/* * This file is part of the coreboot project. * * Copyright (C) 2011 - 2012 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /*---------------------------------------------------------------------------------------- * M O D U L E S U S E D *---------------------------------------------------------------------------------------- */ #include #include #include #include "agesawrapper.h" #include "BiosCallOuts.h" #include "cpuRegisters.h" #include "cpuCacheInit.h" #include "cpuApicUtilities.h" #include "cpuEarlyInit.h" #include "cpuLateInit.h" #include "Dispatcher.h" #include "cpuCacheInit.h" #include "amdlib.h" #include "Filecode.h" #include "heapManager.h" #include /* CPU_SPECIFIC_SERVICES */ #define FILECODE UNASSIGNED_FILE_FILECODE /*---------------------------------------------------------------------------------------- * D E F I N I T I O N S A N D M A C R O S *---------------------------------------------------------------------------------------- */ /* ACPI table pointers returned by AmdInitLate */ VOID *DmiTable = NULL; VOID *AcpiPstate = NULL; VOID *AcpiSrat = NULL; VOID *AcpiSlit = NULL; VOID *AcpiWheaMce = NULL; VOID *AcpiWheaCmc = NULL; VOID *AcpiAlib = NULL; /*---------------------------------------------------------------------------------------- * T Y P E D E F S A N D S T R U C T U R E S *---------------------------------------------------------------------------------------- */ /*---------------------------------------------------------------------------------------- * P R O T O T Y P E S O F L O C A L F U N C T I O N S *---------------------------------------------------------------------------------------- */ /*---------------------------------------------------------------------------------------- * E X P O R T E D F U N C T I O N S *---------------------------------------------------------------------------------------- */ /*--------------------------------------------------------------------------------------- * L O C A L F U N C T I O N S *--------------------------------------------------------------------------------------- */ extern VOID OemCustomizeInitEarly(IN OUT AMD_EARLY_PARAMS *InitEarly); static UINT32 agesawrapper_amdinitcpuio(VOID) { AGESA_STATUS Status; UINT32 PciData; PCI_ADDR PciAddress; AMD_CONFIG_PARAMS StdHeader; UINT32 nodes; UINT32 node; UINT32 sblink; UINT32 i; UINT32 TOM; /* get the number of coherent nodes in the system */ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB, FUNC_0, 0x60); LibAmdPciRead(AccessWidth32, PciAddress, &PciData, &StdHeader); nodes = ((PciData >> 4) & 7) + 1; //NodeCnt[2:0] /* Find out the Link ID of Node0 that connects to the * Southbridge (system IO hub). e.g. family10 MCM Processor, * sbLink is Processor0 Link2, internal Node0 Link3 */ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB, FUNC_0, 0x64); LibAmdPciRead(AccessWidth32, PciAddress, &PciData, &StdHeader); sblink = (PciData >> 8) & 3; //assume ganged /* Enable MMIO on AMD CPU Address Map Controller for all nodes */ for (node = 0; node < nodes; node++) { /* clear all MMIO Mapped Base/Limit Registers */ for (i = 0; i < 8; i++) { PciData = 0x00000000; PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x80 + i*8); LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x84 + i*8); LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); } /* clear all IO Space Base/Limit Registers */ for (i = 0; i < 4; i++) { PciData = 0x00000000; PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xC4 + i*8); LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xC0 + i*8); LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); } /* Set VGA Ram MMIO 0000A0000-0000BFFFF to Node0 sbLink */ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x84); PciData = 0x00000B00; PciData |= sblink << 4; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x80); PciData = 0x00000A03; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); /* Set TOM1-FFFFFFFF to Node0 sbLink. */ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x8C); PciData = 0x00FFFF00; PciData |= sblink << 4; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); TOM = (UINT32)MsrRead(TOP_MEM); PciData = (TOM >> 8) | 0x03; PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0x88); LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); /* Set MMCONF space to Node0 sbLink with NP set. * default E0000000-EFFFFFFF * Just have all mmio set to non-posted, * coreboot not implemente the range by range setting yet. */ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xBC); PciData = CONFIG_MMCONF_BASE_ADDRESS + (CONFIG_MMCONF_BUS_NUMBER * 0x100000) - 1;//1MB each bus PciData = (PciData >> 8) & 0xFFFFFF00; PciData |= 0x80; //NP PciData |= sblink << 4; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xB8); PciData = (PCIE_BASE_ADDRESS >> 8) | 0x03; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); /* Set PCIO: 0x0 - 0xFFF000 to Node0 sbLink and enabled VGA IO*/ PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xC4); PciData = 0x00FFF000; PciData |= sblink << 4; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); PciAddress.AddressValue = MAKE_SBDFO(0, 0, CONFIG_CDB + node, FUNC_1, 0xC0); PciData = 0x00000033; LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader); } Status = AGESA_SUCCESS; return (UINT32)Status; } UINT32 agesawrapper_amdinitmmio(VOID) { AGESA_STATUS Status; UINT64 MsrReg; AMD_CONFIG_PARAMS StdHeader; /* * Set the MMIO Configuration Base Address and Bus Range onto * MMIO configuration base Address MSR register. */ MsrReg = CONFIG_MMCONF_BASE_ADDRESS | (LibAmdBitScanReverse(CONFIG_MMCONF_BUS_NUMBER) << 2) | 1; LibAmdMsrWrite(0xC0010058, &MsrReg, &StdHeader); /* * Set the NB_CFG MSR register. Enable CF8 extended configuration cycles. */ LibAmdMsrRead(0xC001001F, &MsrReg, &StdHeader); MsrReg = MsrReg | (1ULL << 46); LibAmdMsrWrite(0xC001001F, &MsrReg, &StdHeader); /* Set ROM cache onto WP to decrease post time */ MsrReg = (0x0100000000 - CACHE_ROM_SIZE) | 5; LibAmdMsrWrite (0x20C, &MsrReg, &StdHeader); MsrReg = ((1ULL << CONFIG_CPU_ADDR_BITS) - CACHE_ROM_SIZE) | 0x800ull; LibAmdMsrWrite(0x20D, &MsrReg, &StdHeader); Status = AGESA_SUCCESS; return (UINT32)Status; } UINT32 agesawrapper_amdinitreset(VOID) { AGESA_STATUS status = AGESA_SUCCESS; AMD_INTERFACE_PARAMS AmdParamStruct; AMD_RESET_PARAMS AmdResetParams; LibAmdMemFill(&AmdParamStruct, 0, sizeof(AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); LibAmdMemFill(&AmdResetParams, 0, sizeof(AMD_RESET_PARAMS), &(AmdResetParams.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_RESET; AmdParamStruct.AllocationMethod = ByHost; AmdParamStruct.NewStructSize = sizeof(AMD_RESET_PARAMS); AmdParamStruct.NewStructPtr = &AmdResetParams; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = NULL; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; status = AmdCreateStruct(&AmdParamStruct); if (status != AGESA_SUCCESS) { return (UINT32)status; } AmdResetParams.HtConfig.Depth = 0; //MARG34PI disabled AGESA_ENTRY_INIT_RESET by default //but we need to call AmdCreateStruct to call HeapManagerInit, or the event log not work #if (defined AGESA_ENTRY_INIT_RESET) && (AGESA_ENTRY_INIT_RESET == TRUE) status = AmdInitReset((AMD_RESET_PARAMS *)AmdParamStruct.NewStructPtr); #endif if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog(AmdParamStruct.StdHeader.HeapStatus); AmdReleaseStruct(&AmdParamStruct); return (UINT32)status; } UINT32 agesawrapper_amdinitearly(VOID) { AGESA_STATUS status; AMD_INTERFACE_PARAMS AmdParamStruct; AMD_EARLY_PARAMS *AmdEarlyParamsPtr; UINT32 TscRateInMhz; CPU_SPECIFIC_SERVICES *FamilySpecificServices; LibAmdMemFill(&AmdParamStruct, 0, sizeof(AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_EARLY; AmdParamStruct.AllocationMethod = PreMemHeap; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; status = AmdCreateStruct(&AmdParamStruct); if (status != AGESA_SUCCESS) { return (UINT32)status; } AmdEarlyParamsPtr = (AMD_EARLY_PARAMS *)AmdParamStruct.NewStructPtr; OemCustomizeInitEarly(AmdEarlyParamsPtr); status = AmdInitEarly(AmdEarlyParamsPtr); if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog(AmdParamStruct.StdHeader.HeapStatus); GetCpuServicesOfCurrentCore((CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, &AmdParamStruct.StdHeader); FamilySpecificServices->GetTscRate(FamilySpecificServices, &TscRateInMhz, &AmdParamStruct.StdHeader); printk(BIOS_DEBUG, "BSP Frequency: %uMHz\n", (unsigned int)TscRateInMhz); AmdReleaseStruct(&AmdParamStruct); return (UINT32)status; } UINT32 agesawrapper_amdinitpost(VOID) { AGESA_STATUS status; AMD_INTERFACE_PARAMS AmdParamStruct; AMD_POST_PARAMS *PostParams; UINT32 TscRateInMhz; CPU_SPECIFIC_SERVICES *FamilySpecificServices; LibAmdMemFill(&AmdParamStruct, 0, sizeof(AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_POST; AmdParamStruct.AllocationMethod = PreMemHeap; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; status = AmdCreateStruct(&AmdParamStruct); if (status != AGESA_SUCCESS) { return (UINT32)status; } PostParams = (AMD_POST_PARAMS *)AmdParamStruct.NewStructPtr; status = AmdInitPost(PostParams); if (status != AGESA_SUCCESS) { agesawrapper_amdreadeventlog(PostParams->StdHeader.HeapStatus); } AmdReleaseStruct(&AmdParamStruct); /* Initialize heap space */ EmptyHeap(); GetCpuServicesOfCurrentCore ((CONST CPU_SPECIFIC_SERVICES **)&FamilySpecificServices, &AmdParamStruct.StdHeader); FamilySpecificServices->GetTscRate (FamilySpecificServices, &TscRateInMhz, &AmdParamStruct.StdHeader); printk(BIOS_DEBUG, "BSP Frequency: %uMHz\n", (unsigned int)TscRateInMhz); return (UINT32)status; } UINT32 agesawrapper_amdinitenv(VOID) { AGESA_STATUS status; AMD_INTERFACE_PARAMS AmdParamStruct; AMD_ENV_PARAMS *EnvParams; LibAmdMemFill(&AmdParamStruct, 0, sizeof(AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_ENV; AmdParamStruct.AllocationMethod = PostMemDram; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; status = AmdCreateStruct(&AmdParamStruct); if (status != AGESA_SUCCESS) { return (UINT32)status; } EnvParams = (AMD_ENV_PARAMS *)AmdParamStruct.NewStructPtr; status = AmdInitEnv(EnvParams); if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog(EnvParams->StdHeader.HeapStatus); AmdReleaseStruct(&AmdParamStruct); return (UINT32)status; } VOID * agesawrapper_getlateinitptr(int pick) { switch (pick) { case PICK_DMI: return DmiTable; case PICK_PSTATE: return AcpiPstate; case PICK_SRAT: return AcpiSrat; case PICK_SLIT: return AcpiSlit; case PICK_WHEA_MCE: return AcpiWheaMce; case PICK_WHEA_CMC: return AcpiWheaCmc; case PICK_ALIB: return AcpiAlib; default: return NULL; } return NULL; } UINT32 agesawrapper_amdinitmid(VOID) { AGESA_STATUS status; AMD_INTERFACE_PARAMS AmdParamStruct; /* Enable MMIO on AMD CPU Address Map Controller */ agesawrapper_amdinitcpuio(); LibAmdMemFill(&AmdParamStruct, 0, sizeof(AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_MID; AmdParamStruct.AllocationMethod = PostMemDram; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; status = AmdCreateStruct(&AmdParamStruct); if (status != AGESA_SUCCESS) { return (UINT32)status; } status = AmdInitMid((AMD_MID_PARAMS *)AmdParamStruct.NewStructPtr); if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog(AmdParamStruct.StdHeader.HeapStatus); AmdReleaseStruct(&AmdParamStruct); return (UINT32)status; } UINT32 agesawrapper_amdinitlate(VOID) { AGESA_STATUS Status; AMD_INTERFACE_PARAMS AmdParamStruct; AMD_LATE_PARAMS *AmdLateParamsPtr; LibAmdMemFill(&AmdParamStruct, 0, sizeof (AMD_INTERFACE_PARAMS), &(AmdParamStruct.StdHeader)); AmdParamStruct.AgesaFunctionName = AMD_INIT_LATE; AmdParamStruct.AllocationMethod = PostMemDram; AmdParamStruct.StdHeader.AltImageBasePtr = 0; AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdParamStruct.StdHeader.Func = 0; AmdParamStruct.StdHeader.ImageBasePtr = 0; AmdCreateStruct (&AmdParamStruct); AmdLateParamsPtr = (AMD_LATE_PARAMS *) AmdParamStruct.NewStructPtr; printk(BIOS_DEBUG, "agesawrapper_amdinitlate: AmdLateParamsPtr = %X\n", (u32)AmdLateParamsPtr); Status = AmdInitLate(AmdLateParamsPtr); if (Status != AGESA_SUCCESS) { agesawrapper_amdreadeventlog(AmdLateParamsPtr->StdHeader.HeapStatus); ASSERT(Status == AGESA_SUCCESS); } DmiTable = AmdLateParamsPtr->DmiTable; AcpiPstate = AmdLateParamsPtr->AcpiPState; AcpiSrat = AmdLateParamsPtr->AcpiSrat; AcpiSlit = AmdLateParamsPtr->AcpiSlit; AcpiWheaMce = AmdLateParamsPtr->AcpiWheaMce; AcpiWheaCmc = AmdLateParamsPtr->AcpiWheaCmc; AcpiAlib = AmdLateParamsPtr->AcpiAlib; printk(BIOS_DEBUG, "In %s, AGESA generated ACPI tables:\n" " DmiTable:%p\n AcpiPstate: %p\n AcpiSrat:%p\n AcpiSlit:%p\n" " Mce:%p\n Cmc:%p\n Alib:%p\n", __func__, DmiTable, AcpiPstate, AcpiSrat, AcpiSlit, AcpiWheaMce, AcpiWheaCmc, AcpiAlib); /* Don't release the structure until coreboot has copied the ACPI tables. * AmdReleaseStruct (&AmdLateParams); */ return (UINT32)Status; } /** * @param[in] UINTN ApicIdOfCore, * @param[in] AP_EXE_PARAMS *LaunchApParams */ UINT32 agesawrapper_amdlaterunaptask(UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; AMD_LATE_PARAMS AmdLateParams; LibAmdMemFill(&AmdLateParams, 0, sizeof(AMD_LATE_PARAMS), &(AmdLateParams.StdHeader)); AmdLateParams.StdHeader.AltImageBasePtr = 0; AmdLateParams.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdLateParams.StdHeader.Func = 0; AmdLateParams.StdHeader.ImageBasePtr = 0; AmdLateParams.StdHeader.HeapStatus = HEAP_TEMP_MEM; printk(BIOS_DEBUG, "AmdLateRunApTask on Core: %x\n", (uint32_t)Data); Status = AmdLateRunApTask((AP_EXE_PARAMS *)ConfigPtr); if (Status != AGESA_SUCCESS) { agesawrapper_amdreadeventlog(AmdLateParams.StdHeader.HeapStatus); ASSERT(Status <= AGESA_UNSUPPORTED); } return (UINT32)Status; } /** * */ static void agesa_bound_check(EVENT_PARAMS *event) { switch (event->EventInfo) { case CPU_ERROR_HEAP_IS_FULL: printk(BIOS_DEBUG, "Heap allocation for specified buffer handle failed as heap is full\n"); break; case CPU_ERROR_HEAP_BUFFER_HANDLE_IS_ALREADY_USED: printk(BIOS_DEBUG, "Allocation incomplete as buffer has previously been allocated\n"); break; case CPU_ERROR_HEAP_BUFFER_HANDLE_IS_NOT_PRESENT: printk(BIOS_DEBUG, "Unable to locate buffer handle or deallocate heap as buffer handle cannot be located\n"); break; case CPU_ERROR_HEAP_BUFFER_IS_NOT_PRESENT: printk(BIOS_DEBUG, "Unable to locate pointer to the heap buffer\n"); break; default: break; } } /** * */ static void agesa_alert(EVENT_PARAMS *event) { switch (event->EventInfo) { case MEM_ALERT_USER_TMG_MODE_OVERRULED: printk(BIOS_DEBUG, "Socket %x Dct %x Channel %x " "TIMING_MODE_SPECIFIC is requested but can not be applied to current configurations.\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case MEM_ALERT_ORG_MISMATCH_DIMM: printk(BIOS_DEBUG, "Socket %x Dct %x Channel %x " "DIMM organization miss-match\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case MEM_ALERT_BK_INT_DIS: printk(BIOS_DEBUG, "Socket %x Dct %x Channel %x " "Bank interleaving disable for internal issue\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case CPU_EVENT_BIST_ERROR: printk(BIOS_DEBUG, "BIST error: %x reported on Socket %x Core %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case HT_EVENT_HW_SYNCFLOOD: printk(BIOS_DEBUG, "HT_EVENT_DATA_HW_SYNCFLOOD error on Socket %x Link %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2); break; case HT_EVENT_HW_HTCRC: printk(BIOS_DEBUG, "HT_EVENT_HW_HTCRC error on Socket %x Link %x Lanemask:%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; default: break; } } /** * */ static void agesa_warning(EVENT_PARAMS *event) { /* if (event->EventInfo == CPU_EVENT_STACK_REENTRY) { printk(BIOS_DEBUG, "The stack has already been enabled and this is a redundant invocation of AMD_ENABLE_STACK. There is no event logged and no data values. The event sub-class is returned along with the status code\n"); return; } */ switch (event->EventInfo >> 24) { case 0x04: printk(BIOS_DEBUG, "Memory: Socket %x Dct %x Channel%x ", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case 0x08: printk(BIOS_DEBUG, "Processor: "); break; case 0x10: printk(BIOS_DEBUG, "Hyper Transport: "); break; default: break; } switch (event->EventInfo) { case MEM_WARNING_UNSUPPORTED_QRDIMM: printk(BIOS_DEBUG, "QR DIMMs detected but not supported\n"); break; case MEM_WARNING_UNSUPPORTED_UDIMM: printk(BIOS_DEBUG, "Unbuffered DIMMs detected but not supported\n"); break; case MEM_WARNING_UNSUPPORTED_SODIMM: printk(BIOS_DEBUG, "SO-DIMMs detected but not supported"); break; case MEM_WARNING_UNSUPPORTED_X4DIMM: printk(BIOS_DEBUG, "x4 DIMMs detected but not supported"); break; case MEM_WARNING_UNSUPPORTED_RDIMM: printk(BIOS_DEBUG, "Registered DIMMs detected but not supported"); break; /* case MEM_WARNING_UNSUPPORTED_LRDIMM: printk(BIOS_DEBUG, "Load Reduced DIMMs detected but not supported"); break; */ case MEM_WARNING_NO_SPDTRC_FOUND: printk(BIOS_DEBUG, "NO_SPDTRC_FOUND"); break; case MEM_WARNING_EMP_NOT_SUPPORTED: printk(BIOS_DEBUG, "Processor is not capable for EMP");// break; case MEM_WARNING_EMP_CONFLICT: printk(BIOS_DEBUG, "EMP cannot be enabled if channel interleaving bank interleaving, or bank swizzle is enabled\n");// break; case MEM_WARNING_EMP_NOT_ENABLED: printk(BIOS_DEBUG, "Memory size is not power of two\n");// break; case MEM_WARNING_PERFORMANCE_ENABLED_BATTERY_LIFE_PREFERRED: printk(BIOS_DEBUG, "MEM_WARNING_PERFORMANCE_ENABLED_BATTERY_LIFE_PREFERRED\n"); break; case MEM_WARNING_NODE_INTERLEAVING_NOT_ENABLED: printk(BIOS_DEBUG, "MEM_WARNING_NODE_INTERLEAVING_NOT_ENABLED\n"); break; case MEM_WARNING_CHANNEL_INTERLEAVING_NOT_ENABLED: printk(BIOS_DEBUG, "MEM_WARNING_CHANNEL_INTERLEAVING_NOT_ENABLED\n"); break; case MEM_WARNING_BANK_INTERLEAVING_NOT_ENABLED: printk(BIOS_DEBUG, "MEM_WARNING_BANK_INTERLEAVING_NOT_ENABLED\n"); break; case MEM_WARNING_VOLTAGE_1_35_NOT_SUPPORTED: printk(BIOS_DEBUG, "MEM_WARNING_VOLTAGE_1_35_NOT_SUPPORTED\n"); break; /* case MEM_WARNING_INITIAL_DDR3VOLT_NONZERO: printk(BIOS_DEBUG, "MEM_WARNING_INITIAL_DDR3VOLT_NONZERO\n"); break; case MEM_WARNING_NO_COMMONLY_SUPPORTED_VDDIO: printk(BIOS_DEBUG, "MEM_WARNING_NO_COMMONLY_SUPPORTED_VDDIO\n"); break; */ case CPU_EVENT_EXECUTION_CACHE_ALLOCATION_ERROR: printk(BIOS_DEBUG, "Allocation rule number that has been violated:"); if ((event->EventInfo & 0x000000FF) == 0x01) { printk(BIOS_DEBUG, "AGESA_CACHE_SIZE_REDUCED\n"); } else if ((event->EventInfo & 0x000000FF) == 0x02) { printk(BIOS_DEBUG, "AGESA_CACHE_REGIONS_ACROSS_1MB\n"); } else if ((event->EventInfo & 0x000000FF) == 0x03) { printk(BIOS_DEBUG, "AGESA_CACHE_REGIONS_ACROSS_4GB\n"); } printk(BIOS_DEBUG, "cache region index:%x, start:%x size:%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case CPU_WARNING_ADJUSTED_LEVELING_MODE: printk(BIOS_DEBUG, "CPU_WARNING_ADJUSTED_LEVELING_MODE " "requested: %x, actual level:%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2); break; case CPU_EVENT_PM_PSTATE_OVERCURRENT: printk(BIOS_DEBUG, "CPU_EVENT_PM_PSTATE_OVERCURRENT " "Socket: %x, Pstate:%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2); break; case CPU_WARNING_NONOPTIMAL_HT_ASSIST_CFG: printk(BIOS_DEBUG, "CPU_WARNING_NONOPTIMAL_HT_ASSIST_CFG\n"); break; /* case CPU_EVENT_UNKNOWN_PROCESSOR_REVISION: printk(BIOS_DEBUG, "CPU_EVENT_UNKNOWN_PROCESSOR_REVISION, socket: %lx, cpuid:%lx\n", event->DataParam1, event->DataParam2); break; */ case HT_EVENT_OPT_REQUIRED_CAP_RETRY: printk(BIOS_DEBUG, "HT_EVENT_OPT_REQUIRED_CAP_RETRY, Socket %x Link %x Depth %x\n", event->DataParam1, event->DataParam2, event->DataParam3); break; case HT_EVENT_OPT_REQUIRED_CAP_GEN3: printk(BIOS_DEBUG, "HT_EVENT_OPT_REQUIRED_CAP_GEN3, Socket %x Link %x Depth %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case HT_EVENT_OPT_UNUSED_LINKS: printk(BIOS_DEBUG, "HT_EVENT_OPT_UNUSED_LINKS, SocketA%x LinkA%x SocketB%x LinkB%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3, (unsigned int)event->DataParam4); break; case HT_EVENT_OPT_LINK_PAIR_EXCEED: printk(BIOS_DEBUG, "HT_EVENT_OPT_LINK_PAIR_EXCEED, SocketA%x MasterLink%x SocketB%x AltLink%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3, (unsigned int)event->DataParam4); default: break; } } /** * */ static void agesa_error(EVENT_PARAMS *event) { switch (event->EventInfo >> 24) { case 0x04: printk(BIOS_DEBUG, "Memory: Socket %x Dct %x Channel%x ", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case 0x08: printk(BIOS_DEBUG, "Processor: "); break; case 0x10: printk(BIOS_DEBUG, "Hyper Transport: "); break; default: break; } switch (event->EventInfo) { case MEM_ERROR_NO_DQS_POS_RD_WINDOW: printk(BIOS_DEBUG, "No DQS Position window for RD DQS\n"); break; case MEM_ERROR_SMALL_DQS_POS_RD_WINDOW: printk(BIOS_DEBUG, "Small DQS Position window for RD DQS\n"); break; case MEM_ERROR_NO_DQS_POS_WR_WINDOW: printk(BIOS_DEBUG, "No DQS Position window for WR DQS\n"); break; case MEM_ERROR_SMALL_DQS_POS_WR_WINDOW: printk(BIOS_DEBUG, "Small DQS Position window for WR DQS\n"); break; case MEM_ERROR_DIMM_SPARING_NOT_ENABLED: printk(BIOS_DEBUG, "DIMM sparing has not been enabled for an internal issues\n"); break; case MEM_ERROR_RCVR_EN_VALUE_TOO_LARGE: printk(BIOS_DEBUG, "Receive Enable value is too large\n"); break; case MEM_ERROR_RCVR_EN_NO_PASSING_WINDOW: printk(BIOS_DEBUG, "There is no DQS receiver enable window\n"); break; case MEM_ERROR_DRAM_ENABLED_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling DramEnabled bit\n"); break; case MEM_ERROR_DCT_ACCESS_DONE_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling DctAccessDone bit\n"); break; case MEM_ERROR_SEND_CTRL_WORD_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling SendCtrlWord bit\n"); break; case MEM_ERROR_PREF_DRAM_TRAIN_MODE_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling PrefDramTrainMode bit\n"); break; case MEM_ERROR_ENTER_SELF_REF_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling EnterSelfRef bit\n"); break; case MEM_ERROR_FREQ_CHG_IN_PROG_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling FreqChgInProg bit\n"); break; case MEM_ERROR_EXIT_SELF_REF_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling ExitSelfRef bit\n"); break; case MEM_ERROR_SEND_MRS_CMD_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling SendMrsCmd bit\n"); break; case MEM_ERROR_SEND_ZQ_CMD_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling SendZQCmd bit\n"); break; case MEM_ERROR_DCT_EXTRA_ACCESS_DONE_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling DctExtraAccessDone bit\n"); break; case MEM_ERROR_MEM_CLR_BUSY_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling MemClrBusy bit\n"); break; case MEM_ERROR_MEM_CLEARED_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling MemCleared bit\n"); break; case MEM_ERROR_FLUSH_WR_TIME_OUT: printk(BIOS_DEBUG, "Time out when polling FlushWr bit\n"); break; case MEM_ERROR_MAX_LAT_NO_WINDOW: printk(BIOS_DEBUG, "Fail to find pass during Max Rd Latency training\n"); break; case MEM_ERROR_PARALLEL_TRAINING_LAUNCH_FAIL: printk(BIOS_DEBUG, "Fail to launch training code on an AP\n"); break; case MEM_ERROR_PARALLEL_TRAINING_TIME_OUT: printk(BIOS_DEBUG, "Fail to finish parallel training\n"); break; case MEM_ERROR_NO_ADDRESS_MAPPING: printk(BIOS_DEBUG, "No address mapping found for a dimm\n"); break; case MEM_ERROR_RCVR_EN_NO_PASSING_WINDOW_EQUAL_LIMIT: printk(BIOS_DEBUG, "There is no DQS receiver enable window and the value is equal to the largest value\n"); break; case MEM_ERROR_RCVR_EN_VALUE_TOO_LARGE_LIMIT_LESS_ONE: printk(BIOS_DEBUG, "Receive Enable value is too large and is 1 less than limit\n"); break; case MEM_ERROR_CHECKSUM_NV_SPDCHK_RESTRT_ERROR: printk(BIOS_DEBUG, "SPD Checksum error for NV_SPDCHK_RESTRT\n"); break; case MEM_ERROR_NO_CHIPSELECT: printk(BIOS_DEBUG, "No chipselects found\n"); break; case MEM_ERROR_UNSUPPORTED_333MHZ_UDIMM: printk(BIOS_DEBUG, "Unbuffered dimm is not supported at 333MHz\n"); break; case MEM_ERROR_WL_PRE_OUT_OF_RANGE: printk(BIOS_DEBUG, "Returned PRE value during write levelizzation was out of range\n"); break; case CPU_ERROR_BRANDID_HEAP_NOT_AVAILABLE: printk(BIOS_DEBUG, "No heap is allocated for BrandId structure\n"); break; case CPU_ERROR_MICRO_CODE_PATCH_IS_NOT_LOADED: printk(BIOS_DEBUG, "Unable to load micro code patch\n"); break; case CPU_ERROR_PSTATE_HEAP_NOT_AVAILABLE: printk(BIOS_DEBUG, "No heap is allocated for the Pstate structure\n"); break; /* case CPU_ERROR_PM_NB_PSTATE_MISMATCH: printk(BIOS_DEBUG, "NB P-state indicated by Index was disabled due to mismatch between processors\n"); break; */ case CPU_EVENT_EXECUTION_CACHE_ALLOCATION_ERROR: printk(BIOS_DEBUG, "Allocation rule number that has been violated:"); if ((event->EventInfo & 0x000000FF) == 0x04) { printk(BIOS_DEBUG, "AGESA_REGION_NOT_ALIGNED_ON_BOUNDARY\n"); } else if ((event->EventInfo & 0x000000FF) == 0x05) { printk(BIOS_DEBUG, "AGESA_START_ADDRESS_LESS_D0000\n"); } else if ((event->EventInfo & 0x000000FF) == 0x06) { printk(BIOS_DEBUG, "AGESA_THREE_CACHE_REGIONS_ABOVE_1MB\n"); } else if ((event->EventInfo & 0x000000FF) == 0x07) { printk(BIOS_DEBUG, "AGESA_DEALLOCATE_CACHE_REGIONS\n"); } printk(BIOS_DEBUG, "cache region index:%x, start:%x size:%x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case HT_EVENT_COH_NO_TOPOLOGY: printk(BIOS_DEBUG, "no Matching Topology was found during coherent initializatio TotalHtNodes: %x\n", (unsigned int)event->DataParam1); break; case HT_EVENT_NCOH_BUID_EXCEED: printk(BIOS_DEBUG, "there is a limit of 32 unit IDs per chain Socket%x Link%x Depth%x" "Current BUID: %x, Unit Count: %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3, (unsigned int)event->DataParam4 >> 16, (unsigned int)event->DataParam4 & 0x0000FFFF); break; case HT_EVENT_NCOH_BUS_MAX_EXCEED: printk(BIOS_DEBUG, "maximum auto bus limit exceeded, Socket %x Link %x Bus %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case HT_EVENT_NCOH_CFG_MAP_EXCEED: printk(BIOS_DEBUG, "there is a limit of four non-coherent chains, Socket %x Link %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2); break; case HT_EVENT_NCOH_DEVICE_FAILED: printk(BIOS_DEBUG, "after assigning an IO Device an ID, it does not respond at the new ID" "Socket %x Link %x Depth %x DeviceID %x\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3, (unsigned int)event->DataParam4); default: break; } } /** * */ static void agesa_critical(EVENT_PARAMS *event) { switch (event->EventInfo) { case MEM_ERROR_HEAP_ALLOCATE_FOR_DMI_TABLE_DDR3: printk(BIOS_DEBUG, "Socket: %x, Heap allocation error for DMI table for DDR3\n", (unsigned int)event->DataParam1); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_DMI_TABLE_DDR2: printk(BIOS_DEBUG, "Socket: %x, Heap allocation error for DMI table for DDR2\n", (unsigned int)event->DataParam1); break; case MEM_ERROR_UNSUPPORTED_DIMM_CONFIG: printk(BIOS_DEBUG, "Socket: %x, Dimm population is not supported\n", (unsigned int)event->DataParam1); break; case HT_EVENT_COH_PROCESSOR_TYPE_MIX: printk(BIOS_DEBUG, "Socket %x Link %x TotalSockets %x, HT_EVENT_COH_PROCESSOR_TYPE_MIX \n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case HT_EVENT_COH_MPCAP_MISMATCH: printk(BIOS_DEBUG, "Socket %x Link %x MpCap %x TotalSockets %x, HT_EVENT_COH_MPCAP_MISMATCH\n", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3, (unsigned int)event->DataParam4); default: break; } } /** * */ static void agesa_fatal(EVENT_PARAMS *event) { switch (event->EventInfo >> 24) { case 0x04: printk(BIOS_DEBUG, "Memory: Socket %x Dct %x Channel%x ", (unsigned int)event->DataParam1, (unsigned int)event->DataParam2, (unsigned int)event->DataParam3); break; case 0x08: printk(BIOS_DEBUG, "Processor: "); break; case 0x10: printk(BIOS_DEBUG, "Hyper Transport: "); break; default: break; } switch (event->EventInfo) { case MEM_ERROR_MINIMUM_MODE: printk(BIOS_DEBUG, "Running in minimum mode\n"); break; case MEM_ERROR_MODULE_TYPE_MISMATCH_DIMM: printk(BIOS_DEBUG, "DIMM modules are missmatched\n"); break; case MEM_ERROR_NO_DIMM_FOUND_ON_SYSTEM: printk(BIOS_DEBUG, "No DIMMs have been foun\n"); break; case MEM_ERROR_MISMATCH_DIMM_CLOCKS: printk(BIOS_DEBUG, "DIMM clocks miss-matched\n"); break; case MEM_ERROR_NO_CYC_TIME: printk(BIOS_DEBUG, "No cycle time found\n"); break; case MEM_ERROR_HEAP_ALLOCATE_DYN_STORING_OF_TRAINED_TIMINGS: printk(BIOS_DEBUG, "Heap allocation error with dynamic storing of trained timings\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_DCT_STRUCT_AND_CH_DEF_STRUCTs: printk(BIOS_DEBUG, "Heap allocation error for DCT_STRUCT and CH_DEF_STRUCT\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_REMOTE_TRAINING_ENV: printk(BIOS_DEBUG, "Heap allocation error with REMOTE_TRAINING_ENV\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_SPD: printk(BIOS_DEBUG, "Heap allocation error for SPD data\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_RECEIVED_DATA: printk(BIOS_DEBUG, "Heap allocation error for RECEIVED_DATA during parallel training\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_S3_SPECIAL_CASE_REGISTERS: printk(BIOS_DEBUG, "Heap allocation error for S3 \"SPECIAL_CASE_REGISTER\"\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_TRAINING_DATA: printk(BIOS_DEBUG, "Heap allocation error for Training Data\n"); break; case MEM_ERROR_HEAP_ALLOCATE_FOR_IDENTIFY_DIMM_MEM_NB_BLOCK: printk(BIOS_DEBUG, "Heap allocation error for DIMM Identify \"MEM_NB_BLOCK\"\n"); break; case MEM_ERROR_NO_CONSTRUCTOR_FOR_IDENTIFY_DIMM: printk(BIOS_DEBUG, "No Constructor for DIMM Identify\n"); break; case MEM_ERROR_VDDIO_UNSUPPORTED: printk(BIOS_DEBUG, "VDDIO of the dimms on the board is not supported\n"); break; case CPU_EVENT_PM_ALL_PSTATE_OVERCURRENT: printk(BIOS_DEBUG, "Socket: %x, All PStates exceeded the motherboard current limit on specified socket\n", (unsigned int)event->DataParam1); break; default: break; } } /** * * Interprte the agesa event log to an user readable string */ static void interpret_agesa_eventlog(EVENT_PARAMS *event) { switch (event->EventClass) { case AGESA_BOUNDS_CHK: agesa_bound_check(event); break; case AGESA_ALERT: agesa_alert(event); break; case AGESA_WARNING: agesa_warning(event); break; case AGESA_ERROR: agesa_error(event); break; case AGESA_CRITICAL: agesa_critical(event); break; case AGESA_FATAL: agesa_fatal(event); break; default: break; } } /** * @param HeapStatus -the current HeapStatus */ UINT32 agesawrapper_amdreadeventlog(UINT8 HeapStatus) { printk(BIOS_DEBUG, "enter in %s\n", __func__); AGESA_STATUS Status; EVENT_PARAMS AmdEventParams; LibAmdMemFill(&AmdEventParams, 0, sizeof(EVENT_PARAMS), &(AmdEventParams.StdHeader)); AmdEventParams.StdHeader.AltImageBasePtr = 0; AmdEventParams.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout; AmdEventParams.StdHeader.Func = 0; AmdEventParams.StdHeader.ImageBasePtr = 0; /* I have to know the current HeapStatus to Locate the EventLogHeapPointer */ AmdEventParams.StdHeader.HeapStatus = HeapStatus; Status = AmdReadEventLog(&AmdEventParams); while (AmdEventParams.EventClass != 0) { printk(BIOS_DEBUG,"\nEventLog: EventClass = %x, EventInfo = %x.\n", (unsigned int)AmdEventParams.EventClass, (unsigned int)AmdEventParams.EventInfo); printk(BIOS_DEBUG," Param1 = %x, Param2 = %x.\n", (unsigned int)AmdEventParams.DataParam1, (unsigned int)AmdEventParams.DataParam2); printk(BIOS_DEBUG," Param3 = %x, Param4 = %x.\n", (unsigned int)AmdEventParams.DataParam3, (unsigned int)AmdEventParams.DataParam4); interpret_agesa_eventlog(&AmdEventParams); Status = AmdReadEventLog(&AmdEventParams); } printk(BIOS_DEBUG, "exit %s \n", __func__); return (UINT32)Status; }