/* * This file is part of the coreboot project. * * Copyright (C) 2011 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "agesawrapper.h" #include "amdlib.h" #include "BiosCallOuts.h" #include "Ids.h" #include "OptionsIds.h" #include "heapManager.h" #include <northbridge/amd/agesa/family15/dimmSpd.h> #include <arch/io.h> #ifdef __PRE_RAM__ /* These defines are used to select the appropriate socket for the SPD read * because this is a multi-socket design. */ #define PCI_REG_GPIO_56_to_53_CNTRL (0x52) #define GPIO_OUT_BIT_GPIO53 (BIT0) #define GPIO_OUT_BIT_GPIO54 (BIT1) #define GPIO_OUT_ENABLE_BIT_GPIO53 (BIT4) #define GPIO_OUT_ENABLE_BIT_GPIO54 (BIT5) #define GPIO_OUT_BIT_GPIO54_to_53_MASK \ (GPIO_OUT_BIT_GPIO54 | GPIO_OUT_BIT_GPIO53) #define GPIO_OUT_ENABLE_BIT_GPIO54_to_53_MASK \ (GPIO_OUT_ENABLE_BIT_GPIO54 | GPIO_OUT_ENABLE_BIT_GPIO53) static UINT8 select_socket(UINT8 socket_id) { device_t sm_dev = PCI_DEV(0, 0x14, 0); //SMBus UINT8 value = 0; UINT8 gpio56_to_53 = 0; /* Configure GPIO54,53 to select the desired socket * GPIO54,53 control the HC4052 S1,S0 * S1 S0 true table * 0 0 channel 1 (Socket1) * 0 1 channel 2 (Socket2) * 1 0 channel 3 (Socket3) * 1 1 channel 4 (Socket4) */ gpio56_to_53 = pci_read_config8(sm_dev, PCI_REG_GPIO_56_to_53_CNTRL); value = gpio56_to_53 & (~GPIO_OUT_BIT_GPIO54_to_53_MASK); value |= socket_id; value &= (~GPIO_OUT_ENABLE_BIT_GPIO54_to_53_MASK); // 0=Output Enabled, 1=Tristate pci_write_config8(sm_dev, PCI_REG_GPIO_56_to_53_CNTRL, value); return gpio56_to_53; } static void restore_socket(UINT8 original_value) { device_t sm_dev = PCI_DEV(0, 0x14, 0); //SMBus pci_write_config8(sm_dev, PCI_REG_GPIO_56_to_53_CNTRL, original_value); } #endif STATIC BIOS_CALLOUT_STRUCT BiosCallouts[] = { { AGESA_ALLOCATE_BUFFER, BiosAllocateBuffer }, { AGESA_DEALLOCATE_BUFFER, BiosDeallocateBuffer }, { AGESA_DO_RESET, BiosReset }, { AGESA_LOCATE_BUFFER, BiosLocateBuffer }, { AGESA_READ_SPD, BiosReadSpd }, { AGESA_READ_SPD_RECOVERY, BiosDefaultRet }, { AGESA_RUNFUNC_ONAP, BiosRunFuncOnAp }, { AGESA_GET_IDS_INIT_DATA, BiosGetIdsInitData }, { AGESA_HOOKBEFORE_DQS_TRAINING, BiosHookBeforeDQSTraining }, { AGESA_HOOKBEFORE_DRAM_INIT, BiosHookBeforeDramInit }, { AGESA_HOOKBEFORE_EXIT_SELF_REF, BiosHookBeforeExitSelfRefresh }, }; AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINTN i; AGESA_STATUS CalloutStatus; UINTN CallOutCount = sizeof (BiosCallouts) / sizeof (BiosCallouts [0]); for (i = 0; i < CallOutCount; i++) { if (BiosCallouts[i].CalloutName == Func) { break; } } if(i >= CallOutCount) { return AGESA_UNSUPPORTED; } CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr); return CalloutStatus; } CONST IDS_NV_ITEM IdsData[] = { /*{ AGESA_IDS_NV_MAIN_PLL_CON, 0x1 }, { AGESA_IDS_NV_MAIN_PLL_FID_EN, 0x1 }, { AGESA_IDS_NV_MAIN_PLL_FID, 0x8 }, { AGESA_IDS_NV_CUSTOM_NB_PSTATE, }, { AGESA_IDS_NV_CUSTOM_NB_P0_DIV_CTRL, }, { AGESA_IDS_NV_CUSTOM_NB_P1_DIV_CTRL, }, { AGESA_IDS_NV_FORCE_NB_PSTATE, }, */ { 0xFFFF, 0xFFFF } }; #define NUM_IDS_ENTRIES (sizeof (IdsData) / sizeof (IDS_NV_ITEM)) AGESA_STATUS BiosGetIdsInitData (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINTN i; IDS_NV_ITEM *IdsPtr; IdsPtr = ((IDS_CALLOUT_STRUCT *) ConfigPtr)->IdsNvPtr; if (Data == IDS_CALLOUT_INIT) { for (i = 0; i < NUM_IDS_ENTRIES; i++) { IdsPtr[i].IdsNvValue = IdsData[i].IdsNvValue; IdsPtr[i].IdsNvId = IdsData[i].IdsNvId; } } return AGESA_SUCCESS; } AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT32 AvailableHeapSize; UINT8 *BiosHeapBaseAddr; UINT32 CurrNodeOffset; UINT32 PrevNodeOffset; UINT32 FreedNodeOffset; UINT32 BestFitNodeOffset; UINT32 BestFitPrevNodeOffset; UINT32 NextFreeOffset; BIOS_BUFFER_NODE *CurrNodePtr; BIOS_BUFFER_NODE *FreedNodePtr; BIOS_BUFFER_NODE *BestFitNodePtr; BIOS_BUFFER_NODE *BestFitPrevNodePtr; BIOS_BUFFER_NODE *NextFreePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr); AllocParams->BufferPointer = NULL; AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER); BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) { /* First allocation */ CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER); CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); CurrNodePtr->BufferHandle = AllocParams->BufferHandle; CurrNodePtr->BufferSize = AllocParams->BufferLength; CurrNodePtr->NextNodeOffset = 0; AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE); /* Update the remaining free space */ FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE); FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize; FreedNodePtr->NextNodeOffset = 0; /* Update the offsets for Allocated and Freed nodes */ BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset; BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset; } else { /* Find out whether BufferHandle has been allocated on the heap. */ /* If it has, return AGESA_BOUNDS_CHK */ CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); while (CurrNodeOffset != 0) { CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) { return AGESA_BOUNDS_CHK; } CurrNodeOffset = CurrNodePtr->NextNodeOffset; /* If BufferHandle has not been allocated on the heap, CurrNodePtr here points to the end of the allocated nodes list. */ } /* Find the node that best fits the requested buffer size */ FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; PrevNodeOffset = FreedNodeOffset; BestFitNodeOffset = 0; BestFitPrevNodeOffset = 0; while (FreedNodeOffset != 0) { FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { if (BestFitNodeOffset == 0) { /* First node that fits the requested buffer size */ BestFitNodeOffset = FreedNodeOffset; BestFitPrevNodeOffset = PrevNodeOffset; } else { /* Find out whether current node is a better fit than the previous nodes */ BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) { BestFitNodeOffset = FreedNodeOffset; BestFitPrevNodeOffset = PrevNodeOffset; } } } PrevNodeOffset = FreedNodeOffset; FreedNodeOffset = FreedNodePtr->NextNodeOffset; } /* end of while loop */ if (BestFitNodeOffset == 0) { /* If we could not find a node that fits the requested buffer */ /* size, return AGESA_BOUNDS_CHK */ return AGESA_BOUNDS_CHK; } else { BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset); /* If BestFitNode is larger than the requested buffer, fragment the node further */ if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE); NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset); NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE)); NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset; } else { /* Otherwise, next free node is NextNodeOffset of BestFitNode */ NextFreeOffset = BestFitNodePtr->NextNodeOffset; } /* If BestFitNode is the first buffer in the list, then update StartOfFreedNodes to reflect the new free node */ if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) { BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset; } else { BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset; } /* Add BestFitNode to the list of Allocated nodes */ CurrNodePtr->NextNodeOffset = BestFitNodeOffset; BestFitNodePtr->BufferSize = AllocParams->BufferLength; BestFitNodePtr->BufferHandle = AllocParams->BufferHandle; BestFitNodePtr->NextNodeOffset = 0; /* Remove BestFitNode from list of Freed nodes */ AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE); } } return AGESA_SUCCESS; } AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT8 *BiosHeapBaseAddr; UINT32 AllocNodeOffset; UINT32 PrevNodeOffset; UINT32 NextNodeOffset; UINT32 FreedNodeOffset; UINT32 EndNodeOffset; BIOS_BUFFER_NODE *AllocNodePtr; BIOS_BUFFER_NODE *PrevNodePtr; BIOS_BUFFER_NODE *FreedNodePtr; BIOS_BUFFER_NODE *NextNodePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; /* Find target node to deallocate in list of allocated nodes. Return AGESA_BOUNDS_CHK if the BufferHandle is not found */ AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); PrevNodeOffset = AllocNodeOffset; while (AllocNodePtr->BufferHandle != AllocParams->BufferHandle) { if (AllocNodePtr->NextNodeOffset == 0) { return AGESA_BOUNDS_CHK; } PrevNodeOffset = AllocNodeOffset; AllocNodeOffset = AllocNodePtr->NextNodeOffset; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); } /* Remove target node from list of allocated nodes */ PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; /* Zero out the buffer, and clear the BufferHandle */ LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader)); AllocNodePtr->BufferHandle = 0; AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE); /* Add deallocated node in order to the list of freed nodes */ FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize; if (AllocNodeOffset < FreedNodeOffset) { /* Add to the start of the freed list */ if (EndNodeOffset == FreedNodeOffset) { /* If the freed node is adjacent to the first node in the list, concatenate both nodes */ AllocNodePtr->BufferSize += FreedNodePtr->BufferSize; AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; /* Clear the BufferSize and NextNodeOffset of the previous first node */ FreedNodePtr->BufferSize = 0; FreedNodePtr->NextNodeOffset = 0; } else { /* Otherwise, add freed node to the start of the list Update NextNodeOffset and BufferSize to include the size of BIOS_BUFFER_NODE */ AllocNodePtr->NextNodeOffset = FreedNodeOffset; } /* Update StartOfFreedNodes to the new first node */ BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset; } else { /* Traverse list of freed nodes to find where the deallocated node should be place */ NextNodeOffset = FreedNodeOffset; NextNodePtr = FreedNodePtr; while (AllocNodeOffset > NextNodeOffset) { PrevNodeOffset = NextNodeOffset; if (NextNodePtr->NextNodeOffset == 0) { break; } NextNodeOffset = NextNodePtr->NextNodeOffset; NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); } /* If deallocated node is adjacent to the next node, concatenate both nodes */ if (NextNodeOffset == EndNodeOffset) { NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); AllocNodePtr->BufferSize += NextNodePtr->BufferSize; AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset; NextNodePtr->BufferSize = 0; NextNodePtr->NextNodeOffset = 0; } else { /*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */ AllocNodePtr->NextNodeOffset = NextNodeOffset; } /* If deallocated node is adjacent to the previous node, concatenate both nodes */ PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize; if (AllocNodeOffset == EndNodeOffset) { PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; PrevNodePtr->BufferSize += AllocNodePtr->BufferSize; AllocNodePtr->BufferSize = 0; AllocNodePtr->NextNodeOffset = 0; } else { PrevNodePtr->NextNodeOffset = AllocNodeOffset; } } return AGESA_SUCCESS; } AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { UINT32 AllocNodeOffset; UINT8 *BiosHeapBaseAddr; BIOS_BUFFER_NODE *AllocNodePtr; BIOS_HEAP_MANAGER *BiosHeapBasePtr; AGESA_BUFFER_PARAMS *AllocParams; AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS; BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS; AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) { if (AllocNodePtr->NextNodeOffset == 0) { AllocParams->BufferPointer = NULL; AllocParams->BufferLength = 0; return AGESA_BOUNDS_CHK; } else { AllocNodeOffset = AllocNodePtr->NextNodeOffset; AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); } } AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE)); AllocParams->BufferLength = AllocNodePtr->BufferSize; return AGESA_SUCCESS; } AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; Status = agesawrapper_amdlaterunaptask (Data, ConfigPtr); return Status; } AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; UINT8 Value; UINTN ResetType; AMD_CONFIG_PARAMS *StdHeader; ResetType = Data; StdHeader = ConfigPtr; // // Perform the RESET based upon the ResetType. In case of // WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to // AmdResetManager. During the critical condition, where reset is required // immediately, the reset will be invoked directly by writing 0x04 to port // 0xCF9 (Reset Port). // switch (ResetType) { case WARM_RESET_WHENEVER: case COLD_RESET_WHENEVER: break; case WARM_RESET_IMMEDIATELY: case COLD_RESET_IMMEDIATELY: Value = 0x06; LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader); break; default: break; } Status = 0; return Status; } AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { AGESA_STATUS Status; #ifdef __PRE_RAM__ UINT8 original_value = 0; if (ConfigPtr == NULL) return AGESA_ERROR; original_value = select_socket(((AGESA_READ_SPD_PARAMS *)ConfigPtr)->SocketId); Status = agesa_ReadSPD (Func, Data, ConfigPtr); restore_socket(original_value); #else Status = AGESA_UNSUPPORTED; #endif return Status; } AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_UNSUPPORTED; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_SUCCESS; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeDramInit (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_SUCCESS; } /* Call the host environment interface to provide a user hook opportunity. */ AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr) { return AGESA_SUCCESS; }