#include #include #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "northbridge.h" #include "amdk8.h" #define DEVICE_MEM_HIGH 0xFEC00000ULL /* Reserve 20M for the system */ #define DEVICE_IO_START 0x1000 #define FX_DEVS 8 static device_t __f0_dev[FX_DEVS]; static device_t __f1_dev[FX_DEVS]; #if 0 static void debug_fx_devs(void) { int i; for(i = 0; i < FX_DEVS; i++) { device_t dev; dev = __f0_dev[i]; if (dev) { printk_debug("__f0_dev[%d]: %s bus: %p\n", i, dev_path(dev), dev->bus); } dev = __f1_dev[i]; if (dev) { printk_debug("__f1_dev[%d]: %s bus: %p\n", i, dev_path(dev), dev->bus); } } } #endif static void get_fx_devs(void) { int i; if (__f1_dev[0]) { return; } for(i = 0; i < FX_DEVS; i++) { __f0_dev[i] = dev_find_slot(0, PCI_DEVFN(0x18 + i, 0)); __f1_dev[i] = dev_find_slot(0, PCI_DEVFN(0x18 + i, 1)); } if (!__f1_dev[0]) { die("Cannot find 0:0x18.1\n"); } } static uint32_t f1_read_config32(unsigned reg) { get_fx_devs(); return pci_read_config32(__f1_dev[0], reg); } static void f1_write_config32(unsigned reg, uint32_t value) { int i; get_fx_devs(); for(i = 0; i < FX_DEVS; i++) { device_t dev; dev = __f1_dev[i]; if (dev && dev->enabled) { pci_write_config32(dev, reg, value); } } } static unsigned int amdk8_nodeid(device_t dev) { return (dev->path.u.pci.devfn >> 3) - 0x18; } static unsigned int amdk8_scan_chains(device_t dev, unsigned int max) { unsigned nodeid; unsigned link; nodeid = amdk8_nodeid(dev); #if 0 printk_debug("%s amdk8_scan_chains max: %d starting...\n", dev_path(dev), max); #endif for(link = 0; link < dev->links; link++) { uint32_t link_type; uint32_t busses, config_busses; unsigned free_reg, config_reg; dev->link[link].cap = 0x80 + (link *0x20); do { link_type = pci_read_config32(dev, dev->link[link].cap + 0x18); } while(link_type & ConnectionPending); if (!(link_type & LinkConnected)) { continue; } do { link_type = pci_read_config32(dev, dev->link[link].cap + 0x18); } while(!(link_type & InitComplete)); if (!(link_type & NonCoherent)) { continue; } /* See if there is an available configuration space mapping register in function 1. */ free_reg = 0; for(config_reg = 0xe0; config_reg <= 0xec; config_reg += 4) { uint32_t config; config = f1_read_config32(config_reg); if (!free_reg && ((config & 3) == 0)) { free_reg = config_reg; continue; } if (((config & 3) == 3) && (((config >> 4) & 7) == nodeid) && (((config >> 8) & 3) == link)) { break; } } if (free_reg && (config_reg > 0xec)) { config_reg = free_reg; } /* If we can't find an available configuration space mapping register skip this bus */ if (config_reg > 0xec) { continue; } /* Set up the primary, secondary and subordinate bus numbers. We have * no idea how many busses are behind this bridge yet, so we set the subordinate * bus number to 0xff for the moment. */ dev->link[link].secondary = ++max; dev->link[link].subordinate = 0xff; /* Read the existing primary/secondary/subordinate bus * number configuration. */ busses = pci_read_config32(dev, dev->link[link].cap + 0x14); config_busses = f1_read_config32(config_reg); /* Configure the bus numbers for this bridge: the configuration * transactions will not be propagates by the bridge if it is not * correctly configured */ busses &= 0xff000000; busses |= (((unsigned int)(dev->bus->secondary) << 0) | ((unsigned int)(dev->link[link].secondary) << 8) | ((unsigned int)(dev->link[link].subordinate) << 16)); pci_write_config32(dev, dev->link[link].cap + 0x14, busses); config_busses &= 0x000fc88; config_busses |= (3 << 0) | /* rw enable, no device compare */ (( nodeid & 7) << 4) | (( link & 3 ) << 8) | ((dev->link[link].secondary) << 16) | ((dev->link[link].subordinate) << 24); f1_write_config32(config_reg, config_busses); #if 0 printk_debug("%s Hyper transport scan link: %d max: %d\n", dev_path(dev), link, max); #endif /* Now we can scan all of the subordinate busses i.e. the chain on the hypertranport link */ max = hypertransport_scan_chain(&dev->link[link], max); #if 0 printk_debug("%s Hyper transport scan link: %d new max: %d\n", dev_path(dev), link, max); #endif /* We know the number of busses behind this bridge. Set the subordinate * bus number to it's real value */ dev->link[link].subordinate = max; busses = (busses & 0xff00ffff) | ((unsigned int) (dev->link[link].subordinate) << 16); pci_write_config32(dev, dev->link[link].cap + 0x14, busses); config_busses = (config_busses & 0x00ffffff) | (dev->link[link].subordinate << 24); f1_write_config32(config_reg, config_busses); #if 0 printk_debug("%s Hypertransport scan link: %d done\n", dev_path(dev), link); #endif } #if 0 printk_debug("%s amdk8_scan_chains max: %d done\n", dev_path(dev), max); #endif return max; } static int reg_useable(unsigned reg, device_t goal_dev, unsigned goal_nodeid, unsigned goal_link) { struct resource *res; unsigned nodeid, link; int result; res = 0; for(nodeid = 0; !res && (nodeid < 8); nodeid++) { device_t dev; dev = __f0_dev[nodeid]; for(link = 0; !res && (link < 3); link++) { res = probe_resource(dev, 0x100 + (reg | link)); } } result = 2; if (res) { result = 0; if ( (goal_link == (link - 1)) && (goal_nodeid == (nodeid - 1)) && (res->flags <= 1)) { result = 1; } } #if 0 printk_debug("reg: %02x result: %d gnodeid: %u glink: %u nodeid: %u link: %u\n", reg, result, goal_nodeid, goal_link, nodeid, link); #endif return result; } static struct resource *amdk8_find_iopair(device_t dev, unsigned nodeid, unsigned link) { struct resource *resource; unsigned free_reg, reg; resource = 0; free_reg = 0; for(reg = 0xc0; reg <= 0xd8; reg += 0x8) { int result; result = reg_useable(reg, dev, nodeid, link); if (result == 1) { /* I have been allocated this one */ break; } else if (result > 1) { /* I have a free register pair */ free_reg = reg; } } if (reg > 0xd8) { reg = free_reg; } if (reg > 0) { resource = new_resource(dev, 0x100 + (reg | link)); } return resource; } static struct resource *amdk8_find_mempair(device_t dev, unsigned nodeid, unsigned link) { struct resource *resource; unsigned free_reg, reg; resource = 0; free_reg = 0; for(reg = 0x80; reg <= 0xb8; reg += 0x8) { int result; result = reg_useable(reg, dev, nodeid, link); if (result == 1) { /* I have been allocated this one */ break; } else if (result > 1) { /* I have a free register pair */ free_reg = reg; } } if (reg > 0xb8) { reg = free_reg; } if (reg > 0) { resource = new_resource(dev, 0x100 + (reg | link)); } return resource; } static void amdk8_link_read_bases(device_t dev, unsigned nodeid, unsigned link) { struct resource *resource; /* Initialize the io space constraints on the current bus */ resource = amdk8_find_iopair(dev, nodeid, link); if (resource) { resource->base = 0; resource->size = 0; resource->align = log2(HT_IO_HOST_ALIGN); resource->gran = log2(HT_IO_HOST_ALIGN); resource->limit = 0xffffUL; resource->flags = IORESOURCE_IO; compute_allocate_resource(&dev->link[link], resource, IORESOURCE_IO, IORESOURCE_IO); } /* Initialize the prefetchable memory constraints on the current bus */ resource = amdk8_find_mempair(dev, nodeid, link); if (resource) { resource->base = 0; resource->size = 0; resource->align = log2(HT_MEM_HOST_ALIGN); resource->gran = log2(HT_MEM_HOST_ALIGN); resource->limit = 0xffffffffffULL; resource->flags = IORESOURCE_MEM | IORESOURCE_PREFETCH; compute_allocate_resource(&dev->link[link], resource, IORESOURCE_MEM | IORESOURCE_PREFETCH, IORESOURCE_MEM | IORESOURCE_PREFETCH); } /* Initialize the memory constraints on the current bus */ resource = amdk8_find_mempair(dev, nodeid, link); if (resource) { resource->base = 0; resource->size = 0; resource->align = log2(HT_MEM_HOST_ALIGN); resource->gran = log2(HT_MEM_HOST_ALIGN); resource->limit = 0xffffffffffULL; resource->flags = IORESOURCE_MEM; compute_allocate_resource(&dev->link[link], resource, IORESOURCE_MEM | IORESOURCE_PREFETCH, IORESOURCE_MEM); } } static void amdk8_read_resources(device_t dev) { unsigned nodeid, link; nodeid = amdk8_nodeid(dev); for(link = 0; link < dev->links; link++) { if (dev->link[link].children) { amdk8_link_read_bases(dev, nodeid, link); } } } static void amdk8_set_resource(device_t dev, struct resource *resource, unsigned nodeid) { resource_t rbase, rend; unsigned reg, link; char buf[50]; /* Make certain the resource has actually been set */ if (!(resource->flags & IORESOURCE_ASSIGNED)) { return; } /* If I have already stored this resource don't worry about it */ if (resource->flags & IORESOURCE_STORED) { return; } /* Only handle PCI memory and IO resources */ if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO))) return; /* Ensure I am actually looking at a resource of function 1 */ if (resource->index < 0x100) { return; } /* Get the base address */ rbase = resource->base; /* Get the limit (rounded up) */ rend = resource_end(resource); /* Get the register and link */ reg = resource->index & 0xfc; link = resource->index & 3; if (resource->flags & IORESOURCE_IO) { uint32_t base, limit; compute_allocate_resource(&dev->link[link], resource, IORESOURCE_IO, IORESOURCE_IO); base = f1_read_config32(reg); limit = f1_read_config32(reg + 0x4); base &= 0xfe000fcc; base |= rbase & 0x01fff000; base |= 3; limit &= 0xfe000fc8; limit |= rend & 0x01fff000; limit |= (link & 3) << 4; limit |= (nodeid & 7); if (dev->link[link].bridge_ctrl & PCI_BRIDGE_CTL_VGA) { base |= PCI_IO_BASE_VGA_EN; } if (dev->link[link].bridge_ctrl & PCI_BRIDGE_CTL_NO_ISA) { base |= PCI_IO_BASE_NO_ISA; } f1_write_config32(reg + 0x4, limit); f1_write_config32(reg, base); } else if (resource->flags & IORESOURCE_MEM) { uint32_t base, limit; compute_allocate_resource(&dev->link[link], resource, IORESOURCE_MEM | IORESOURCE_PREFETCH, resource->flags & (IORESOURCE_MEM | IORESOURCE_PREFETCH)); base = f1_read_config32(reg); limit = f1_read_config32(reg + 0x4); base &= 0x000000f0; base |= (rbase >> 8) & 0xffffff00; base |= 3; limit &= 0x00000048; limit |= (rend >> 8) & 0xffffff00; limit |= (link & 3) << 4; limit |= (nodeid & 7); f1_write_config32(reg + 0x4, limit); f1_write_config32(reg, base); } resource->flags |= IORESOURCE_STORED; sprintf(buf, " ", nodeid, link); report_resource_stored(dev, resource, buf); } static void amdk8_set_resources(device_t dev) { unsigned nodeid, link; int i; /* Find the nodeid */ nodeid = amdk8_nodeid(dev); /* Set each resource we have found */ for(i = 0; i < dev->resources; i++) { amdk8_set_resource(dev, &dev->resource[i], nodeid); } for(link = 0; link < dev->links; link++) { struct bus *bus; bus = &dev->link[link]; if (bus->children) { assign_resources(bus); } } } static void mcf0_control_init(struct device *dev) { uint32_t cmd; #if 0 printk_debug("NB: Function 0 Misc Control.. "); #endif #if 1 /* improve latency and bandwith on HT */ cmd = pci_read_config32(dev, 0x68); cmd &= 0xffff80ff; cmd |= 0x00004800; pci_write_config32(dev, 0x68, cmd ); #endif #if 0 /* over drive the ht port to 1000 Mhz */ cmd = pci_read_config32(dev, 0xa8); cmd &= 0xfffff0ff; cmd |= 0x00000600; pci_write_config32(dev, 0xdc, cmd ); #endif printk_debug("done.\n"); } static struct device_operations northbridge_operations = { .read_resources = amdk8_read_resources, .set_resources = amdk8_set_resources, .enable_resources = pci_dev_enable_resources, .init = mcf0_control_init, .scan_bus = amdk8_scan_chains, .enable = 0, .ops_pci = 0, }; static struct pci_driver mcf0_driver __pci_driver = { .ops = &northbridge_operations, .vendor = PCI_VENDOR_ID_AMD, .device = 0x1100, }; #define BRIDGE_IO_MASK (IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH) static void bridge_read_resources(device_t dev) { struct resource *resource; unsigned reg; /* Find the already assigned resource pairs */ get_fx_devs(); for(reg = 0x80; reg <= 0xd8; reg+= 0x08) { uint32_t base, limit; base = f1_read_config32(reg); limit = f1_read_config32(reg + 0x04); /* Is this register allocated? */ if ((base & 3) != 0) { unsigned nodeid, link; device_t dev; nodeid = limit & 7; link = (limit >> 4) & 3; dev = __f0_dev[nodeid]; if (dev) { /* Reserve the resource */ struct resource *resource; resource = new_resource(dev, 0x100 + (reg | link)); if (resource) { resource->flags = 1; } } } } /* Initialize the system wide io space constraints */ resource = new_resource(dev, 0); resource->base = 0x400; resource->limit = 0xffffUL; resource->flags = IORESOURCE_IO; compute_allocate_resource(&dev->link[0], resource, IORESOURCE_IO, IORESOURCE_IO); /* Initialize the system wide prefetchable memory resources constraints */ resource = new_resource(dev, 1); resource->limit = 0xfcffffffffULL; resource->flags = IORESOURCE_MEM | IORESOURCE_PREFETCH; compute_allocate_resource(&dev->link[0], resource, IORESOURCE_MEM | IORESOURCE_PREFETCH, IORESOURCE_MEM | IORESOURCE_PREFETCH); /* Initialize the system wide memory resources constraints */ resource = new_resource(dev, 2); resource->limit = 0xfcffffffffULL; resource->flags = IORESOURCE_MEM; compute_allocate_resource(&dev->link[0], resource, IORESOURCE_MEM | IORESOURCE_PREFETCH, IORESOURCE_MEM); } static void ram_resource(device_t dev, unsigned long index, unsigned long basek, unsigned long sizek) { struct resource *resource; if (!sizek) { return; } resource = new_resource(dev, index); resource->base = ((resource_t)basek) << 10; resource->size = ((resource_t)sizek) << 10; resource->flags = IORESOURCE_MEM | IORESOURCE_CACHEABLE | \ IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED; } static void bridge_set_resources(device_t dev) { struct resource *io, *mem1, *mem2; struct resource *resource, *last; unsigned long mmio_basek; uint32_t pci_tolm; int i, idx; #if 0 /* Place the IO devices somewhere safe */ io = find_resource(dev, 0); io->base = DEVICE_IO_START; #endif #if 1 /* Now reallocate the pci resources memory with the * highest addresses I can manage. */ mem1 = find_resource(dev, 1); mem2 = find_resource(dev, 2); /* See if both resources have roughly the same limits */ if (((mem1->limit <= 0xffffffff) && (mem2->limit <= 0xffffffff)) || (mem1->limit > 0xffffffff) && (mem2->limit > 0xffffffff)) { /* If so place the one with the most stringent alignment first */ if (mem2->align > mem1->align) { struct resource *tmp; tmp = mem1; mem1 = mem2; mem2 = mem1; } /* Now place the memory as high up as it will go */ mem2->base = resource_max(mem2); mem1->limit = mem2->base - 1; mem1->base = resource_max(mem2); } else { /* Place the resources as high up as they will go */ mem2->base = resource_max(mem2); mem1->base = resource_max(mem1); } #if 1 printk_debug("base1: 0x%08Lx limit1: 0x%08lx size: 0x%08Lx\n", mem1->base, mem1->limit, mem1->size); printk_debug("base2: 0x%08Lx limit2: 0x%08Lx size: 0x%08Lx\n", mem2->base, mem2->limit, mem2->size); #endif #endif pci_tolm = 0xffffffffUL; last = &dev->resource[dev->resources]; for(resource = &dev->resource[0]; resource < last; resource++) { #if 1 resource->flags |= IORESOURCE_ASSIGNED; resource->flags &= ~IORESOURCE_STORED; #endif compute_allocate_resource(&dev->link[0], resource, BRIDGE_IO_MASK, resource->flags & BRIDGE_IO_MASK); resource->flags |= IORESOURCE_STORED; report_resource_stored(dev, resource, ""); if ((resource->flags & IORESOURCE_MEM) && (pci_tolm > resource->base)) { pci_tolm = resource->base; } } #warning "FIXME handle interleaved nodes" mmio_basek = pci_tolm >> 10; /* Round mmio_basek to something the processor can support */ mmio_basek &= ~((1 << 6) -1); #if 1 #warning "FIXME improve mtrr.c so we don't use up all of the mtrrs with a 64M MMIO hole" /* Round the mmio hold to 64M */ mmio_basek &= ~((64*1024) - 1); #endif idx = 10; for(i = 0; i < 8; i++) { uint32_t base, limit; unsigned basek, limitk, sizek; base = f1_read_config32(0x40 + (i << 3)); limit = f1_read_config32(0x44 + (i << 3)); if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) { continue; } basek = (base & 0xffff0000) >> 2; limitk = ((limit + 0x00010000) & 0xffff0000) >> 2; sizek = limitk - basek; /* see if we need a hole from 0xa0000 to 0xbffff */ if ((basek < ((8*64)+(8*16))) && (sizek > ((8*64)+(16*16)))) { ram_resource(dev, idx++, basek, ((8*64)+(8*16)) - basek); basek = (8*64)+(16*16); sizek = limitk - ((8*64)+(16*16)); } /* See if I need to split the region to accomodate pci memory space */ if ((basek < mmio_basek) && (limitk > mmio_basek)) { if (basek < mmio_basek) { unsigned pre_sizek; pre_sizek = mmio_basek - basek; ram_resource(dev, idx++, basek, pre_sizek); sizek -= pre_sizek; basek = mmio_basek; } if ((basek + sizek) <= 4*1024*1024) { sizek = 0; } else { basek = 4*1024*1024; sizek -= (4*1024*1024 - mmio_basek); } } ram_resource(dev, idx++, basek, sizek); } assign_resources(&dev->link[0]); } static unsigned int bridge_scan_bus(device_t root, unsigned int max) { struct bus *cpu_bus; unsigned reg; int i; /* Unmap all of the HT chains */ for(reg = 0xe0; reg <= 0xec; reg += 4) { f1_write_config32(reg, 0); } max = pci_scan_bus(&root->link[0], PCI_DEVFN(0x18, 0), 0xff, max); /* Find which cpus are present */ cpu_bus = &dev_root.link[1]; for(i = 0; i < 7; i++) { device_t dev, cpu; struct device_path cpu_path; /* Find the cpu's memory controller */ dev = dev_find_slot(0, PCI_DEVFN(0x18 + i, 0)); /* Build the cpu device path */ cpu_path.type = DEVICE_PATH_APIC; cpu_path.u.apic.apic_id = i; /* See if I can find the cpu */ cpu = find_dev_path(cpu_bus, &cpu_path); /* Enable the cpu if I have the processor */ if (dev && dev->enabled) { if (!cpu) { cpu = alloc_dev(cpu_bus, &cpu_path); } if (cpu) { cpu->enabled = 1; } } /* Disable the cpu if I don't have the processor */ if (cpu && (!dev || !dev->enabled)) { cpu->enabled = 0; } /* Report what I have done */ if (cpu) { printk_debug("CPU: %s %s\n", dev_path(cpu), cpu->enabled?"enabled":"disabled"); } } return max; } static struct device_operations bridge_ops = { .read_resources = bridge_read_resources, .set_resources = bridge_set_resources, .enable_resources = enable_childrens_resources, .init = 0, .scan_bus = bridge_scan_bus, }; static void enumerate(struct chip *chip) { struct device_path path; device_t bridge; chip_enumerate(chip); /* Get the path for the bridge device */ path.type = DEVICE_PATH_PNP; path.u.pnp.port = 0xcf8; path.u.pnp.device = 0; /* Lookup the bridge device */ bridge = find_dev_path(&dev_root.link[0], &path); /* Set the bridge operations */ if (bridge) { bridge->ops = &bridge_ops; } } struct chip_control northbridge_amd_amdk8_control = { .name = "AMD K8 Northbridge", .enumerate = enumerate, };