/* This should be done by Eric 2004.11 yhlu add 4 rank DIMM support 2004.12 yhlu add D0 support 2005.02 yhlu add E0 memory hole support */ #include #include #include #include #include #include #include #include "raminit.h" #include "amdk8.h" #if CONFIG_HAVE_OPTION_TABLE #include "option_table.h" #endif void setup_resource_map(const unsigned int *register_values, int max) { int i; // printk(BIOS_DEBUG, "setting up resource map...."); for (i = 0; i < max; i += 3) { device_t dev; unsigned where; unsigned long reg; dev = register_values[i] & ~0xfff; where = register_values[i] & 0xfff; reg = pci_read_config32(dev, where); reg &= register_values[i+1]; reg |= register_values[i+2]; pci_write_config32(dev, where, reg); } // printk(BIOS_DEBUG, "done.\n"); } static int controller_present(const struct mem_controller *ctrl) { return pci_read_config32(ctrl->f0, 0) == 0x11001022; } #if CONFIG_RAMINIT_SYSINFO static void sdram_set_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo) #else static void sdram_set_registers(const struct mem_controller *ctrl) #endif { static const unsigned int register_values[] = { /* Careful set limit registers before base registers which contain the enables */ /* DRAM Limit i Registers * F1:0x44 i = 0 * F1:0x4C i = 1 * F1:0x54 i = 2 * F1:0x5C i = 3 * F1:0x64 i = 4 * F1:0x6C i = 5 * F1:0x74 i = 6 * F1:0x7C i = 7 * [ 2: 0] Destination Node ID * 000 = Node 0 * 001 = Node 1 * 010 = Node 2 * 011 = Node 3 * 100 = Node 4 * 101 = Node 5 * 110 = Node 6 * 111 = Node 7 * [ 7: 3] Reserved * [10: 8] Interleave select * specifies the values of A[14:12] to use with interleave enable. * [15:11] Reserved * [31:16] DRAM Limit Address i Bits 39-24 * This field defines the upper address bits of a 40 bit address * that define the end of the DRAM region. */ PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x4C), 0x0000f8f8, 0x00000001, PCI_ADDR(0, 0x18, 1, 0x54), 0x0000f8f8, 0x00000002, PCI_ADDR(0, 0x18, 1, 0x5C), 0x0000f8f8, 0x00000003, PCI_ADDR(0, 0x18, 1, 0x64), 0x0000f8f8, 0x00000004, PCI_ADDR(0, 0x18, 1, 0x6C), 0x0000f8f8, 0x00000005, PCI_ADDR(0, 0x18, 1, 0x74), 0x0000f8f8, 0x00000006, PCI_ADDR(0, 0x18, 1, 0x7C), 0x0000f8f8, 0x00000007, /* DRAM Base i Registers * F1:0x40 i = 0 * F1:0x48 i = 1 * F1:0x50 i = 2 * F1:0x58 i = 3 * F1:0x60 i = 4 * F1:0x68 i = 5 * F1:0x70 i = 6 * F1:0x78 i = 7 * [ 0: 0] Read Enable * 0 = Reads Disabled * 1 = Reads Enabled * [ 1: 1] Write Enable * 0 = Writes Disabled * 1 = Writes Enabled * [ 7: 2] Reserved * [10: 8] Interleave Enable * 000 = No interleave * 001 = Interleave on A[12] (2 nodes) * 010 = reserved * 011 = Interleave on A[12] and A[14] (4 nodes) * 100 = reserved * 101 = reserved * 110 = reserved * 111 = Interleve on A[12] and A[13] and A[14] (8 nodes) * [15:11] Reserved * [13:16] DRAM Base Address i Bits 39-24 * This field defines the upper address bits of a 40-bit address * that define the start of the DRAM region. */ PCI_ADDR(0, 0x18, 1, 0x40), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00000000, PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00000000, /* DRAM CS Base Address i Registers * F2:0x40 i = 0 * F2:0x44 i = 1 * F2:0x48 i = 2 * F2:0x4C i = 3 * F2:0x50 i = 4 * F2:0x54 i = 5 * F2:0x58 i = 6 * F2:0x5C i = 7 * [ 0: 0] Chip-Select Bank Enable * 0 = Bank Disabled * 1 = Bank Enabled * [ 8: 1] Reserved * [15: 9] Base Address (19-13) * An optimization used when all DIMM are the same size... * [20:16] Reserved * [31:21] Base Address (35-25) * This field defines the top 11 addresses bit of a 40-bit * address that define the memory address space. These * bits decode 32-MByte blocks of memory. */ PCI_ADDR(0, 0x18, 2, 0x40), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x44), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x48), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x4C), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x50), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x54), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x58), 0x001f01fe, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x5C), 0x001f01fe, 0x00000000, /* DRAM CS Mask Address i Registers * F2:0x60 i = 0 * F2:0x64 i = 1 * F2:0x68 i = 2 * F2:0x6C i = 3 * F2:0x70 i = 4 * F2:0x74 i = 5 * F2:0x78 i = 6 * F2:0x7C i = 7 * Select bits to exclude from comparison with the DRAM Base address register. * [ 8: 0] Reserved * [15: 9] Address Mask (19-13) * Address to be excluded from the optimized case * [20:16] Reserved * [29:21] Address Mask (33-25) * The bits with an address mask of 1 are excluded from address comparison * [31:30] Reserved * */ PCI_ADDR(0, 0x18, 2, 0x60), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x64), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x68), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x6C), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x70), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x74), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x78), 0xC01f01ff, 0x00000000, PCI_ADDR(0, 0x18, 2, 0x7C), 0xC01f01ff, 0x00000000, /* DRAM Bank Address Mapping Register * F2:0x80 * Specify the memory module size * [ 2: 0] CS1/0 * [ 6: 4] CS3/2 * [10: 8] CS5/4 * [14:12] CS7/6 * 000 = 32Mbyte (Rows = 12 & Col = 8) * 001 = 64Mbyte (Rows = 12 & Col = 9) * 010 = 128Mbyte (Rows = 13 & Col = 9)|(Rows = 12 & Col = 10) * 011 = 256Mbyte (Rows = 13 & Col = 10)|(Rows = 12 & Col = 11) * 100 = 512Mbyte (Rows = 13 & Col = 11)|(Rows = 14 & Col = 10) * 101 = 1Gbyte (Rows = 14 & Col = 11)|(Rows = 13 & Col = 12) * 110 = 2Gbyte (Rows = 14 & Col = 12) * 111 = reserved * [ 3: 3] Reserved * [ 7: 7] Reserved * [11:11] Reserved * [31:15] */ PCI_ADDR(0, 0x18, 2, 0x80), 0xffff8888, 0x00000000, /* DRAM Timing Low Register * F2:0x88 * [ 2: 0] Tcl (Cas# Latency, Cas# to read-data-valid) * 000 = reserved * 001 = CL 2 * 010 = CL 3 * 011 = reserved * 100 = reserved * 101 = CL 2.5 * 110 = reserved * 111 = reserved * [ 3: 3] Reserved * [ 7: 4] Trc (Row Cycle Time, Ras#-active to Ras#-active/bank auto refresh) * 0000 = 7 bus clocks * 0001 = 8 bus clocks * ... * 1110 = 21 bus clocks * 1111 = 22 bus clocks * [11: 8] Trfc (Row refresh Cycle time, Auto-refresh-active to RAS#-active or RAS#auto-refresh) * 0000 = 9 bus clocks * 0010 = 10 bus clocks * .... * 1110 = 23 bus clocks * 1111 = 24 bus clocks * [14:12] Trcd (Ras#-active to Case#-read/write Delay) * 000 = reserved * 001 = reserved * 010 = 2 bus clocks * 011 = 3 bus clocks * 100 = 4 bus clocks * 101 = 5 bus clocks * 110 = 6 bus clocks * 111 = reserved * [15:15] Reserved * [18:16] Trrd (Ras# to Ras# Delay) * 000 = reserved * 001 = reserved * 010 = 2 bus clocks * 011 = 3 bus clocks * 100 = 4 bus clocks * 101 = reserved * 110 = reserved * 111 = reserved * [19:19] Reserved * [23:20] Tras (Minmum Ras# Active Time) * 0000 to 0100 = reserved * 0101 = 5 bus clocks * ... * 1111 = 15 bus clocks * [26:24] Trp (Row Precharge Time) * 000 = reserved * 001 = reserved * 010 = 2 bus clocks * 011 = 3 bus clocks * 100 = 4 bus clocks * 101 = 5 bus clocks * 110 = 6 bus clocks * 111 = reserved * [27:27] Reserved * [28:28] Twr (Write Recovery Time) * 0 = 2 bus clocks * 1 = 3 bus clocks * [31:29] Reserved */ PCI_ADDR(0, 0x18, 2, 0x88), 0xe8088008, 0x02522001 /* 0x03623125 */ , /* DRAM Timing High Register * F2:0x8C * [ 0: 0] Twtr (Write to Read Delay) * 0 = 1 bus Clocks * 1 = 2 bus Clocks * [ 3: 1] Reserved * [ 6: 4] Trwt (Read to Write Delay) * 000 = 1 bus clocks * 001 = 2 bus clocks * 010 = 3 bus clocks * 011 = 4 bus clocks * 100 = 5 bus clocks * 101 = 6 bus clocks * 110 = reserved * 111 = reserved * [ 7: 7] Reserved * [12: 8] Tref (Refresh Rate) * 00000 = 100MHz 4K rows * 00001 = 133MHz 4K rows * 00010 = 166MHz 4K rows * 00011 = 200MHz 4K rows * 01000 = 100MHz 8K/16K rows * 01001 = 133MHz 8K/16K rows * 01010 = 166MHz 8K/16K rows * 01011 = 200MHz 8K/16K rows * [19:13] Reserved * [22:20] Twcl (Write CAS Latency) * 000 = 1 Mem clock after CAS# (Unbuffered Dimms) * 001 = 2 Mem clocks after CAS# (Registered Dimms) * [31:23] Reserved */ PCI_ADDR(0, 0x18, 2, 0x8c), 0xff8fe08e, (0 << 20)|(0 << 8)|(0 << 4)|(0 << 0), /* DRAM Config Low Register * F2:0x90 * [ 0: 0] DLL Disable * 0 = Enabled * 1 = Disabled * [ 1: 1] D_DRV * 0 = Normal Drive * 1 = Weak Drive * [ 2: 2] QFC_EN * 0 = Disabled * 1 = Enabled * [ 3: 3] Disable DQS Hystersis (FIXME handle this one carefully) * 0 = Enable DQS input filter * 1 = Disable DQS input filtering * [ 7: 4] Reserved * [ 8: 8] DRAM_Init * 0 = Initialization done or not yet started. * 1 = Initiate DRAM intialization sequence * [ 9: 9] SO-Dimm Enable * 0 = Do nothing * 1 = SO-Dimms present * [10:10] DramEnable * 0 = DRAM not enabled * 1 = DRAM initialized and enabled * [11:11] Memory Clear Status * 0 = Memory Clear function has not completed * 1 = Memory Clear function has completed * [12:12] Exit Self-Refresh * 0 = Exit from self-refresh done or not yet started * 1 = DRAM exiting from self refresh * [13:13] Self-Refresh Status * 0 = Normal Operation * 1 = Self-refresh mode active * [15:14] Read/Write Queue Bypass Count * 00 = 2 * 01 = 4 * 10 = 8 * 11 = 16 * [16:16] 128-bit/64-Bit * 0 = 64bit Interface to DRAM * 1 = 128bit Interface to DRAM * [17:17] DIMM ECC Enable * 0 = Some DIMMs do not have ECC * 1 = ALL DIMMS have ECC bits * [18:18] UnBuffered DIMMs * 0 = Buffered DIMMS * 1 = Unbuffered DIMMS * [19:19] Enable 32-Byte Granularity * 0 = Optimize for 64byte bursts * 1 = Optimize for 32byte bursts * [20:20] DIMM 0 is x4 * [21:21] DIMM 1 is x4 * [22:22] DIMM 2 is x4 * [23:23] DIMM 3 is x4 * 0 = DIMM is not x4 * 1 = x4 DIMM present * [24:24] Disable DRAM Receivers * 0 = Receivers enabled * 1 = Receivers disabled * [27:25] Bypass Max * 000 = Arbiters chois is always respected * 001 = Oldest entry in DCQ can be bypassed 1 time * 010 = Oldest entry in DCQ can be bypassed 2 times * 011 = Oldest entry in DCQ can be bypassed 3 times * 100 = Oldest entry in DCQ can be bypassed 4 times * 101 = Oldest entry in DCQ can be bypassed 5 times * 110 = Oldest entry in DCQ can be bypassed 6 times * 111 = Oldest entry in DCQ can be bypassed 7 times * [31:28] Reserved */ PCI_ADDR(0, 0x18, 2, 0x90), 0xf0000000, (4 << 25)|(0 << 24)| (0 << 23)|(0 << 22)|(0 << 21)|(0 << 20)| (1 << 19)|(0 << 18)|(1 << 17)|(0 << 16)| (2 << 14)|(0 << 13)|(0 << 12)| (0 << 11)|(0 << 10)|(0 << 9)|(0 << 8)| (0 << 3) |(0 << 1) |(0 << 0), /* DRAM Config High Register * F2:0x94 * [ 0: 3] Maximum Asynchronous Latency * 0000 = 0 ns * ... * 1111 = 15 ns * [ 7: 4] Reserved * [11: 8] Read Preamble * 0000 = 2.0 ns * 0001 = 2.5 ns * 0010 = 3.0 ns * 0011 = 3.5 ns * 0100 = 4.0 ns * 0101 = 4.5 ns * 0110 = 5.0 ns * 0111 = 5.5 ns * 1000 = 6.0 ns * 1001 = 6.5 ns * 1010 = 7.0 ns * 1011 = 7.5 ns * 1100 = 8.0 ns * 1101 = 8.5 ns * 1110 = 9.0 ns * 1111 = 9.5 ns * [15:12] Reserved * [18:16] Idle Cycle Limit * 000 = 0 cycles * 001 = 4 cycles * 010 = 8 cycles * 011 = 16 cycles * 100 = 32 cycles * 101 = 64 cycles * 110 = 128 cycles * 111 = 256 cycles * [19:19] Dynamic Idle Cycle Center Enable * 0 = Use Idle Cycle Limit * 1 = Generate a dynamic Idle cycle limit * [22:20] DRAM MEMCLK Frequency * 000 = 100MHz * 001 = reserved * 010 = 133MHz * 011 = reserved * 100 = reserved * 101 = 166MHz * 110 = reserved * 111 = reserved * [24:23] Reserved * [25:25] Memory Clock Ratio Valid (FIXME carefully enable memclk) * 0 = Disable MemClks * 1 = Enable MemClks * [26:26] Memory Clock 0 Enable * 0 = Disabled * 1 = Enabled * [27:27] Memory Clock 1 Enable * 0 = Disabled * 1 = Enabled * [28:28] Memory Clock 2 Enable * 0 = Disabled * 1 = Enabled * [29:29] Memory Clock 3 Enable * 0 = Disabled * 1 = Enabled * [31:30] Reserved */ PCI_ADDR(0, 0x18, 2, 0x94), 0xc180f0f0, (0 << 29)|(0 << 28)|(0 << 27)|(0 << 26)|(0 << 25)| (0 << 20)|(0 << 19)|(DCH_IDLE_LIMIT_16 << 16)|(0 << 8)|(0 << 0), /* DRAM Delay Line Register * F2:0x98 * Adjust the skew of the input DQS strobe relative to DATA * [15: 0] Reserved * [23:16] Delay Line Adjust * Adjusts the DLL derived PDL delay by one or more delay stages * in either the faster or slower direction. * [24:24} Adjust Slower * 0 = Do Nothing * 1 = Adj is used to increase the PDL delay * [25:25] Adjust Faster * 0 = Do Nothing * 1 = Adj is used to decrease the PDL delay * [31:26] Reserved */ PCI_ADDR(0, 0x18, 2, 0x98), 0xfc00ffff, 0x00000000, /* MCA NB Status Low reg */ PCI_ADDR(0, 0x18, 3, 0x48), 0x00f00000, 0x00000000, /* MCA NB Status high reg */ PCI_ADDR(0, 0x18, 3, 0x4c), 0x01801e8c, 0x00000000, /* MCA NB address Low reg */ PCI_ADDR(0, 0x18, 3, 0x50), 0x00000007, 0x00000000, /* MCA NB address high reg */ PCI_ADDR(0, 0x18, 3, 0x54), 0xffffff00, 0x00000000, /* DRAM Scrub Control Register * F3:0x58 * [ 4: 0] DRAM Scrube Rate * [ 7: 5] reserved * [12: 8] L2 Scrub Rate * [15:13] reserved * [20:16] Dcache Scrub * [31:21] reserved * Scrub Rates * 00000 = Do not scrub * 00001 = 40.00 ns * 00010 = 80.00 ns * 00011 = 160.00 ns * 00100 = 320.00 ns * 00101 = 640.00 ns * 00110 = 1.28 us * 00111 = 2.56 us * 01000 = 5.12 us * 01001 = 10.20 us * 01011 = 41.00 us * 01100 = 81.90 us * 01101 = 163.80 us * 01110 = 327.70 us * 01111 = 655.40 us * 10000 = 1.31 ms * 10001 = 2.62 ms * 10010 = 5.24 ms * 10011 = 10.49 ms * 10100 = 20.97 ms * 10101 = 42.00 ms * 10110 = 84.00 ms * All Others = Reserved */ PCI_ADDR(0, 0x18, 3, 0x58), 0xffe0e0e0, 0x00000000, /* DRAM Scrub Address Low Register * F3:0x5C * [ 0: 0] DRAM Scrubber Redirect Enable * 0 = Do nothing * 1 = Scrubber Corrects errors found in normal operation * [ 5: 1] Reserved * [31: 6] DRAM Scrub Address 31-6 */ PCI_ADDR(0, 0x18, 3, 0x5C), 0x0000003e, 0x00000000, /* DRAM Scrub Address High Register * F3:0x60 * [ 7: 0] DRAM Scrubb Address 39-32 * [31: 8] Reserved */ PCI_ADDR(0, 0x18, 3, 0x60), 0xffffff00, 0x00000000, }; int i; int max; if (!controller_present(ctrl)) { // printk(BIOS_DEBUG, "No memory controller present\n"); return; } printk(BIOS_SPEW, "setting up CPU%02x northbridge registers\n", ctrl->node_id); max = ARRAY_SIZE(register_values); for (i = 0; i < max; i += 3) { device_t dev; unsigned where; unsigned long reg; dev = (register_values[i] & ~0xfff) - PCI_DEV(0, 0x18, 0) + ctrl->f0; where = register_values[i] & 0xfff; reg = pci_read_config32(dev, where); reg &= register_values[i+1]; reg |= register_values[i+2]; pci_write_config32(dev, where, reg); } printk(BIOS_SPEW, "done.\n"); } static void hw_enable_ecc(const struct mem_controller *ctrl) { uint32_t dcl, nbcap; nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl &= ~DCL_DimmEccEn; if (nbcap & NBCAP_ECC) { dcl |= DCL_DimmEccEn; } if (read_option(ECC_memory, 1) == 0) { dcl &= ~DCL_DimmEccEn; } pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); } static int is_dual_channel(const struct mem_controller *ctrl) { uint32_t dcl; dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); return dcl & DCL_128BitEn; } static int is_opteron(const struct mem_controller *ctrl) { /* Test to see if I am an Opteron. Socket 939 based Athlon64 * have dual channel capability, too, so we need a better test * for Opterons. * However, all code uses is_opteron() to find out whether to * use dual channel, so if we really check for opteron here, we * need to fix up all code using this function, too. */ uint32_t nbcap; nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); return !!(nbcap & NBCAP_128Bit); } static int is_registered(const struct mem_controller *ctrl) { /* Test to see if we are dealing with registered SDRAM. * If we are not registered we are unbuffered. * This function must be called after spd_handle_unbuffered_dimms. */ uint32_t dcl; dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); return !(dcl & DCL_UnBuffDimm); } struct dimm_size { unsigned long side1; unsigned long side2; unsigned long rows; unsigned long col; #if CONFIG_QRANK_DIMM_SUPPORT unsigned long rank; #endif }; static struct dimm_size spd_get_dimm_size(unsigned device) { /* Calculate the log base 2 size of a DIMM in bits */ struct dimm_size sz; int value, low; sz.side1 = 0; sz.side2 = 0; sz.rows = 0; sz.col = 0; #if CONFIG_QRANK_DIMM_SUPPORT sz.rank = 0; #endif /* Note it might be easier to use byte 31 here, it has the DIMM size as * a multiple of 4MB. The way we do it now we can size both * sides of an assymetric dimm. */ value = spd_read_byte(device, 3); /* rows */ if (value < 0) goto hw_err; if ((value & 0xf) == 0) goto val_err; sz.side1 += value & 0xf; sz.rows = value & 0xf; value = spd_read_byte(device, 4); /* columns */ if (value < 0) goto hw_err; if ((value & 0xf) == 0) goto val_err; sz.side1 += value & 0xf; sz.col = value & 0xf; value = spd_read_byte(device, 17); /* banks */ if (value < 0) goto hw_err; if ((value & 0xff) == 0) goto val_err; sz.side1 += log2(value & 0xff); /* Get the module data width and convert it to a power of two */ value = spd_read_byte(device, 7); /* (high byte) */ if (value < 0) goto hw_err; value &= 0xff; value <<= 8; low = spd_read_byte(device, 6); /* (low byte) */ if (low < 0) goto hw_err; value = value | (low & 0xff); if ((value != 72) && (value != 64)) goto val_err; sz.side1 += log2(value); /* side 2 */ value = spd_read_byte(device, 5); /* number of physical banks */ if (value < 0) goto hw_err; if (value == 1) goto out; if ((value != 2) && (value != 4 )) { goto val_err; } #if CONFIG_QRANK_DIMM_SUPPORT sz.rank = value; #endif /* Start with the symmetrical case */ sz.side2 = sz.side1; value = spd_read_byte(device, 3); /* rows */ if (value < 0) goto hw_err; if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */ sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */ sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */ value = spd_read_byte(device, 4); /* columns */ if (value < 0) goto hw_err; if ((value & 0xff) == 0) goto val_err; sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */ sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */ goto out; val_err: die("Bad SPD value\n"); /* If an hw_error occurs report that I have no memory */ hw_err: sz.side1 = 0; sz.side2 = 0; sz.rows = 0; sz.col = 0; #if CONFIG_QRANK_DIMM_SUPPORT sz.rank = 0; #endif out: return sz; } static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index) { uint32_t base0, base1; uint32_t dch; if (sz.side1 != sz.side2) { sz.side2 = 0; } /* For each base register. * Place the dimm size in 32 MB quantities in the bits 31 - 21. * The initialize dimm size is in bits. * Set the base enable bit0. */ base0 = base1 = 0; /* Make certain side1 of the dimm is at least 32MB */ if (sz.side1 >= (25 +3)) { base0 = (1 << ((sz.side1 - (25 + 3)) + 21)) | 1; } /* Make certain side2 of the dimm is at least 32MB */ if (sz.side2 >= (25 + 3)) { base1 = (1 << ((sz.side2 - (25 + 3)) + 21)) | 1; } /* Double the size if we are using dual channel memory */ if (is_dual_channel(ctrl)) { base0 = (base0 << 1) | (base0 & 1); base1 = (base1 << 1) | (base1 & 1); } /* Clear the reserved bits */ base0 &= ~0x001ffffe; base1 &= ~0x001ffffe; /* Set the appropriate DIMM base address register */ pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), base0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), base1); #if CONFIG_QRANK_DIMM_SUPPORT if (sz.rank == 4) { pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), base0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), base1); } #endif /* Enable the memory clocks for this DIMM */ if (base0) { dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch |= DCH_MEMCLK_EN0 << index; #if CONFIG_QRANK_DIMM_SUPPORT if (sz.rank == 4) { dch |= DCH_MEMCLK_EN0 << (index + 2); } #endif pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } } static void set_dimm_map(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index) { static const unsigned cs_map_aa[] = { /* (row=12, col=8)(14, 12) ---> (0, 0) (2, 4) */ 0, 1, 3, 6, 0, 0, 2, 4, 7, 9, 0, 0, 5, 8,10, }; uint32_t map; map = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP); map &= ~(0xf << (index * 4)); #if CONFIG_QRANK_DIMM_SUPPORT if (sz.rank == 4) { map &= ~(0xf << ( (index + 2) * 4)); } #endif /* Make certain side1 of the dimm is at least 32MB */ if (sz.side1 >= (25 +3)) { if (is_cpu_pre_d0()) { map |= (sz.side1 - (25 + 3)) << (index *4); #if CONFIG_QRANK_DIMM_SUPPORT if (sz.rank == 4) { map |= (sz.side1 - (25 + 3)) << ( (index + 2) * 4); } #endif } else { map |= cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << (index*4); #if CONFIG_QRANK_DIMM_SUPPORT if (sz.rank == 4) { map |= cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << ( (index + 2) * 4); } #endif } } pci_write_config32(ctrl->f2, DRAM_BANK_ADDR_MAP, map); } static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask) { int i; for (i = 0; i < DIMM_SOCKETS; i++) { struct dimm_size sz; if (!(dimm_mask & (1 << i))) { continue; } sz = spd_get_dimm_size(ctrl->channel0[i]); if (sz.side1 == 0) { return -1; /* Report SPD error */ } set_dimm_size(ctrl, sz, i); set_dimm_map (ctrl, sz, i); } return dimm_mask; } static void route_dram_accesses(const struct mem_controller *ctrl, unsigned long base_k, unsigned long limit_k) { /* Route the addresses to the controller node */ unsigned node_id; unsigned limit; unsigned base; unsigned index; unsigned limit_reg, base_reg; device_t device; node_id = ctrl->node_id; index = (node_id << 3); limit = (limit_k << 2); limit &= 0xffff0000; limit -= 0x00010000; limit |= ( 0 << 8) | (node_id << 0); base = (base_k << 2); base &= 0xffff0000; base |= (0 << 8) | (1<<1) | (1<<0); limit_reg = 0x44 + index; base_reg = 0x40 + index; for (device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) { pci_write_config32(device, limit_reg, limit); pci_write_config32(device, base_reg, base); } } static void set_top_mem(unsigned tom_k, unsigned hole_startk) { /* Error if I don't have memory */ if (!tom_k) { die("No memory?"); } /* Report the amount of memory. */ printk(BIOS_DEBUG, "RAM end at 0x%08x kB\n", tom_k); /* Now set top of memory */ msr_t msr; if (tom_k > (4*1024*1024)) { printk(BIOS_SPEW, "Handling memory mapped above 4 GB\n"); printk(BIOS_SPEW, "Upper RAM end at 0x%08x kB\n", tom_k); msr.lo = (tom_k & 0x003fffff) << 10; msr.hi = (tom_k & 0xffc00000) >> 22; wrmsr(TOP_MEM2, msr); printk(BIOS_SPEW, "Correcting memory amount mapped below 4 GB\n"); } /* Leave a 64M hole between TOP_MEM and TOP_MEM2 * so I can see my rom chip and other I/O devices. */ if (tom_k >= 0x003f0000) { #if CONFIG_HW_MEM_HOLE_SIZEK != 0 if (hole_startk != 0) { tom_k = hole_startk; } else #endif tom_k = 0x3f0000; printk(BIOS_SPEW, "Adjusting lower RAM end\n"); } printk(BIOS_SPEW, "Lower RAM end at 0x%08x kB\n", tom_k); msr.lo = (tom_k & 0x003fffff) << 10; msr.hi = (tom_k & 0xffc00000) >> 22; wrmsr(TOP_MEM, msr); } static unsigned long interleave_chip_selects(const struct mem_controller *ctrl) { /* 35 - 25 */ static const uint8_t csbase_low_shift[] = { /* 32MB */ (13 - 4), /* 64MB */ (14 - 4), /* 128MB */ (14 - 4), /* 256MB */ (15 - 4), /* 512MB */ (15 - 4), /* 1GB */ (16 - 4), /* 2GB */ (16 - 4), }; static const uint8_t csbase_low_d0_shift[] = { /* 32MB */ (13 - 4), /* 64MB */ (14 - 4), /* 128MB */ (14 - 4), /* 128MB */ (15 - 4), /* 256MB */ (15 - 4), /* 512MB */ (15 - 4), /* 256MB */ (16 - 4), /* 512MB */ (16 - 4), /* 1GB */ (16 - 4), /* 1GB */ (17 - 4), /* 2GB */ (17 - 4), }; /* cs_base_high is not changed */ uint32_t csbase_inc; int chip_selects, index; int bits; unsigned common_size; unsigned common_cs_mode; uint32_t csbase, csmask; /* See if all of the memory chip selects are the same size * and if so count them. */ chip_selects = 0; common_size = 0; common_cs_mode = 0; for (index = 0; index < 8; index++) { unsigned size; unsigned cs_mode; uint32_t value; value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); /* Is it enabled? */ if (!(value & 1)) { continue; } chip_selects++; size = value >> 21; if (common_size == 0) { common_size = size; } /* The size differed fail */ if (common_size != size) { return 0; } value = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP); cs_mode =( value >> ((index>>1)*4)) & 0xf; if (cs_mode == 0 ) continue; if (common_cs_mode == 0) { common_cs_mode = cs_mode; } /* The cs_mode differed fail */ if (common_cs_mode != cs_mode) { return 0; } } /* Chip selects can only be interleaved when there is * more than one and their is a power of two of them. */ bits = log2(chip_selects); if (((1 << bits) != chip_selects) || (bits < 1) || (bits > 3)) { return 0; } /* Find the bits of csbase that we need to interleave on */ if (is_cpu_pre_d0()){ csbase_inc = 1 << csbase_low_shift[common_cs_mode]; if (is_dual_channel(ctrl)) { /* Also we run out of address mask bits if we try and interleave 8 4GB dimms */ if ((bits == 3) && (common_size == (1 << (32 - 3)))) { // printk(BIOS_DEBUG, "8 4GB chip selects cannot be interleaved\n"); return 0; } csbase_inc <<=1; } } else { csbase_inc = 1 << csbase_low_d0_shift[common_cs_mode]; if (is_dual_channel(ctrl)) { if ( (bits==3) && (common_cs_mode > 8)) { // printk(BIOS_DEBUG, "8 cs_mode>8 chip selects cannot be interleaved\n"); return 0; } csbase_inc <<=1; } } /* Compute the initial values for csbase and csbask. * In csbase just set the enable bit and the base to zero. * In csmask set the mask bits for the size and page level interleave. */ csbase = 0 | 1; csmask = (((common_size << bits) - 1) << 21); csmask |= 0xfe00 & ~((csbase_inc << bits) - csbase_inc); for (index = 0; index < 8; index++) { uint32_t value; value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); /* Is it enabled? */ if (!(value & 1)) { continue; } pci_write_config32(ctrl->f2, DRAM_CSBASE + (index << 2), csbase); pci_write_config32(ctrl->f2, DRAM_CSMASK + (index << 2), csmask); csbase += csbase_inc; } printk(BIOS_SPEW, "Interleaved\n"); /* Return the memory size in K */ return common_size << (15 + bits); } static unsigned long order_chip_selects(const struct mem_controller *ctrl) { unsigned long tom; /* Remember which registers we have used in the high 8 bits of tom */ tom = 0; for (;;) { /* Find the largest remaining candidate */ unsigned index, candidate; uint32_t csbase, csmask; unsigned size; csbase = 0; candidate = 0; for (index = 0; index < 8; index++) { uint32_t value; value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2)); /* Is it enabled? */ if (!(value & 1)) { continue; } /* Is it greater? */ if (value <= csbase) { continue; } /* Has it already been selected */ if (tom & (1 << (index + 24))) { continue; } /* I have a new candidate */ csbase = value; candidate = index; } /* See if I have found a new candidate */ if (csbase == 0) { break; } /* Remember the dimm size */ size = csbase >> 21; /* Remember I have used this register */ tom |= (1 << (candidate + 24)); /* Recompute the cs base register value */ csbase = (tom << 21) | 1; /* Increment the top of memory */ tom += size; /* Compute the memory mask */ csmask = ((size -1) << 21); csmask |= 0xfe00; /* For now don't optimize */ /* Write the new base register */ pci_write_config32(ctrl->f2, DRAM_CSBASE + (candidate << 2), csbase); /* Write the new mask register */ pci_write_config32(ctrl->f2, DRAM_CSMASK + (candidate << 2), csmask); } /* Return the memory size in K */ return (tom & ~0xff000000) << 15; } static unsigned long memory_end_k(const struct mem_controller *ctrl, int max_node_id) { unsigned node_id; unsigned end_k; /* Find the last memory address used */ end_k = 0; for (node_id = 0; node_id < max_node_id; node_id++) { uint32_t limit, base; unsigned index; index = node_id << 3; base = pci_read_config32(ctrl->f1, 0x40 + index); /* Only look at the limit if the base is enabled */ if ((base & 3) == 3) { limit = pci_read_config32(ctrl->f1, 0x44 + index); end_k = ((limit + 0x00010000) & 0xffff0000) >> 2; } } return end_k; } static void order_dimms(const struct mem_controller *ctrl) { unsigned long tom_k, base_k; if (read_option(interleave_chip_selects, 1) != 0) { tom_k = interleave_chip_selects(ctrl); } else { printk(BIOS_DEBUG, "Interleaving disabled\n"); tom_k = 0; } if (!tom_k) { tom_k = order_chip_selects(ctrl); } /* Compute the memory base address */ base_k = memory_end_k(ctrl, ctrl->node_id); tom_k += base_k; route_dram_accesses(ctrl, base_k, tom_k); set_top_mem(tom_k, 0); } static long disable_dimm(const struct mem_controller *ctrl, unsigned index, long dimm_mask) { printk(BIOS_DEBUG, "disabling dimm %02x\n", index); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), 0); pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), 0); dimm_mask &= ~(1 << index); return dimm_mask; } static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl, long dimm_mask) { int i; int registered; int unbuffered; int has_dualch = is_opteron(ctrl); uint32_t dcl; unbuffered = 0; registered = 0; for (i = 0; (i < DIMM_SOCKETS); i++) { int value; if (!(dimm_mask & (1 << i))) { continue; } value = spd_read_byte(ctrl->channel0[i], 21); if (value < 0) { return -1; } /* Registered dimm ? */ if (value & (1 << 1)) { registered = 1; } /* Otherwise it must be an unbuffered dimm */ else { unbuffered = 1; } } if (unbuffered && registered) { die("Mixed buffered and registered dimms not supported"); } dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl &= ~DCL_UnBuffDimm; if (unbuffered) { if ((has_dualch) && (!is_cpu_pre_d0())) { dcl |= DCL_UnBuffDimm; #if CONFIG_CPU_AMD_SOCKET_939 if ((cpuid_eax(1) & 0x30) == 0x30) { /* CS[7:4] is copy of CS[3:0], should be set for 939 socket */ dcl |= DCL_UpperCSMap; } #endif } else { dcl |= DCL_UnBuffDimm; } } pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); if (is_registered(ctrl)) { printk(BIOS_SPEW, "Registered\n"); } else { printk(BIOS_SPEW, "Unbuffered\n"); } return dimm_mask; } static unsigned int spd_detect_dimms(const struct mem_controller *ctrl) { unsigned dimm_mask; int i; dimm_mask = 0; for (i = 0; i < DIMM_SOCKETS; i++) { int byte; unsigned device; device = ctrl->channel0[i]; if (device) { byte = spd_read_byte(ctrl->channel0[i], 2); /* Type */ if (byte == 7) { dimm_mask |= (1 << i); } } device = ctrl->channel1[i]; if (device) { byte = spd_read_byte(ctrl->channel1[i], 2); if (byte == 7) { dimm_mask |= (1 << (i + DIMM_SOCKETS)); } } } return dimm_mask; } static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_mask) { int i; uint32_t nbcap; /* SPD addresses to verify are identical */ static const uint8_t addresses[] = { 2, /* Type should be DDR SDRAM */ 3, /* *Row addresses */ 4, /* *Column addresses */ 5, /* *Physical Banks */ 6, /* *Module Data Width low */ 7, /* *Module Data Width high */ 9, /* *Cycle time at highest CAS Latency CL=X */ 11, /* *SDRAM Type */ 13, /* *SDRAM Width */ 17, /* *Logical Banks */ 18, /* *Supported CAS Latencies */ 21, /* *SDRAM Module Attributes */ 23, /* *Cycle time at CAS Latency (CLX - 0.5) */ 25, /* *Cycle time at CAS Latency (CLX - 1.0) */ 27, /* *tRP Row precharge time */ 28, /* *Minimum Row Active to Row Active Delay (tRRD) */ 29, /* *tRCD RAS to CAS */ 30, /* *tRAS Activate to Precharge */ 41, /* *Minimum Active to Active/Auto Refresh Time(Trc) */ 42, /* *Minimum Auto Refresh Command Time(Trfc) */ }; /* If the dimms are not in pairs do not do dual channels */ if ((dimm_mask & ((1 << DIMM_SOCKETS) - 1)) != ((dimm_mask >> DIMM_SOCKETS) & ((1 << DIMM_SOCKETS) - 1))) { goto single_channel; } /* If the cpu is not capable of doing dual channels don't do dual channels */ nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP); if (!(nbcap & NBCAP_128Bit)) { goto single_channel; } for (i = 0; (i < 4) && (ctrl->channel0[i]); i++) { unsigned device0, device1; int value0, value1; int j; /* If I don't have a dimm skip this one */ if (!(dimm_mask & (1 << i))) { continue; } device0 = ctrl->channel0[i]; device1 = ctrl->channel1[i]; for (j = 0; j < ARRAY_SIZE(addresses); j++) { unsigned addr; addr = addresses[j]; value0 = spd_read_byte(device0, addr); if (value0 < 0) { return -1; } value1 = spd_read_byte(device1, addr); if (value1 < 0) { return -1; } if (value0 != value1) { goto single_channel; } } } printk(BIOS_SPEW, "Enabling dual channel memory\n"); uint32_t dcl; dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl &= ~DCL_32ByteEn; dcl |= DCL_128BitEn; pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); return dimm_mask; single_channel: dimm_mask &= ~((1 << (DIMM_SOCKETS *2)) - (1 << DIMM_SOCKETS)); return dimm_mask; } struct mem_param { uint8_t cycle_time; uint8_t divisor; /* In 1/2 ns increments */ uint8_t tRC; uint8_t tRFC; uint32_t dch_memclk; uint16_t dch_tref4k, dch_tref8k; uint8_t dtl_twr; uint8_t dtl_twtr; uint8_t dtl_trwt[3][3]; /* first index is CAS_LAT 2/2.5/3 and 128/registered64/64 */ uint8_t rdpreamble[4]; /* 0 is for registered, 1 for 1-2 DIMMS, 2 and 3 for 3 or 4 unreg dimm slots */ char name[9]; }; static const struct mem_param *get_mem_param(int freq) { static const struct mem_param speed[] = { [NBCAP_MEMCLK_100MHZ] = { .name = "100MHz", .cycle_time = 0xa0, .divisor = (10 <<1), .tRC = 0x46, .tRFC = 0x50, .dch_memclk = DCH_MEMCLK_100MHZ << DCH_MEMCLK_SHIFT, .dch_tref4k = DTH_TREF_100MHZ_4K, .dch_tref8k = DTH_TREF_100MHZ_8K, .dtl_twr = 2, .dtl_twtr = 1, .dtl_trwt = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }}, .rdpreamble = { ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0) } }, [NBCAP_MEMCLK_133MHZ] = { .name = "133MHz", .cycle_time = 0x75, .divisor = (7<<1)+1, .tRC = 0x41, .tRFC = 0x4B, .dch_memclk = DCH_MEMCLK_133MHZ << DCH_MEMCLK_SHIFT, .dch_tref4k = DTH_TREF_133MHZ_4K, .dch_tref8k = DTH_TREF_133MHZ_8K, .dtl_twr = 2, .dtl_twtr = 1, .dtl_trwt = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }}, .rdpreamble = { ((8 << 1) + 0), ((7 << 1) + 0), ((7 << 1) + 1), ((7 << 1) + 0) } }, [NBCAP_MEMCLK_166MHZ] = { .name = "166MHz", .cycle_time = 0x60, .divisor = (6<<1), .tRC = 0x3C, .tRFC = 0x48, .dch_memclk = DCH_MEMCLK_166MHZ << DCH_MEMCLK_SHIFT, .dch_tref4k = DTH_TREF_166MHZ_4K, .dch_tref8k = DTH_TREF_166MHZ_8K, .dtl_twr = 3, .dtl_twtr = 1, .dtl_trwt = { { 3, 2, 3 }, { 3, 3, 4 }, { 4, 3, 4 }}, .rdpreamble = { ((7 << 1) + 1), ((6 << 1) + 0), ((6 << 1) + 1), ((6 << 1) + 0) } }, [NBCAP_MEMCLK_200MHZ] = { .name = "200MHz", .cycle_time = 0x50, .divisor = (5<<1), .tRC = 0x37, .tRFC = 0x46, .dch_memclk = DCH_MEMCLK_200MHZ << DCH_MEMCLK_SHIFT, .dch_tref4k = DTH_TREF_200MHZ_4K, .dch_tref8k = DTH_TREF_200MHZ_8K, .dtl_twr = 3, .dtl_twtr = 2, .dtl_trwt = { { 0, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }}, .rdpreamble = { ((7 << 1) + 0), ((5 << 1) + 0), ((5 << 1) + 1), ((5 << 1) + 1) } } }; const struct mem_param *param; param = speed + freq; printk(BIOS_SPEW, "%s\n", param->name); return param; } struct spd_set_memclk_result { const struct mem_param *param; long dimm_mask; }; static int spd_dimm_loading_socket(const struct mem_controller *ctrl, long dimm_mask, int *freq_1t) { #if CONFIG_CPU_AMD_SOCKET_939 /* + 1 raise so we detect 0 as bad field */ #define DDR200 (NBCAP_MEMCLK_100MHZ + 1) #define DDR333 (NBCAP_MEMCLK_166MHZ + 1) #define DDR400 (NBCAP_MEMCLK_200MHZ + 1) #define DDR_2T 0x80 #define DDR_MASK 0x7 #define DDR200_2T (DDR_2T | DDR200) #define DDR333_2T (DDR_2T | DDR333) #define DDR400_2T (DDR_2T | DDR400) /* Following table comes directly from BKDG (unbuffered DIMM support) [Y][X] Y = ch0_0, ch1_0, ch0_1, ch1_1 1=present 0=empty X uses same layout but 1 means double rank 0 is single rank/empty Following tables come from BKDG the ch{0_0,1_0,0_1,1_1} maps to MEMCS_{1L,1H,2L,2H} in i the PDF. PreE is table 45, and revE table 46. */ static const unsigned char dimm_loading_config_preE[16][16] = { [0x8] = {[0x0] = DDR400,[0x8] = DDR400}, [0x2] = {[0x0] = DDR333,[0x2] = DDR400}, [0xa] = {[0x0] = DDR400_2T,[0x2] = DDR400_2T, [0x8] = DDR400_2T,[0xa] = DDR333_2T}, [0xc] = {[0x0] = DDR400,[0xc] = DDR400}, [0x3] = {[0x0] = DDR333,[0x3] = DDR400}, [0xf] = {[0x0] = DDR400_2T,[0x3] = DDR400_2T, [0xc] = DDR400_2T,[0xf] = DDR333_2T}, }; static const unsigned char dimm_loading_config_revE[16][16] = { [0x8] = {[0x0] = DDR400, [0x8] = DDR400}, [0x2] = {[0x0] = DDR333, [0x2] = DDR400}, [0x4] = {[0x0] = DDR400, [0x4] = DDR400}, [0x1] = {[0x0] = DDR333, [0x1] = DDR400}, [0xa] = {[0x0] = DDR400_2T, [0x2] = DDR400_2T, [0x8] = DDR400_2T, [0xa] = DDR333_2T}, [0x5] = {[0x0] = DDR400_2T, [0x1] = DDR400_2T, [0x4] = DDR400_2T, [0x5] = DDR333_2T}, [0xc] = {[0x0] = DDR400, [0xc] = DDR400, [0x4] = DDR400, [0x8] = DDR400}, [0x3] = {[0x0] = DDR333, [0x1] = DDR333, [0x2] = DDR333, [0x3] = DDR400}, [0xe] = {[0x0] = DDR400_2T, [0x4] = DDR400_2T, [0x2] = DDR400_2T, [0x6] = DDR400_2T, [0x8] = DDR400_2T, [0xc] = DDR400_2T, [0xa] = DDR333_2T, [0xe] = DDR333_2T}, [0xb] = {[0x0] = DDR333, [0x1] = DDR400_2T, [0x2] = DDR333_2T, [0x3] = DDR400_2T, [0x8] = DDR333_2T, [0x9] = DDR400_2T, [0xa] = DDR333_2T, [0xb] = DDR333_2T}, [0xd] = {[0x0] = DDR400_2T, [0x8] = DDR400_2T, [0x1] = DDR400_2T, [0x9] = DDR333_2T, [0x4] = DDR400_2T, [0xc] = DDR400_2T, [0x5] = DDR333_2T, [0xd] = DDR333_2T}, [0x7] = {[0x0] = DDR333, [0x2] = DDR400_2T, [0x1] = DDR333_2T, [0x3] = DDR400_2T, [0x4] = DDR333_2T, [0x6] = DDR400_2T, [0x5] = DDR333_2T, [0x7] = DDR333_2T}, [0xf] = {[0x0] = DDR400_2T, [0x1] = DDR400_2T, [0x4] = DDR400_2T, [0x5] = DDR333_2T, [0x2] = DDR400_2T, [0x3] = DDR400_2T, [0x6] = DDR400_2T, [0x7] = DDR333_2T, [0x8] = DDR400_2T, [0x9] = DDR400_2T, [0xc] = DDR400_2T, [0xd] = DDR333_2T, [0xa] = DDR333_2T, [0xb] = DDR333_2T, [0xe] = DDR333_2T, [0xf] = DDR333_2T}, }; /*The dpos matches channel positions defined in BKDG and above arrays The rpos is bitmask of dual rank dimms in same order as dpos */ unsigned int dloading = 0, i, rpos = 0, dpos = 0; const unsigned char (*dimm_loading_config)[16] = dimm_loading_config_revE; int rank; uint32_t dcl; if (is_cpu_pre_e0()) { dimm_loading_config = dimm_loading_config_preE; } /* only DIMMS two per channel */ for (i = 0; i < 2; i++) { if ((dimm_mask & (1 << i))) { /* read rank channel 0 */ rank = spd_read_byte(ctrl->channel0[i], 5); if (rank < 0) goto hw_error; rpos |= (rank == 2) ? (1 << (3 - (i * 2))) : 0; dpos |= (1 << (3 - (i * 2))); } if ((dimm_mask & (1 << (i+DIMM_SOCKETS)))) { /* read rank channel 1*/ rank = spd_read_byte(ctrl->channel1[i], 5); if (rank < 0) goto hw_error; rpos |= (rank == 2) ? (1 << (2 - (i * 2))) : 0; dpos |= (1 << (2 - (i * 2))); } } /* now the lookup, decode the max speed DDR400_2T etc */ dloading = dimm_loading_config[dpos][rpos] & DDR_MASK; #if 0 printk(BIOS_DEBUG, "XXX %x %x dload %x 2T %x\n", dpos,rpos, dloading, dimm_loading_config[dpos][rpos] & DDR_2T); #endif hw_error: if (dloading != 0) { /* we have valid combination check the restrictions */ dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl |= ((dimm_loading_config[dpos][rpos] & DDR_2T) || CONFIG_K8_FORCE_2T_DRAM_TIMING) ? (DCL_En2T) : 0; /* Set DuallDimm is second channel is completely empty (revD+) */ if (((cpuid_eax(1) & 0xfff0f) >= 0x10f00) && ((dpos & 0x5) == 0)) { printk(BIOS_DEBUG, "Setting DualDIMMen\n"); dcl |= DCL_DualDIMMen; } pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); return dloading - 1; } else { /* if we don't find it we se it to DDR400 */ printk(BIOS_WARNING, "Detected strange DIMM configuration, may not work! (or bug)\n"); return NBCAP_MEMCLK_200MHZ; } #elif CONFIG_CPU_AMD_SOCKET_754 #define CFGIDX(DIMM1,DIMM2,DIMM3) ((DIMM3)*9+(DIMM2)*3+(DIMM1)) #define EMPTY 0 #define X8S_X16 1 #define X8D 2 #define DDR200 NBCAP_MEMCLK_100MHZ #define DDR333 NBCAP_MEMCLK_166MHZ #define DDR400 NBCAP_MEMCLK_200MHZ /* this is table 42 from the BKDG, ignoring footnote 4, * with the EMPTY, EMPTY, EMPTY row added */ static const unsigned char cfgtable[][2] = { [CFGIDX(EMPTY, EMPTY, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(X8S_X16, EMPTY, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(EMPTY, X8S_X16, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(EMPTY, EMPTY, X8S_X16 )] = { DDR400, DDR400 }, [CFGIDX(X8D, EMPTY, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(EMPTY, X8D, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(EMPTY, EMPTY, X8D )] = { DDR400, DDR400 }, [CFGIDX(X8S_X16, X8S_X16, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(X8S_X16, X8D, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(X8S_X16, EMPTY, X8S_X16 )] = { DDR400, DDR400 }, [CFGIDX(X8S_X16, EMPTY, X8D )] = { DDR400, DDR400 }, [CFGIDX(X8D, X8S_X16, EMPTY )] = { DDR400, DDR400 }, [CFGIDX(X8D, X8D, EMPTY )] = { DDR333, DDR333 }, [CFGIDX(X8D, EMPTY, X8S_X16 )] = { DDR400, DDR400 }, [CFGIDX(X8D, EMPTY, X8D )] = { DDR333, DDR333 }, [CFGIDX(EMPTY, X8S_X16, X8S_X16 )] = { DDR333, DDR400 }, [CFGIDX(EMPTY, X8S_X16, X8D )] = { DDR200, DDR400 }, [CFGIDX(EMPTY, X8D, X8S_X16 )] = { DDR200, DDR400 }, [CFGIDX(EMPTY, X8D, X8D )] = { DDR200, DDR333 }, [CFGIDX(X8S_X16, X8S_X16, X8S_X16 )] = { DDR333, DDR400 }, [CFGIDX(X8S_X16, X8S_X16, X8D )] = { DDR200, DDR333 }, [CFGIDX(X8S_X16, X8D, X8S_X16 )] = { DDR200, DDR333 }, [CFGIDX(X8S_X16, X8D, X8D )] = { DDR200, DDR333 }, [CFGIDX(X8D, X8S_X16, X8S_X16 )] = { DDR333, DDR333 }, [CFGIDX(X8D, X8S_X16, X8D )] = { DDR200, DDR333 }, [CFGIDX(X8D, X8D, X8S_X16 )] = { DDR200, DDR333 }, [CFGIDX(X8D, X8D, X8D )] = { DDR200, DDR333 } }; int i, rank, width, dimmtypes[3]; const unsigned char *cfg; for (i = 0; i < 3; i++) { if (dimm_mask & (1 << i)) { rank = spd_read_byte(ctrl->channel0[i], 5); width = spd_read_byte(ctrl->channel0[i], 13); if (rank < 0 || width < 0) die("failed to read SPD"); width &= 0x7f; /* this is my guess as to how the criteria in the table * are to be understood: */ dimmtypes[i] = width >= (rank == 1 ? 8 : 16) ? X8S_X16 : X8D; } else { dimmtypes[i] = EMPTY; } } cfg = cfgtable[CFGIDX(dimmtypes[0], dimmtypes[1], dimmtypes[2])]; *freq_1t = cfg[0]; return is_cpu_c0() ? cfg[0] : cfg[1]; #else /* CONFIG_CPU_AMD_SOCKET_* */ /* well, there are socket 940 boards supported which obviously fail to * compile with this */ // #error load dependent memory clock limiting is not implemented for this socket /* see BKDG 4.1.3--if you just want to test a setup that doesn't * require limiting, you may use the following code */ *freq_1t = NBCAP_MEMCLK_200MHZ; return NBCAP_MEMCLK_200MHZ; #endif /* CONFIG_CPU_AMD_SOCKET_* */ } static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller *ctrl, long dimm_mask) { struct spd_set_memclk_result result; unsigned char cl_at_freq[NBCAP_MEMCLK_MASK + 1]; int dimm, freq, max_freq_bios, max_freq_dloading, max_freq_1t; uint32_t value; static const uint8_t spd_min_cycle_time_indices[] = { 9, 23, 25 }; static const unsigned char cycle_time_at_freq[] = { [NBCAP_MEMCLK_200MHZ] = 0x50, /* 5ns */ [NBCAP_MEMCLK_166MHZ] = 0x60, /* 6ns */ [NBCAP_MEMCLK_133MHZ] = 0x75, /* 7.5ns */ [NBCAP_MEMCLK_100MHZ] = 0xa0, /* 10ns */ }; /* BEWARE that the constants for frequencies order in reverse of what * would be intuitive. 200 MHz has the lowest constant, 100 MHz the * highest. Thus, all comparisons and traversal directions having to * do with frequencies are/have to be the opposite of what would be * intuitive. */ /* the CLs supported by the controller: */ memset(cl_at_freq, 0x1c, sizeof(cl_at_freq)); memset(cl_at_freq, 0x00, (pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP) >> NBCAP_MEMCLK_SHIFT) & NBCAP_MEMCLK_MASK); max_freq_bios = read_option(max_mem_clock, 0); if (max_freq_bios <= NBCAP_MEMCLK_100MHZ) memset(cl_at_freq, 0x00, max_freq_bios); for (dimm = 0; dimm < DIMM_SOCKETS; dimm++) { int x,i,spd_cls,cl,spd_min_cycle_time; unsigned char cl_at_freq_mask[sizeof(cl_at_freq)]; if (!(dimm_mask & (1 << dimm))) continue; /* Byte 18 for DDR SDRAM is interpreted: * bit 0 == CAS Latency = 1.0 * bit 1 == CAS Latency = 1.5 * bit 2 == CAS Latency = 2.0 * bit 3 == CAS Latency = 2.5 * bit 4 == CAS Latency = 3.0 * bit 5 == CAS Latency = 3.5 * bit 6 == CAS Latency = 4.0 * bit 7 == TBD */ spd_cls = spd_read_byte(ctrl->channel0[dimm], 18); if (spd_cls <= 0) goto hw_error; memset(cl_at_freq_mask, 0x00, sizeof(cl_at_freq_mask)); for (cl = 1 << log2(spd_cls), i = 0; i < 3; cl >>= 1, i++) { if (!(spd_cls & cl)) continue; spd_min_cycle_time = spd_read_byte(ctrl->channel0[dimm], spd_min_cycle_time_indices[i]); if (spd_min_cycle_time < 0) goto hw_error; if ((!spd_min_cycle_time) || (spd_min_cycle_time & 0x0f) > 9) continue; for (x = 0; x < sizeof(cl_at_freq_mask); x++) if (cycle_time_at_freq[x] >= spd_min_cycle_time) cl_at_freq_mask[x] |= cl; } for (x = 0; x < sizeof(cl_at_freq_mask); x++) cl_at_freq[x] &= cl_at_freq_mask[x]; } freq = NBCAP_MEMCLK_200MHZ; while (freq < sizeof(cl_at_freq) && !cl_at_freq[freq]) freq++; max_freq_dloading = spd_dimm_loading_socket(ctrl, dimm_mask, &max_freq_1t); if (max_freq_dloading > freq) { printk(BIOS_WARNING, "Memory speed reduced due to signal loading conditions\n"); freq = max_freq_dloading; while (freq < sizeof(cl_at_freq) && !cl_at_freq[freq]) freq++; } /* if the next lower frequency gives a CL at least one whole cycle * shorter, select that (see end of BKDG 4.1.1.1) */ if (freq < sizeof(cl_at_freq)-1 && cl_at_freq[freq+1] && __ffs(cl_at_freq[freq]) - __ffs(cl_at_freq[freq+1]) >= 2) freq++; if (freq == sizeof(cl_at_freq)) goto hw_error; #if CONFIG_CPU_AMD_SOCKET_754 if (freq < max_freq_1t || CONFIG_K8_FORCE_2T_DRAM_TIMING) { pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW) | DCL_En2T); } #endif result.param = get_mem_param(freq); /* Update DRAM Config High with our selected memory speed */ value = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); value &= ~(DCH_MEMCLK_MASK << DCH_MEMCLK_SHIFT); #if 0 /* Improves DQS centering by correcting for case when core speed multiplier and MEMCLK speed result in odd clock divisor, by selecting the next lowest memory speed, required only at DDR400 and higher speeds with certain DIMM loadings ---- cheating???*/ if (!is_cpu_pre_e0()) { if (min_cycle_time==0x50) { value |= 1<<31; } } #endif value |= result.param->dch_memclk; pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, value); static const unsigned latencies[] = { DTL_CL_2, DTL_CL_2_5, DTL_CL_3 }; /* Update DRAM Timing Low with our selected cas latency */ value = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); value &= ~(DTL_TCL_MASK << DTL_TCL_SHIFT); value |= latencies[__ffs(cl_at_freq[freq]) - 2] << DTL_TCL_SHIFT; pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, value); result.dimm_mask = dimm_mask; return result; hw_error: result.param = (const struct mem_param *)0; result.dimm_mask = -1; return result; } static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 41); if (value < 0) return -1; if ((value == 0) || (value == 0xff)) { value = param->tRC; } clocks = CEIL_DIV((value << 1), param->divisor); if (clocks < DTL_TRC_MIN) { clocks = DTL_TRC_MIN; } if (clocks > DTL_TRC_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRC_SHIFT) & DTL_TRC_MASK) + DTL_TRC_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRC_MASK << DTL_TRC_SHIFT); dtl |= ((clocks - DTL_TRC_BASE) << DTL_TRC_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 42); if (value < 0) return -1; if ((value == 0) || (value == 0xff)) { value = param->tRFC; } clocks = CEIL_DIV((value << 1), param->divisor); if (clocks < DTL_TRFC_MIN) { clocks = DTL_TRFC_MIN; } if (clocks > DTL_TRFC_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRFC_SHIFT) & DTL_TRFC_MASK) + DTL_TRFC_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRFC_MASK << DTL_TRFC_SHIFT); dtl |= ((clocks - DTL_TRFC_BASE) << DTL_TRFC_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static int update_dimm_Trcd(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 29); if (value < 0) return -1; clocks = CEIL_DIV(value, (param->divisor << 1)); if (clocks < DTL_TRCD_MIN) { clocks = DTL_TRCD_MIN; } if (clocks > DTL_TRCD_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRCD_SHIFT) & DTL_TRCD_MASK) + DTL_TRCD_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRCD_MASK << DTL_TRCD_SHIFT); dtl |= ((clocks - DTL_TRCD_BASE) << DTL_TRCD_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static int update_dimm_Trrd(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 28); if (value < 0) return -1; clocks = CEIL_DIV(value, (param->divisor << 1)); if (clocks < DTL_TRRD_MIN) { clocks = DTL_TRRD_MIN; } if (clocks > DTL_TRRD_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRRD_SHIFT) & DTL_TRRD_MASK) + DTL_TRRD_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRRD_MASK << DTL_TRRD_SHIFT); dtl |= ((clocks - DTL_TRRD_BASE) << DTL_TRRD_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 30); if (value < 0) return -1; clocks = CEIL_DIV((value << 1), param->divisor); if (clocks < DTL_TRAS_MIN) { clocks = DTL_TRAS_MIN; } if (clocks > DTL_TRAS_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRAS_SHIFT) & DTL_TRAS_MASK) + DTL_TRAS_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRAS_MASK << DTL_TRAS_SHIFT); dtl |= ((clocks - DTL_TRAS_BASE) << DTL_TRAS_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static int update_dimm_Trp(const struct mem_controller *ctrl, const struct mem_param *param, int i) { unsigned clocks, old_clocks; uint32_t dtl; int value; value = spd_read_byte(ctrl->channel0[i], 27); if (value < 0) return -1; clocks = CEIL_DIV(value, (param->divisor << 1)); if (clocks < DTL_TRP_MIN) { clocks = DTL_TRP_MIN; } if (clocks > DTL_TRP_MAX) { return 0; } dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); old_clocks = ((dtl >> DTL_TRP_SHIFT) & DTL_TRP_MASK) + DTL_TRP_BASE; if (old_clocks > clocks) { clocks = old_clocks; } dtl &= ~(DTL_TRP_MASK << DTL_TRP_SHIFT); dtl |= ((clocks - DTL_TRP_BASE) << DTL_TRP_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); return 1; } static void set_Twr(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dtl; dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); dtl &= ~(DTL_TWR_MASK << DTL_TWR_SHIFT); dtl |= (param->dtl_twr - DTL_TWR_BASE) << DTL_TWR_SHIFT; pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl); } static void init_Tref(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dth; dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH); dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT); dth |= (param->dch_tref4k << DTH_TREF_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); } static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_param *param, int i) { uint32_t dth; int value; unsigned tref, old_tref; value = spd_read_byte(ctrl->channel0[i], 3); if (value < 0) return -1; value &= 0xf; tref = param->dch_tref8k; if (value == 12) { tref = param->dch_tref4k; } dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH); old_tref = (dth >> DTH_TREF_SHIFT) & DTH_TREF_MASK; if ((value == 12) && (old_tref == param->dch_tref4k)) { tref = param->dch_tref4k; } else { tref = param->dch_tref8k; } dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT); dth |= (tref << DTH_TREF_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); return 1; } static int update_dimm_x4(const struct mem_controller *ctrl, const struct mem_param *param, int i) { uint32_t dcl; int value; #if CONFIG_QRANK_DIMM_SUPPORT int rank; #endif int dimm; value = spd_read_byte(ctrl->channel0[i], 13); if (value < 0) { return -1; } #if CONFIG_QRANK_DIMM_SUPPORT rank = spd_read_byte(ctrl->channel0[i], 5); /* number of physical banks */ if (rank < 0) { return -1; } #endif dimm = 1<<(DCL_x4DIMM_SHIFT+i); #if CONFIG_QRANK_DIMM_SUPPORT if (rank==4) { dimm |= 1<<(DCL_x4DIMM_SHIFT+i+2); } #endif dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl &= ~dimm; if (value == 4) { dcl |= dimm; } pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); return 1; } static int update_dimm_ecc(const struct mem_controller *ctrl, const struct mem_param *param, int i) { uint32_t dcl; int value; value = spd_read_byte(ctrl->channel0[i], 11); if (value < 0) { return -1; } if (value != 2) { dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW); dcl &= ~DCL_DimmEccEn; pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl); } return 1; } static int count_dimms(const struct mem_controller *ctrl) { int dimms; unsigned index; dimms = 0; for (index = 0; index < 8; index += 2) { uint32_t csbase; csbase = pci_read_config32(ctrl->f2, (DRAM_CSBASE + (index << 2))); if (csbase & 1) { dimms += 1; } } return dimms; } static void set_Twtr(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dth; dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH); dth &= ~(DTH_TWTR_MASK << DTH_TWTR_SHIFT); dth |= ((param->dtl_twtr - DTH_TWTR_BASE) << DTH_TWTR_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); } static void set_Trwt(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dth, dtl; unsigned latency; unsigned clocks; int lat, mtype; clocks = 0; dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW); latency = (dtl >> DTL_TCL_SHIFT) & DTL_TCL_MASK; if (is_opteron(ctrl)) { mtype = 0; /* dual channel */ } else if (is_registered(ctrl)) { mtype = 1; /* registered 64bit interface */ } else { mtype = 2; /* unbuffered 64bit interface */ } switch (latency) { case DTL_CL_2: lat = 0; break; case DTL_CL_2_5: lat = 1; break; case DTL_CL_3: lat = 2; break; default: die("Unknown LAT for Trwt"); } clocks = param->dtl_trwt[lat][mtype]; if ((clocks < DTH_TRWT_MIN) || (clocks > DTH_TRWT_MAX)) { die("Unknown Trwt\n"); } dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH); dth &= ~(DTH_TRWT_MASK << DTH_TRWT_SHIFT); dth |= ((clocks - DTH_TRWT_BASE) << DTH_TRWT_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); return; } static void set_Twcl(const struct mem_controller *ctrl, const struct mem_param *param) { /* Memory Clocks after CAS# */ uint32_t dth; unsigned clocks; if (is_registered(ctrl)) { clocks = 2; } else { clocks = 1; } dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH); dth &= ~(DTH_TWCL_MASK << DTH_TWCL_SHIFT); dth |= ((clocks - DTH_TWCL_BASE) << DTH_TWCL_SHIFT); pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth); } static void set_read_preamble(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dch; unsigned rdpreamble; int slots, i; slots = 0; for (i = 0; i < 4; i++) { if (ctrl->channel0[i]) { slots += 1; } } /* map to index to param.rdpreamble array */ if (is_registered(ctrl)) { i = 0; } else if (slots < 3) { i = 1; } else if (slots == 3) { i = 2; } else if (slots == 4) { i = 3; } else { die("Unknown rdpreamble for this nr of slots"); } dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch &= ~(DCH_RDPREAMBLE_MASK << DCH_RDPREAMBLE_SHIFT); rdpreamble = param->rdpreamble[i]; if ((rdpreamble < DCH_RDPREAMBLE_MIN) || (rdpreamble > DCH_RDPREAMBLE_MAX)) { die("Unknown rdpreamble"); } dch |= (rdpreamble - DCH_RDPREAMBLE_BASE) << DCH_RDPREAMBLE_SHIFT; pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } static void set_max_async_latency(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dch; unsigned async_lat; int dimms; dimms = count_dimms(ctrl); dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch &= ~(DCH_ASYNC_LAT_MASK << DCH_ASYNC_LAT_SHIFT); async_lat = 0; if (is_registered(ctrl)) { if (dimms == 4) { /* 9ns */ async_lat = 9; } else { /* 8ns */ async_lat = 8; } } else { if (dimms > 3) { die("Too many unbuffered dimms"); } else if (dimms == 3) { /* 7ns */ async_lat = 7; } else { /* 6ns */ async_lat = 6; } } dch |= ((async_lat - DCH_ASYNC_LAT_BASE) << DCH_ASYNC_LAT_SHIFT); pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } static void set_idle_cycle_limit(const struct mem_controller *ctrl, const struct mem_param *param) { uint32_t dch; /* AMD says to Hardcode this */ dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH); dch &= ~(DCH_IDLE_LIMIT_MASK << DCH_IDLE_LIMIT_SHIFT); dch |= DCH_IDLE_LIMIT_16 << DCH_IDLE_LIMIT_SHIFT; dch |= DCH_DYN_IDLE_CTR_EN; pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch); } static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct mem_param *param, long dimm_mask) { int i; init_Tref(ctrl, param); for (i = 0; i < DIMM_SOCKETS; i++) { int rc; if (!(dimm_mask & (1 << i))) { continue; } /* DRAM Timing Low Register */ if ((rc = update_dimm_Trc (ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_Trfc(ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_Trcd(ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_Trrd(ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_Tras(ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_Trp (ctrl, param, i)) <= 0) goto dimm_err; /* DRAM Timing High Register */ if ((rc = update_dimm_Tref(ctrl, param, i)) <= 0) goto dimm_err; /* DRAM Config Low */ if ((rc = update_dimm_x4 (ctrl, param, i)) <= 0) goto dimm_err; if ((rc = update_dimm_ecc(ctrl, param, i)) <= 0) goto dimm_err; continue; dimm_err: if (rc < 0) { return -1; } dimm_mask = disable_dimm(ctrl, i, dimm_mask); } /* DRAM Timing Low Register */ set_Twr(ctrl, param); /* DRAM Timing High Register */ set_Twtr(ctrl, param); set_Trwt(ctrl, param); set_Twcl(ctrl, param); /* DRAM Config High */ set_read_preamble(ctrl, param); set_max_async_latency(ctrl, param); set_idle_cycle_limit(ctrl, param); return dimm_mask; } #if CONFIG_RAMINIT_SYSINFO static void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo) #else static void sdram_set_spd_registers(const struct mem_controller *ctrl) #endif { struct spd_set_memclk_result result; const struct mem_param *param; long dimm_mask; #if 1 if (!controller_present(ctrl)) { // printk(BIOS_DEBUG, "No memory controller present\n"); return; } #endif hw_enable_ecc(ctrl); activate_spd_rom(ctrl); dimm_mask = spd_detect_dimms(ctrl); if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) { printk(BIOS_DEBUG, "No memory for this cpu\n"); return; } dimm_mask = spd_enable_2channels(ctrl, dimm_mask); if (dimm_mask < 0) goto hw_spd_err; dimm_mask = spd_set_ram_size(ctrl , dimm_mask); if (dimm_mask < 0) goto hw_spd_err; dimm_mask = spd_handle_unbuffered_dimms(ctrl, dimm_mask); if (dimm_mask < 0) goto hw_spd_err; result = spd_set_memclk(ctrl, dimm_mask); param = result.param; dimm_mask = result.dimm_mask; if (dimm_mask < 0) goto hw_spd_err; dimm_mask = spd_set_dram_timing(ctrl, param , dimm_mask); if (dimm_mask < 0) goto hw_spd_err; order_dimms(ctrl); return; hw_spd_err: /* Unrecoverable error reading SPD data */ printk(BIOS_ERR, "SPD error - reset\n"); hard_reset(); return; } #if CONFIG_HW_MEM_HOLE_SIZEK != 0 static uint32_t hoist_memory(int controllers, const struct mem_controller *ctrl,unsigned hole_startk, int i) { int ii; uint32_t carry_over; device_t dev; uint32_t base, limit; uint32_t basek; uint32_t hoist; int j; carry_over = (4*1024*1024) - hole_startk; for (ii=controllers - 1;ii>i;ii--) { base = pci_read_config32(ctrl[0].f1, 0x40 + (ii << 3)); if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) { continue; } limit = pci_read_config32(ctrl[0].f1, 0x44 + (ii << 3)); for (j = 0; j < controllers; j++) { pci_write_config32(ctrl[j].f1, 0x44 + (ii << 3), limit + (carry_over << 2)); pci_write_config32(ctrl[j].f1, 0x40 + (ii << 3), base + (carry_over << 2)); } } limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3)); for (j = 0; j < controllers; j++) { pci_write_config32(ctrl[j].f1, 0x44 + (i << 3), limit + (carry_over << 2)); } dev = ctrl[i].f1; base = pci_read_config32(dev, 0x40 + (i << 3)); basek = (base & 0xffff0000) >> 2; if (basek == hole_startk) { //don't need set memhole here, because hole off set will be 0, overflow //so need to change base reg instead, new basek will be 4*1024*1024 base &= 0x0000ffff; base |= (4*1024*1024)<<2; for (j = 0; j < controllers; j++) { pci_write_config32(ctrl[j].f1, 0x40 + (i<<3), base); } } else { hoist = /* hole start address */ ((hole_startk << 10) & 0xff000000) + /* hole address to memory controller address */ (((basek + carry_over) >> 6) & 0x0000ff00) + /* enable */ 1; pci_write_config32(dev, 0xf0, hoist); } return carry_over; } static void set_hw_mem_hole(int controllers, const struct mem_controller *ctrl) { uint32_t hole_startk; int i; hole_startk = 4*1024*1024 - CONFIG_HW_MEM_HOLE_SIZEK; printk(BIOS_SPEW, "Handling memory hole at 0x%08x (default)\n", hole_startk); #if CONFIG_HW_MEM_HOLE_SIZE_AUTO_INC /* We need to double check if hole_startk is valid. * If it is equal to the dram base address in K (base_k), * we need to decrease it. */ uint32_t basek_pri; for (i=0; i> 2; if (base_k == hole_startk) { /* decrease memory hole startk to make sure it is * in the middle of the previous node */ hole_startk -= (base_k - basek_pri)>>1; break; /* only one hole */ } basek_pri = base_k; } printk(BIOS_SPEW, "Handling memory hole at 0x%08x (adjusted)\n", hole_startk); #endif /* Find node number that needs the memory hole configured */ for (i=0; i> 2; limit_k = ((limit + 0x00010000) & 0xffff0000) >> 2; if ((base_k <= hole_startk) && (limit_k > hole_startk)) { unsigned end_k; hoist_memory(controllers, ctrl, hole_startk, i); end_k = memory_end_k(ctrl, controllers); set_top_mem(end_k, hole_startk); break; /* only one hole */ } } } #endif #define TIMEOUT_LOOPS 300000 #if CONFIG_RAMINIT_SYSINFO static void sdram_enable(int controllers, const struct mem_controller *ctrl, struct sys_info *sysinfo) #else static void sdram_enable(int controllers, const struct mem_controller *ctrl) #endif { int i; u32 whatWait = 0; int suspend = acpi_is_wakeup_s3(); /* Error if I don't have memory */ if (memory_end_k(ctrl, controllers) == 0) { die("No memory\n"); } /* Before enabling memory start the memory clocks */ for (i = 0; i < controllers; i++) { uint32_t dch; if (!controller_present(ctrl + i)) continue; dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH); if (dch & (DCH_MEMCLK_EN0|DCH_MEMCLK_EN1|DCH_MEMCLK_EN2|DCH_MEMCLK_EN3)) { dch |= DCH_MEMCLK_VALID; pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch); } else { /* Disable dram receivers */ uint32_t dcl; dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW); dcl |= DCL_DisInRcvrs; pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); } } /* We need to wait a minimum of 20 MEMCLKS to enable the InitDram */ /* And if necessary toggle the the reset on the dimms by hand */ memreset(controllers, ctrl); for (i = 0; i < controllers; i++) { uint32_t dcl, dch; if (!controller_present(ctrl + i)) continue; /* Skip everything if I don't have any memory on this controller */ dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH); if (!(dch & DCH_MEMCLK_VALID)) { continue; } /* Toggle DisDqsHys to get it working */ dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW); if (dcl & DCL_DimmEccEn) { uint32_t mnc; printk(BIOS_SPEW, "ECC enabled\n"); mnc = pci_read_config32(ctrl[i].f3, MCA_NB_CONFIG); mnc |= MNC_ECC_EN; if (dcl & DCL_128BitEn) { mnc |= MNC_CHIPKILL_EN; } pci_write_config32(ctrl[i].f3, MCA_NB_CONFIG, mnc); } if (!suspend) { dcl |= DCL_DisDqsHys; pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); } dcl &= ~DCL_DisDqsHys; dcl &= ~DCL_DLL_Disable; dcl &= ~DCL_D_DRV; dcl &= ~DCL_QFC_EN; if (suspend) { enable_lapic(); init_timer(); dcl |= (DCL_ESR | DCL_SRS); /* Handle errata 85 Insufficient Delay Between MEMCLK Startup and CKE Assertion During Resume From S3 */ udelay(10); /* for unregistered */ if (is_registered(&ctrl[i])) { udelay(100); /* 110us for registered (we wait 10us already) */ } whatWait = DCL_ESR; } else { dcl |= DCL_DramInit; whatWait = DCL_DramInit; } pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); } for (i = 0; i < controllers; i++) { uint32_t dcl, dch; if (!controller_present(ctrl + i)) continue; /* Skip everything if I don't have any memory on this controller */ dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH); if (!(dch & DCH_MEMCLK_VALID)) { continue; } printk(BIOS_DEBUG, "Initializing memory: "); int loops = 0; do { dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW); loops++; if ((loops & 1023) == 0) { printk(BIOS_DEBUG, "."); } } while(((dcl & whatWait) != 0) && (loops < TIMEOUT_LOOPS)); if (loops >= TIMEOUT_LOOPS) { printk(BIOS_DEBUG, " failed\n"); continue; } if (!is_cpu_pre_c0()) { /* Wait until it is safe to touch memory */ #if 0 /* the registers are marked read-only but code zeros them */ dcl &= ~(DCL_MemClrStatus | DCL_DramEnable); pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl); #endif do { dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW); } while(((dcl & DCL_MemClrStatus) == 0) || ((dcl & DCL_DramEnable) == 0) || ((dcl & DCL_SRS))); } printk(BIOS_DEBUG, " done\n"); } #if CONFIG_HW_MEM_HOLE_SIZEK != 0 // init hw mem hole here /* DramHoleValid bit only can be set after MemClrStatus is set by Hardware */ if (!is_cpu_pre_e0()) set_hw_mem_hole(controllers, ctrl); #endif //FIXME add enable node interleaving here -- yhlu /*needed? 1. check how many nodes we have , if not all has ram installed get out 2. check cs_base lo is 0, node 0 f2 0x40,,,,, if any one is not using lo is CS_BASE, get out 3. check if other node is the same as node 0 about f2 0x40,,,,, otherwise get out 4. if all ready enable node_interleaving in f1 0x40..... of every node 5. for node interleaving we need to set mem hole to every node ( need recalcute hole offset in f0 for every node) */ } static void set_sysinfo_in_ram(unsigned val) { } void fill_mem_ctrl(int controllers, struct mem_controller *ctrl_a, const uint16_t *spd_addr) { int i; int j; struct mem_controller *ctrl; for (i=0;inode_id = i; ctrl->f0 = PCI_DEV(0, 0x18+i, 0); ctrl->f1 = PCI_DEV(0, 0x18+i, 1); ctrl->f2 = PCI_DEV(0, 0x18+i, 2); ctrl->f3 = PCI_DEV(0, 0x18+i, 3); if (spd_addr == (void *)0) continue; for (j=0;jchannel0[j] = spd_addr[(i*2+0)*DIMM_SOCKETS + j]; ctrl->channel1[j] = spd_addr[(i*2+1)*DIMM_SOCKETS + j]; } } }