this mainboard if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) != SPD_MEMORY_TYPE_SDRAM_DDR) continue; #ifdef VALIDATE_DIMM_COMPATIBILITY if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) != SPD_VOLTAGE_SSTL2) continue; // Unsupported voltage // E7501 does not support unregistered DIMMs spd_value = spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES); if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) continue; // Must support burst = 4 for dual-channel operation on E7501 // NOTE: for single-channel, burst = 8 is required spd_value = spd_read_byte(channel0_dimm, SPD_SUPPORTED_BURST_LENGTHS); if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0)) continue; page_size = sdram_spd_get_page_size(channel0_dimm); sdram_width = sdram_spd_get_width(channel0_dimm); // Validate DIMM page size // The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel // NOTE: 4 KB = 32 Kb = 2^15 // 32 KB = 262 Kb = 2^18 if ((page_size.side1 < 15) || (page_size.side1 > 18)) continue; // If DIMM is double-sided, verify side2 page size if (page_size.side2 != 0) { if ((page_size.side2 < 15) || (page_size.side2 > 18)) continue; } // Validate SDRAM width // The E7501 only supports x4 and x8 devices if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8)) continue; // If DIMM is double-sided, verify side2 width if (sdram_width.side2 != 0) { if ((sdram_width.side2 != 4) && (sdram_width.side2 != 8)) continue; } #endif // Channel 0 DIMM looks compatible. // Now see if it is paired with the proper DIMM on channel 1. ASSERT(channel1_dimm != 0); // No such socket on this mainboard?? // NOTE: unpopulated DIMMs cause read to fail spd_value = spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES); if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) { printk(BIOS_DEBUG, "Skipping un-matched DIMMs - only dual-channel operation supported\n"); continue; } #ifdef VALIDATE_DIMM_COMPATIBILITY spd_value = spd_read_byte(channel1_dimm, SPD_SUPPORTED_BURST_LENGTHS); if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0)) continue; int j; for (j = 0; j < sizeof(dual_channel_parameters); ++j) { if (!are_spd_values_equal (dual_channel_parameters[j], channel0_dimm, channel1_dimm)) { bDualChannel = 0; break; } } #endif /* VALIDATE_DIMM_COMPATIBILITY */ if (bDualChannel) { // This DIMM pair is usable dimm_mask |= 1 << i; dimm_mask |= 1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i); } else printk(BIOS_DEBUG, "Skipping un-matched DIMMs - only dual-channel operation supported\n"); } return dimm_mask; } /*----------------------------------------------------------------------------- SDRAM configuration functions: -----------------------------------------------------------------------------*/ /** * Send the specified command to all DIMMs. * * @param command Specifies the command to be sent to the DIMMs. * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the * register value in JEDEC format. */ static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits) { uint8_t dimm_start_64M_multiple; uintptr_t dimm_start_address; uint32_t dram_controller_mode; uint8_t i; // Configure the RAM command dram_controller_mode = pci_read_config32(MCHDEV, DRC); dram_controller_mode &= 0xFFFFFF8F; dram_controller_mode |= command; pci_write_config32(MCHDEV, DRC, dram_controller_mode); // RAM_COMMAND_NORMAL is an exception. // It affects only the memory controller and does not need to be "sent" to the DIMMs. if (command == RAM_COMMAND_NORMAL) { EXTRA_DELAY; return; } // NOTE: for mode select commands, some of the location address bits are part of the command // Map JEDEC mode bits to E7505 if (command == RAM_COMMAND_MRS) { // Host address lines [25:18] map to DIMM address lines [7:0] // Host address lines [17:16] map to DIMM address lines [9:8] // Host address lines [15:4] map to DIMM address lines [11:0] dimm_start_address = (jedec_mode_bits & 0x00ff) << 18; dimm_start_address |= (jedec_mode_bits & 0x0300) << 8; dimm_start_address |= (jedec_mode_bits & 0x0fff) << 4; } else if (command == RAM_COMMAND_EMRS) { // Host address lines [15:4] map to DIMM address lines [11:0] dimm_start_address = (jedec_mode_bits << 4); } else { ASSERT(jedec_mode_bits == 0); dimm_start_address = 0; } // Send the command to all DIMMs by accessing a memory location within each dimm_start_64M_multiple = 0; /* FIXME: Only address the number of rows present in the system? * Seems like rows 4-7 overlap with 0-3. */ for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) { uint8_t dimm_end_64M_multiple = pci_read_config8(MCHDEV, DRB_ROW_0 + i); if (dimm_end_64M_multiple > dimm_start_64M_multiple) { dimm_start_address &= 0x3ffffff; dimm_start_address |= dimm_start_64M_multiple << 26; read32((void *)dimm_start_address); // Set the start of the next DIMM dimm_start_64M_multiple = dimm_end_64M_multiple; } } EXTRA_DELAY; } /** * Set the mode register of all DIMMs. * * The proper CAS# latency setting is added to the mode bits specified * by the caller. * * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the * register value in JEDEC format. */ static void set_ram_mode(uint16_t jedec_mode_bits) { ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK)); uint32_t dram_cas_latency = pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK; switch (dram_cas_latency) { case DRT_CAS_2_5: jedec_mode_bits |= SDRAM_CAS_2_5; break; case DRT_CAS_2_0: jedec_mode_bits |= SDRAM_CAS_2_0; break; default: BUG(); break; } do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits); } /*----------------------------------------------------------------------------- DIMM-independent configuration functions: -----------------------------------------------------------------------------*/ /** * Configure the E7501's DRAM Row Boundary (DRB) registers for the memory * present in the specified DIMM. * * @param dimm_log2_num_bits Specifies log2(number of bits) for each side of * the DIMM. * @param total_dram_64M_multiple Total DRAM in the system (as a multiple of * 64 MB) for DIMMs < dimm_index. * @param dimm_index Which DIMM pair is being processed * (0..MAX_DIMM_SOCKETS_PER_CHANNEL). * @return New multiple of 64 MB total DRAM in the system. */ static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index) { int i; ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL); // DIMM sides must be at least 32 MB ASSERT(dimm_log2_num_bits.side1 >= 28); ASSERT((dimm_log2_num_bits.side2 == 0) || (dimm_log2_num_bits.side2 >= 28)); // In dual-channel mode, we are called only once for each pair of DIMMs. // Each time we process twice the capacity of a single DIMM. // Convert single DIMM capacity to paired DIMM capacity // (multiply by two ==> add 1 to log2) dimm_log2_num_bits.side1++; if (dimm_log2_num_bits.side2 > 0) dimm_log2_num_bits.side2++; // Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB) // to the total capacity of the system // NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29 total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29)); // Configure the boundary address for the row on side 1 pci_write_config8(MCHDEV, DRB_ROW_0 + (dimm_index << 1), total_dram_64M_multiple); // If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair // (as a multiple of 64 MB) to the total capacity of the system if (dimm_log2_num_bits.side2 >= 29) total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side2 - 29)); // Configure the boundary address for the row (if any) on side 2 pci_write_config8(MCHDEV, DRB_ROW_1 + (dimm_index << 1), total_dram_64M_multiple); // Update boundaries for rows subsequent to these. // These settings will be overridden by a subsequent call if a populated physical slot exists for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) { pci_write_config8(MCHDEV, DRB_ROW_0 + (i << 1), total_dram_64M_multiple); pci_write_config8(MCHDEV, DRB_ROW_1 + (i << 1), total_dram_64M_multiple); } return total_dram_64M_multiple; } /** * Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM). * * If necessary, set up a remap window so we don't waste DRAM that ordinarily * would lie behind addresses reserved for memory-mapped I/O. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms(). */ static void configure_e7501_ram_addresses(const struct mem_controller *ctrl, uint8_t dimm_mask) { int i; uint8_t total_dram_64M_multiple = 0; uint64_t tolm, tom; uint16_t reg; /* FIXME: Is there standard presence detect bit somewhere. */ const int agp_slot_disabled = 1; /* Start with disabled remap range. */ uint16_t remapbase_r = 0x3ff; uint16_t remaplimit_r = 0; // Configure the E7501's DRAM row boundaries // Start by zeroing out the temporary initial configuration pci_write_config32(MCHDEV, DRB_ROW_0, 0); pci_write_config32(MCHDEV, DRB_ROW_4, 0); for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) { uint16_t dimm_socket_address = ctrl->channel0[i]; struct dimm_size sz; if (!(dimm_mask & (1 << i))) continue; // This DIMM not present sz = spd_get_dimm_size(dimm_socket_address); RAM_DEBUG_MESSAGE("dimm size ="); RAM_DEBUG_HEX32((u32)sz.side1); RAM_DEBUG_MESSAGE(" "); RAM_DEBUG_HEX32((u32)sz.side2); RAM_DEBUG_MESSAGE("\n"); if (sz.side1 == 0) die("Bad SPD value\n"); total_dram_64M_multiple = configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i); } tom = total_dram_64M_multiple * 64ULL * MiB; /* Reserve MMIO space. */ tolm = 4ULL * GiB - 512 * MiB; if (agp_slot_disabled) { /* Reduce apertures to 2 x 4 MiB. */ pci_write_config8(MCHDEV, APSIZE, 0x3F); pci_write_config16(AGPDEV, APSIZE1, 0x3F); } else { /* Add MMIO reserve for 2 x 256 MiB apertures. */ tolm -= 512 * MiB; } tolm = MIN(tolm, tom); /* The PCI memory hole overlaps memory setup the remap window. */ if (tolm < tom) { uint64_t remapbase = MAX(tom, 4ULL * GiB); uint64_t remaplimit = remapbase + (4ULL * GiB - tolm); remapbase_r = remapbase / (64 * MiB); remaplimit_r = remaplimit / (64 * MiB); /* Limit register is inclusive. */ remaplimit_r -= 1; } /* Write the RAM configuration registers, preserving the reserved bits. */ reg = pci_read_config16(MCHDEV, TOLM) & 0x7ff; reg |= (tolm / (128 * MiB)) << 11; pci_write_config16(MCHDEV, TOLM, reg); reg = pci_read_config16(MCHDEV, REMAPBASE) & 0xfc00; reg |= remapbase_r; pci_write_config16(MCHDEV, REMAPBASE, reg); reg = pci_read_config16(MCHDEV, REMAPLIMIT) & 0xfc00; reg |= remaplimit_r; pci_write_config16(MCHDEV, REMAPLIMIT, reg); } /** * Execute ECC full-speed scrub once and leave scrubber disabled. * * NOTE: All cache and stack is lost during ECC scrub loop. */ static __always_inline void initialize_ecc(unsigned long ret_addr, unsigned long ret_addr2) { uint16_t scrubbed = pci_read_config16(MCHDEV, MCHCFGNS) & 0x08; if (!scrubbed) { RAM_DEBUG_MESSAGE("Initializing ECC state...\n"); /* ECC scrub flushes cache-lines and stack, need to * store return address from romstage.c:main(). */ asm volatile( "movd %0, %%xmm0;" "movd (%0), %%xmm1;" "movd %1, %%xmm2;" "movd (%1), %%xmm3;" :: "r" (ret_addr), "r" (ret_addr2) : ); /* NOTE: All cache is lost during this loop. * Make sure PCI access does not use stack. */ pci_write_config16(MCHDEV, MCHCFGNS, 0x01); do { scrubbed = pci_read_config16(MCHDEV, MCHCFGNS); } while (! (scrubbed & 0x08)); pci_write_config16(MCHDEV, MCHCFGNS, (scrubbed & ~0x07) | 0x04); /* Some problem remains with XIP cache from ROM, so for * now, I disable XIP and also invalidate cache (again) * before the remaining small portion of romstage. * * Adding NOPs here has unexpected results, making * the first do_printk()/vtxprintf() after ECC scrub * fail midway. Sometimes vtxprintf() dumps strings * completely but with every 4th (fourth) character as "/". * * An inlined dump to console of the same string, * before vtxprintf() call, is successful. So the * source string should be completely in cache already. * * I need to review this again with CPU microcode * update applied pre-CAR. */ /* Disable and invalidate all cache. */ msr_t xip_mtrr = rdmsr(MTRR_PHYS_MASK(1)); xip_mtrr.lo &= ~MTRR_PHYS_MASK_VALID; invd(); wrmsr(MTRR_PHYS_MASK(1), xip_mtrr); invd(); RAM_DEBUG_MESSAGE("ECC state initialized.\n"); /* Recover IP for return from main. */ asm volatile( "movd %%xmm0, %%edi;" "movd %%xmm1, (%%edi);" "movd %%xmm2, %%edi;" "movd %%xmm3, (%%edi);" ::: "edi" ); #if IS_ENABLED(CONFIG_DEBUG_RAM_SETUP) unsigned int a1, a2; asm volatile("movd %%xmm2, %%eax;" : "=a" (a1) ::); asm volatile("movd %%xmm3, %%eax;" : "=a" (a2) ::); printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2); asm volatile("movd %%xmm0, %%eax;" : "=a" (a1) ::); asm volatile("movd %%xmm1, %%eax;" : "=a" (a2) ::); printk(BIOS_DEBUG, "return EIP @ %x = %x\n", a1, a2); #endif } /* Clear the ECC error bits. */ pci_write_config8(RASDEV, DRAM_FERR, 0x03); pci_write_config8(RASDEV, DRAM_NERR, 0x03); /* Clear DRAM Interface error bits. */ pci_write_config32(RASDEV, FERR_GLOBAL, 1 << 18); pci_write_config32(RASDEV, NERR_GLOBAL, 1 << 18); } /** * Program the DRAM Timing register (DRT) of the E7501 (except for CAS# * latency, which is assumed to have been programmed already), based on the * parameters of the various installed DIMMs. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms(). */ static void configure_e7501_dram_timing(const struct mem_controller *ctrl, uint8_t dimm_mask) { int i; uint32_t dram_timing; int value; uint8_t slowest_row_precharge = 0; uint8_t slowest_ras_cas_delay = 0; uint8_t slowest_active_to_precharge_delay = 0; uint32_t current_cas_latency = pci_read_config32(MCHDEV, DRT) & DRT_CAS_MASK; // CAS# latency must be programmed beforehand ASSERT((current_cas_latency == DRT_CAS_2_0) || (current_cas_latency == DRT_CAS_2_5)); // Each timing parameter is determined by the slowest DIMM for (i = 0; i < MAX_DIMM_SOCKETS; i++) { uint16_t dimm_socket_address; if (!(dimm_mask & (1 << i))) continue; // This DIMM not present if (i < MAX_DIMM_SOCKETS_PER_CHANNEL) dimm_socket_address = ctrl->channel0[i]; else dimm_socket_address = ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL]; value = spd_read_byte(dimm_socket_address, SPD_MIN_ROW_PRECHARGE_TIME); if (value < 0) goto hw_err; if (value > slowest_row_precharge) slowest_row_precharge = value; value = spd_read_byte(dimm_socket_address, SPD_MIN_RAS_TO_CAS_DELAY); if (value < 0) goto hw_err; if (value > slowest_ras_cas_delay) slowest_ras_cas_delay = value; value = spd_read_byte(dimm_socket_address, SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY); if (value < 0) goto hw_err; if (value > slowest_active_to_precharge_delay) slowest_active_to_precharge_delay = value; } // NOTE for timing parameters: // At 133 MHz, 1 clock == 7.52 ns /* Read the initial state */ dram_timing = pci_read_config32(MCHDEV, DRT); /* Trp */ // E7501 supports only 2 or 3 clocks for tRP if (slowest_row_precharge > ((22 << 2) | (2 << 0))) die("unsupported DIMM tRP"); // > 22.5 ns: 4 or more clocks else if (slowest_row_precharge > (15 << 2)) dram_timing &= ~(1 << 0); // > 15.0 ns: 3 clocks else dram_timing |= (1 << 0); // <= 15.0 ns: 2 clocks /* Trcd */ // E7501 supports only 2 or 3 clocks for tRCD // Use the same value for both read & write dram_timing &= ~((1 << 3) | (3 << 1)); if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0))) die("unsupported DIMM tRCD"); // > 22.5 ns: 4 or more clocks else if (slowest_ras_cas_delay > (15 << 2)) dram_timing |= (2 << 1); // > 15.0 ns: 3 clocks else dram_timing |= ((1 << 3) | (3 << 1)); // <= 15.0 ns: 2 clocks /* Tras */ // E7501 supports only 5, 6, or 7 clocks for tRAS // 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns dram_timing &= ~(3 << 9); if (slowest_active_to_precharge_delay > 52) die("unsupported DIMM tRAS"); // > 52 ns: 8 or more clocks else if (slowest_active_to_precharge_delay > 45) dram_timing |= (0 << 9); // 46-52 ns: 7 clocks else if (slowest_active_to_precharge_delay > 37) dram_timing |= (1 << 9); // 38-45 ns: 6 clocks else dram_timing |= (2 << 9); // < 38 ns: 5 clocks /* Trd */ /* Set to a 7 clock read delay. This is for 133MHz * with a CAS latency of 2.5 if 2.0 a 6 clock * delay is good */ dram_timing &= ~(7 << 24); // 7 clocks if (current_cas_latency == DRT_CAS_2_0) dram_timing |= (1 << 24); // 6 clocks /* * Back to Back Read-Write Turn Around */ /* Set to a 5 clock back to back read to write turn around. * 4 is a good delay if the CAS latency is 2.0 */ dram_timing &= ~(1 << 28); // 5 clocks if (current_cas_latency == DRT_CAS_2_0) dram_timing |= (1 << 28); // 4 clocks pci_write_config32(MCHDEV, DRT, dram_timing); return; hw_err: die(SPD_ERROR); } /** * Determine the shortest CAS# latency that the E7501 and all DIMMs have in * common, and program the E7501 to use it. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms(). */ static void configure_e7501_cas_latency(const struct mem_controller *ctrl, uint8_t dimm_mask) { int i; int value; uint32_t dram_timing; uint16_t dram_read_timing; uint32_t dword; // CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format // NOTE: E7501 supports only 2.0 and 2.5 uint32_t system_compatible_cas_latencies = SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5; uint32_t current_cas_latency; uint32_t dimm_compatible_cas_latencies; for (i = 0; i < MAX_DIMM_SOCKETS; i++) { uint16_t dimm_socket_address; if (!(dimm_mask & (1 << i))) continue; // This DIMM not usable if (i < MAX_DIMM_SOCKETS_PER_CHANNEL) dimm_socket_address = ctrl->channel0[i]; else dimm_socket_address = ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL]; value = spd_read_byte(dimm_socket_address, SPD_ACCEPTABLE_CAS_LATENCIES); if (value < 0) goto hw_err; dimm_compatible_cas_latencies = value & 0x7f; // Start with all supported by DIMM current_cas_latency = 1 << log2(dimm_compatible_cas_latencies); // Max supported by DIMM // Can we support the highest CAS# latency? value = spd_read_byte(dimm_socket_address, SPD_MIN_CYCLE_TIME_AT_CAS_MAX); if (value < 0) goto hw_err; // NOTE: At 133 MHz, 1 clock == 7.52 ns if (value > 0x75) { // Our bus is too fast for this CAS# latency // Remove it from the bitmask of those supported by the DIMM that are compatible dimm_compatible_cas_latencies &= ~current_cas_latency; } // Can we support the next-highest CAS# latency (max - 0.5)? current_cas_latency >>= 1; if (current_cas_latency != 0) { value = spd_read_byte(dimm_socket_address, SPD_SDRAM_CYCLE_TIME_2ND); if (value < 0) goto hw_err; if (value > 0x75) dimm_compatible_cas_latencies &= ~current_cas_latency; } // Can we support the next-highest CAS# latency (max - 1.0)? current_cas_latency >>= 1; if (current_cas_latency != 0) { value = spd_read_byte(dimm_socket_address, SPD_SDRAM_CYCLE_TIME_3RD); if (value < 0) goto hw_err; if (value > 0x75) dimm_compatible_cas_latencies &= ~current_cas_latency; } // Restrict the system to CAS# latencies compatible with this DIMM system_compatible_cas_latencies &= dimm_compatible_cas_latencies; /* go to the next DIMM */ } /* After all of the arduous calculation setup with the fastest * cas latency I can use. */ dram_timing = pci_read_config32(MCHDEV, DRT); dram_timing &= ~(DRT_CAS_MASK); dram_read_timing = pci_read_config16(MCHDEV, DRDCTL); dram_read_timing &= 0xF000; if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) { dram_timing |= DRT_CAS_2_0; dram_read_timing |= 0x0222; } else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) { uint32_t dram_row_attributes = pci_read_config32(MCHDEV, DRA); dram_timing |= DRT_CAS_2_5; // At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly // different value if all DIMM slots are populated if ((dram_row_attributes & 0xff) && (dram_row_attributes & 0xff00) && (dram_row_attributes & 0xff0000) && (dram_row_attributes & 0xff000000)) { // All slots populated dram_read_timing |= 0x0882; } else { // Some unpopulated slots dram_read_timing |= 0x0662; } } else die("No CAS# latencies compatible with all DIMMs!!\n"); pci_write_config32(MCHDEV, DRT, dram_timing); /* set master DLL reset */ dword = pci_read_config32(MCHDEV, 0x88); dword |= (1 << 26); pci_write_config32(MCHDEV, 0x88, dword); /* patch try register 88 is undocumented tnz */ dword &= 0x0ca17fff; dword |= 0xd14a5000; pci_write_config32(MCHDEV, 0x88, dword); pci_write_config16(MCHDEV, DRDCTL, dram_read_timing); /* clear master DLL reset */ dword = pci_read_config32(MCHDEV, 0x88); dword &= ~(1 << 26); pci_write_config32(MCHDEV, 0x88, dword); return; hw_err: die(SPD_ERROR); } /** * Configure the refresh interval so that we refresh no more often than * required by the "most needy" DIMM. Also disable ECC if any of the DIMMs * don't support it. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms(). */ static void configure_e7501_dram_controller_mode(const struct mem_controller *ctrl, uint8_t dimm_mask) { int i; // Initial settings uint32_t controller_mode = pci_read_config32(MCHDEV, DRC); uint32_t system_refresh_mode = (controller_mode >> 8) & 7; // Code below assumes that most aggressive settings are in // force when we are called, either via E7501 reset defaults // or by sdram_set_registers(): // - ECC enabled // - No refresh ASSERT((controller_mode & (3 << 20)) == (2 << 20)); // ECC ASSERT(!(controller_mode & (7 << 8))); // Refresh /* Walk through _all_ dimms and find the least-common denominator for: * - ECC support * - refresh rates */ for (i = 0; i < MAX_DIMM_SOCKETS; i++) { uint32_t dimm_refresh_mode; int value; uint16_t dimm_socket_address; if (!(dimm_mask & (1 << i))) { continue; // This DIMM not usable } if (i < MAX_DIMM_SOCKETS_PER_CHANNEL) dimm_socket_address = ctrl->channel0[i]; else dimm_socket_address = ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL]; // Disable ECC mode if any one of the DIMMs does not support ECC // SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported. value = spd_read_byte(dimm_socket_address, SPD_DIMM_CONFIG_TYPE); die_on_spd_error(value); if (value != ERROR_SCHEME_ECC) { controller_mode &= ~(3 << 20); } value = spd_read_byte(dimm_socket_address, SPD_REFRESH); die_on_spd_error(value); value &= 0x7f; // Mask off self-refresh bit if (value > MAX_SPD_REFRESH_RATE) { printk(BIOS_ERR, "unsupported refresh rate\n"); continue; } // Get the appropriate E7501 refresh mode for this DIMM dimm_refresh_mode = refresh_rate_map[value]; if (dimm_refresh_mode > 7) { printk(BIOS_ERR, "unsupported refresh rate\n"); continue; } // If this DIMM requires more frequent refresh than others, // update the system setting if (refresh_frequency[dimm_refresh_mode] > refresh_frequency[system_refresh_mode]) system_refresh_mode = dimm_refresh_mode; #ifdef SUSPICIOUS_LOOKING_CODE // SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller // than the clock period of the memory controller. Also, no other northbridge // looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME. // Switch to 2 clocks for address/command if required by any one of the DIMMs // NOTE: At 133 MHz, 1 clock == 7.52 ns value = spd_read_byte(dimm_socket_address, SPD_CMD_SIGNAL_INPUT_HOLD_TIME); die_on_spd_error(value); if (value >= 0xa0) { /* At 133MHz this constant should be 0x75 */ controller_mode &= ~(1 << 16); /* Use two clock cycles instead of one */ } #endif /* go to the next DIMM */ } controller_mode |= (system_refresh_mode << 8); // Configure the E7501 pci_write_config32(MCHDEV, DRC, controller_mode); } /** * Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM * parameters read via SPD. This tells the controller the width of the SDRAM * chips on each DIMM side (x4 or x8) and the page size of each DIMM side * (4, 8, 16, or 32 KB). * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms(). */ static void configure_e7501_row_attributes(const struct mem_controller *ctrl, uint8_t dimm_mask) { int i; uint32_t row_attributes = 0; for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) { uint16_t dimm_socket_address = ctrl->channel0[i]; struct dimm_size page_size; struct dimm_size sdram_width; if (!(dimm_mask & (1 << i))) continue; // This DIMM not usable // Get the relevant parameters via SPD page_size = sdram_spd_get_page_size(dimm_socket_address); sdram_width = sdram_spd_get_width(dimm_socket_address); // Update the DRAM Row Attributes. // Page size is encoded as log2(page size in bits) - log2(8 Kb) // NOTE: 8 Kb = 2^13 row_attributes |= (page_size.side1 - 13) << (i << 3); // Side 1 of each DIMM is an EVEN row if (sdram_width.side2 > 0) row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4); // Side 2 is ODD // Set x4 flags if appropriate if (sdram_width.side1 == 4) { row_attributes |= 0x08 << (i << 3); } if (sdram_width.side2 == 4) { row_attributes |= 0x08 << ((i << 3) + 4); } /* go to the next DIMM */ } /* Write the new row attributes register */ pci_write_config32(MCHDEV, DRA, row_attributes); } /* * Enable clock signals for populated DIMM sockets and disable them for * unpopulated sockets (to reduce EMI). * * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms(). */ static void enable_e7501_clocks(uint8_t dimm_mask) { int i; uint8_t clock_disable = pci_read_config8(MCHDEV, CKDIS); pci_write_config8(MCHDEV, 0x8e, 0xb0); for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) { uint8_t socket_mask = 1 << i; if (dimm_mask & socket_mask) clock_disable &= ~socket_mask; // DIMM present, enable clock else clock_disable |= socket_mask; // DIMM absent, disable clock } pci_write_config8(MCHDEV, CKDIS, clock_disable); } /* DIMM-dependent configuration functions */ /** * DDR Receive FIFO RE-Sync (?) */ static void RAM_RESET_DDR_PTR(void) { uint8_t byte; byte = pci_read_config8(MCHDEV, 0x88); byte |= (1 << 4); pci_write_config8(MCHDEV, 0x88, byte); byte = pci_read_config8(MCHDEV, 0x88); byte &= ~(1 << 4); pci_write_config8(MCHDEV, 0x88, byte); } /** * Copy 64 bytes from one location to another. * * @param src_addr TODO * @param dst_addr TODO */ static void write_8dwords(const uint32_t *src_addr, u8 *dst_addr) { int i; for (i = 0; i < 8; i++) { write32(dst_addr, *src_addr); src_addr++; dst_addr += sizeof(uint32_t); } } /** * Set the E7501's (undocumented) RCOMP registers. * * Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual, * RCOMP registers appear to affect drive strength, pullup/pulldown offset, * and slew rate of various signal groups. * * Comments below are conjecture based on apparent similarity between the * E7501 and these two chips. */ static void rcomp_copy_registers(void) { uint32_t dword; uint8_t strength_control; RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n"); /* Begin to write the RCOMP registers */ write8(RCOMP_MMIO + 0x2c, 0x0); // Set CMD and DQ/DQS strength to 2x (?) strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0x88; strength_control |= 0x40; write8(RCOMP_MMIO + DQCMDSTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0x80); write16(RCOMP_MMIO + 0x42, 0); // Set CMD and DQ/DQS strength to 2x (?) strength_control = read8(RCOMP_MMIO + DQCMDSTR) & 0xF8; strength_control |= 0x04; write8(RCOMP_MMIO + DQCMDSTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0x60); write16(RCOMP_MMIO + 0x40, 0); // Set RCVEnOut# strength to 2x (?) strength_control = read8(RCOMP_MMIO + RCVENSTR) & 0xF8; strength_control |= 0x04; write8(RCOMP_MMIO + RCVENSTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0x1c0); write16(RCOMP_MMIO + 0x50, 0); // Set CS# strength for x4 SDRAM to 2x (?) strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x88; strength_control |= 0x04; write8(RCOMP_MMIO + CSBSTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0x140); write16(RCOMP_MMIO + 0x48, 0); // Set CS# strength for x4 SDRAM to 2x (?) strength_control = read8(RCOMP_MMIO + CSBSTR) & 0x8F; strength_control |= 0x40; write8(RCOMP_MMIO + CSBSTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0x160); write16(RCOMP_MMIO + 0x4a, 0); // Set CKE strength for x4 SDRAM to 2x (?) strength_control = read8(RCOMP_MMIO + CKESTR) & 0x88; strength_control |= 0x04; write8(RCOMP_MMIO + CKESTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0xa0); write16(RCOMP_MMIO + 0x44, 0); // Set CKE strength for x4 SDRAM to 2x (?) strength_control = read8(RCOMP_MMIO + CKESTR) & 0x8F; strength_control |= 0x40; write8(RCOMP_MMIO + CKESTR, strength_control); write_8dwords(slew_2x, RCOMP_MMIO + 0xc0); write16(RCOMP_MMIO + 0x46, 0); // Set CK strength for x4 SDRAM to 1x (?) strength_control = read8(RCOMP_MMIO + CKSTR) & 0x88; strength_control |= 0x01; write8(RCOMP_MMIO + CKSTR, strength_control); write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x180); write16(RCOMP_MMIO + 0x4c, 0); // Set CK strength for x4 SDRAM to 1x (?) strength_control = read8(RCOMP_MMIO + CKSTR) & 0x8F; strength_control |= 0x10; write8(RCOMP_MMIO + CKSTR, strength_control); write_8dwords(pull_updown_offset_table, RCOMP_MMIO + 0x1a0); write16(RCOMP_MMIO + 0x4e, 0); dword = read32(RCOMP_MMIO + 0x400); dword &= 0x7f7fffff; write32(RCOMP_MMIO + 0x400, dword); dword = read32(RCOMP_MMIO + 0x408); dword &= 0x7f7fffff; write32(RCOMP_MMIO + 0x408, dword); } static void ram_set_rcomp_regs(void) { /* Set the RCOMP MMIO base address */ mchtest_control(RCOMP_BAR_ENABLE); pci_write_config32(MCHDEV, SMRBASE, (uintptr_t)RCOMP_MMIO); /* Block RCOMP updates while we configure the registers */ rcomp_smr_control(RCOMP_HOLD); rcomp_copy_registers(); d060_control(D060_CMD_0); mchtest_control(MCHTST_CMD_0); uint8_t revision = pci_read_config8(MCHDEV, 0x08); if (revision >= 3) { rcomp_smr_control(RCOMP_SMR_00); rcomp_smr_control(RCOMP_SMR_01); } rcomp_smr_control(RCOMP_RELEASE); /* Wait 40 usec */ SLOW_DOWN_IO; /* Clear the RCOMP MMIO base address */ pci_write_config32(MCHDEV, SMRBASE, 0); mchtest_control(RCOMP_BAR_DISABLE); } /*----------------------------------------------------------------------------- Public interface: -----------------------------------------------------------------------------*/ /** * Go through the JEDEC initialization sequence for all DIMMs, then enable * refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up * and running. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. */ static void sdram_enable(const struct mem_controller *ctrl) { uint8_t dimm_mask = pci_read_config16(MCHDEV, SKPD); uint32_t dram_controller_mode; if (dimm_mask == 0) return; /* 1 & 2 Power up and start clocks */ RAM_DEBUG_MESSAGE("Ram Enable 1\n"); RAM_DEBUG_MESSAGE("Ram Enable 2\n"); /* A 200us delay is needed */ DO_DELAY; EXTRA_DELAY; /* 3. Apply NOP */ RAM_DEBUG_MESSAGE("Ram Enable 3\n"); do_ram_command(RAM_COMMAND_NOP, 0); /* 4 Precharge all */ RAM_DEBUG_MESSAGE("Ram Enable 4\n"); do_ram_command(RAM_COMMAND_PRECHARGE, 0); /* wait until the all banks idle state... */ /* 5. Issue EMRS to enable DLL */ RAM_DEBUG_MESSAGE("Ram Enable 5\n"); do_ram_command(RAM_COMMAND_EMRS, SDRAM_EXTMODE_DLL_ENABLE | SDRAM_EXTMODE_DRIVE_NORMAL); /* 6. Reset DLL */ RAM_DEBUG_MESSAGE("Ram Enable 6\n"); set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET); EXTRA_DELAY; /* Ensure a 200us delay between the DLL reset in step 6 and the final * mode register set in step 9. * Infineon needs this before any other command is sent to the ram. */ DO_DELAY; EXTRA_DELAY; /* 7 Precharge all */ RAM_DEBUG_MESSAGE("Ram Enable 7\n"); do_ram_command(RAM_COMMAND_PRECHARGE, 0); /* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */ /* And for good luck 6 more CBRs */ RAM_DEBUG_MESSAGE("Ram Enable 8\n"); int i; for (i = 0; i < 8; i++) do_ram_command(RAM_COMMAND_CBR, 0); /* 9 mode register set */ RAM_DEBUG_MESSAGE("Ram Enable 9\n"); set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL); /* 10 DDR Receive FIFO RE-Sync */ RAM_DEBUG_MESSAGE("Ram Enable 10\n"); RAM_RESET_DDR_PTR(); EXTRA_DELAY; /* 11 normal operation */ RAM_DEBUG_MESSAGE("Ram Enable 11\n"); do_ram_command(RAM_COMMAND_NORMAL, 0); // Reconfigure the row boundaries and Top of Low Memory // to match the true size of the DIMMs configure_e7501_ram_addresses(ctrl, dimm_mask); /* Finally enable refresh */ dram_controller_mode = pci_read_config32(MCHDEV, DRC); dram_controller_mode |= (1 << 29); pci_write_config32(MCHDEV, DRC, dram_controller_mode); EXTRA_DELAY; } /** * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. */ static void sdram_post_ecc(const struct mem_controller *ctrl) { /* Fast CS# Enable. */ uint32_t dram_controller_mode = pci_read_config32(MCHDEV, DRC); dram_controller_mode = pci_read_config32(MCHDEV, DRC); dram_controller_mode |= (1 << 17); pci_write_config32(MCHDEV, DRC, dram_controller_mode); } /** * Configure SDRAM controller parameters that depend on characteristics of the * DIMMs installed in the system. These characteristics are read from the * DIMMs via the standard Serial Presence Detect (SPD) interface. * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. */ static void sdram_set_spd_registers(const struct mem_controller *ctrl) { uint8_t dimm_mask; RAM_DEBUG_MESSAGE("Reading SPD data...\n"); dimm_mask = spd_get_supported_dimms(ctrl); if (dimm_mask == 0) { printk(BIOS_DEBUG, "No usable memory for this controller\n"); } else { enable_e7501_clocks(dimm_mask); RAM_DEBUG_MESSAGE("setting based on SPD data...\n"); configure_e7501_row_attributes(ctrl, dimm_mask); configure_e7501_dram_controller_mode(ctrl, dimm_mask); configure_e7501_cas_latency(ctrl, dimm_mask); RAM_RESET_DDR_PTR(); configure_e7501_dram_timing(ctrl, dimm_mask); DO_DELAY; RAM_DEBUG_MESSAGE("done\n"); } /* NOTE: configure_e7501_ram_addresses() is NOT called here. * We want to keep the default 64 MB/row mapping until sdram_enable() is called, * even though the default mapping is almost certainly incorrect. * The default mapping makes it easy to initialize all of the DIMMs * even if the total system memory is > 4 GB. * * Save the dimm_mask for when sdram_enable is called, so it can call * configure_e7501_ram_addresses() without having to regenerate the bitmask * of usable DIMMs. */ pci_write_config16(MCHDEV, SKPD, dimm_mask); } /** * Do basic RAM setup that does NOT depend on serial presence detect * information (i.e. independent of DIMM specifics). * * @param ctrl PCI addresses of memory controller functions, and SMBus * addresses of DIMM slots on the mainboard. */ static void sdram_set_registers(const struct mem_controller *ctrl) { uint32_t dword; uint16_t word; uint8_t byte; ram_set_rcomp_regs(); /* Enable 0:0.1, 0:2.1 */ word = pci_read_config16(MCHDEV, DVNP); word &= ~0x05; pci_write_config16(MCHDEV, DVNP, word); /* Disable high-memory remap (power-on defaults, really) */ pci_write_config16(MCHDEV, REMAPBASE, 0x03ff); pci_write_config16(MCHDEV, REMAPLIMIT, 0x0); /* Disable legacy MMIO (0xC0000-0xEFFFF is DRAM) */ int i; pci_write_config8(MCHDEV, PAM_0, 0x30); for (i = 1; i <= 6; i++) pci_write_config8(MCHDEV, PAM_0 + i, 0x33); /* Conservatively say each row has 64MB of ram, we will fix this up later * Initial TOLM 8 rows 64MB each (1<<3 * 1<<26) >> 16 = 1<<13 * * FIXME: Hard-coded limit to first four rows to prevent overlap! */ pci_write_config32(MCHDEV, DRB_ROW_0, 0x04030201); pci_write_config32(MCHDEV, DRB_ROW_4, 0x04040404); //pci_write_config32(MCHDEV, DRB_ROW_4, 0x08070605); pci_write_config16(MCHDEV, TOLM, (1<<13)); /* DIMM clocks off */ pci_write_config8(MCHDEV, CKDIS, 0xff); /* reset row attributes */ pci_write_config32(MCHDEV, DRA, 0x0); // The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and // Back-to-Back Write-Read Turnaround. All others are configured based on SPD. dword = pci_read_config32(MCHDEV, DRT); dword &= 0xC7F8FFFF; dword |= (0x28<<24)|(0x03<<16); pci_write_config32(MCHDEV, DRT, dword); dword = pci_read_config32(MCHDEV, DRC); dword &= 0xffcef8f7; dword |= 0x00210008; pci_write_config32(MCHDEV, DRC, dword); /* Undocumented */ pci_write_config8(MCHDEV, 0x88, 0x80); /* Undocumented. Set much later in vendor BIOS. */ byte = pci_read_config8(MCHDEV, 0xd9); byte &= ~0x60; pci_write_config8(MCHDEV, 0xd9, byte); #ifdef SUSPICIOUS_LOOKING_CODE /* This will access D2:F0:0x50, is this correct?? * Vendor BIOS reads Device ID before this is set. * Undocumented in the p64h2 PCI-X bridge datasheet. */ byte = pci_read_config8(PCI_DEV(0,2,0), 0x50); byte &= 0xcf; byte |= 0x30 pci_write_config8(PCI_DEV(0,2,0), 0x50, byte); #endif uint8_t revision = pci_read_config8(MCHDEV, 0x08); if (revision >= 3) d060_control(D060_CMD_1); } /** * * */ void e7505_mch_init(const struct mem_controller *memctrl) { RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n"); DUMPNORTH(); sdram_set_registers(memctrl); sdram_set_spd_registers(memctrl); sdram_enable(memctrl); } /** * Scrub and reset error counts for ECC dimms. * * NOTE: this will invalidate cache and disable XIP cache for the * short remaining part of romstage. */ void e7505_mch_scrub_ecc(unsigned long ret_addr) { unsigned long ret_addr2 = (unsigned long)((unsigned long*)&ret_addr-1); if ((pci_read_config32(MCHDEV, DRC)>>20 & 3) == 2) initialize_ecc(ret_addr, ret_addr2); } void e7505_mch_done(const struct mem_controller *memctrl) { sdram_post_ecc(memctrl); RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n"); DUMPNORTH(); } int e7505_mch_is_ready(void) { uint32_t dword = pci_read_config32(MCHDEV, DRC); return !!(dword & DRC_DONE); }