/* * This file is part of the coreboot project. * * Copyright (C) 2007-2009 coresystems GmbH * Copyright (C) 2011 Google Inc. * Copyright (C) 2016-2018 Siemens AG * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_VGA_ROM_RUN) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_PATH_DEPTH 12 #define MAX_NUM_MAPPINGS 10 /* * SPI Opcode Menu setup for SPIBAR lock down * should support most common flash chips. */ #define SPI_OPMENU_0 0x01 /* WRSR: Write Status Register */ #define SPI_OPTYPE_0 0x01 /* Write, no address */ #define SPI_OPMENU_1 0x02 /* BYPR: Byte Program */ #define SPI_OPTYPE_1 0x03 /* Write, address required */ #define SPI_OPMENU_2 0x03 /* READ: Read Data */ #define SPI_OPTYPE_2 0x02 /* Read, address required */ #define SPI_OPMENU_3 0x05 /* RDSR: Read Status Register */ #define SPI_OPTYPE_3 0x00 /* Read, no address */ #define SPI_OPMENU_4 0x20 /* SE20: Sector Erase 0x20 */ #define SPI_OPTYPE_4 0x03 /* Write, address required */ #define SPI_OPMENU_5 0x9f /* RDID: Read ID */ #define SPI_OPTYPE_5 0x00 /* Read, no address */ #define SPI_OPMENU_6 0xd8 /* BED8: Block Erase 0xd8 */ #define SPI_OPTYPE_6 0x03 /* Write, address required */ #define SPI_OPMENU_7 0x0b /* FAST: Fast Read */ #define SPI_OPTYPE_7 0x02 /* Read, address required */ #define SPI_OPMENU_UPPER ((SPI_OPMENU_7 << 24) | (SPI_OPMENU_6 << 16) | \ (SPI_OPMENU_5 << 8) | SPI_OPMENU_4) #define SPI_OPMENU_LOWER ((SPI_OPMENU_3 << 24) | (SPI_OPMENU_2 << 16) | \ (SPI_OPMENU_1 << 8) | SPI_OPMENU_0) #define SPI_OPTYPE ((SPI_OPTYPE_7 << 14) | (SPI_OPTYPE_6 << 12) | \ (SPI_OPTYPE_5 << 10) | (SPI_OPTYPE_4 << 8) | \ (SPI_OPTYPE_3 << 6) | (SPI_OPTYPE_2 << 4) | \ (SPI_OPTYPE_1 << 2) | (SPI_OPTYPE_0)) #define SPI_OPPREFIX ((0x50 << 8) | 0x06) /* EWSR and WREN */ #define SPIBAR_OFFSET 0x3800 #define SPI_REG_PREOP 0x94 #define SPI_REG_OPTYPE 0x96 #define SPI_REG_OPMENU_L 0x98 #define SPI_REG_OPMENU_H 0x9c /* Define the slave address for the I/O expander. */ #define PCA9538_SLAVE_ADR 0x71 /* * mainboard_enable is executed as first thing after enumerate_buses(). * This is the earliest point to add customization. */ static void mainboard_enable(device_t dev) { } static void mainboard_init(void *chip_info) { uint8_t actl = 0; device_t dev = dev_find_slot(0, PCI_DEVFN(LPC_DEV, LPC_FUNC)); /* Route SCI to IRQ 10 to free IRQ 9 slot. */ actl = pci_read_config8(dev, ACPI_CNTL_OFFSET); actl &= ~SCIS_MASK; actl |= SCIS_IRQ10; pci_write_config8(dev, ACPI_CNTL_OFFSET, actl); /* Enable additional I/O decoding ranges on LPC for COM 3 and COM 4 */ pci_write_config32(dev, LPC_GEN1_DEC, 0x1C02E9); pci_write_config32(dev, LPC_GEN2_DEC, 0x1C03E9); } static void mainboard_final(void *chip_info) { void *spi_base = NULL; uint32_t rcba = 0; device_t dev = dev_find_slot(0, PCI_DEVFN(LPC_DEV, LPC_FUNC)); /* Get address of SPI controller. */ rcba = (pci_read_config32(dev, 0xf0) & 0xffffc000); if (!rcba) return; spi_base = (void *)(rcba + SPIBAR_OFFSET); /* Setup OPCODE menu */ write16((spi_base + SPI_REG_PREOP), SPI_OPPREFIX); write16((spi_base + SPI_REG_OPTYPE), SPI_OPTYPE); write32((spi_base + SPI_REG_OPMENU_L), SPI_OPMENU_LOWER); write32((spi_base + SPI_REG_OPMENU_H), SPI_OPMENU_UPPER); /* Set Master Enable for on-board PCI devices. */ dev = dev_find_device(PCI_VENDOR_ID_SIEMENS, 0x403e, 0); if (dev) { uint16_t cmd = pci_read_config16(dev, PCI_COMMAND); cmd |= PCI_COMMAND_MASTER; pci_write_config16(dev, PCI_COMMAND, cmd); } dev = dev_find_device(PCI_VENDOR_ID_SIEMENS, 0x403f, 0); if (dev) { uint16_t cmd = pci_read_config16(dev, PCI_COMMAND); cmd |= PCI_COMMAND_MASTER; pci_write_config16(dev, PCI_COMMAND, cmd); } /* Show the mainboard version well-visible on console. */ printk(BIOS_NOTICE, "***************************\n" "* Mainboard version: 0x%02x *\n" "***************************\n", pca9538_read_input()); } /** \brief This function can decide if a given MAC address is valid or not. * Currently, addresses filled with 0xff or 0x00 are not valid. * @param mac Buffer to the MAC address to check * @return 0 if address is not valid, otherwise 1 */ static uint8_t is_mac_adr_valid(uint8_t mac[6]) { uint8_t buf[6]; memset(buf, 0, sizeof(buf)); if (!memcmp(buf, mac, sizeof(buf))) return 0; memset(buf, 0xff, sizeof(buf)); if (!memcmp(buf, mac, sizeof(buf))) return 0; return 1; } /** \brief This function will search for a MAC address which can be assigned * to a MACPHY. * @param dev pointer to PCI device * @param mac buffer where to store the MAC address * @return cb_err CB_ERR or CB_SUCCESS */ enum cb_err mainboard_get_mac_address(struct device *dev, uint8_t mac[6]) { struct bus *parent = dev->bus; uint8_t buf[16], mapping[16], i = 0, chain_len = 0; memset(buf, 0, sizeof(buf)); memset(mapping, 0, sizeof(mapping)); /* The first entry in the tree is the device itself. */ buf[0] = dev->path.pci.devfn; chain_len = 1; for (i = 1; i < MAX_PATH_DEPTH && parent->dev->bus->subordinate; i++) { buf[i] = parent->dev->path.pci.devfn; chain_len++; parent = parent->dev->bus; } if (i == MAX_PATH_DEPTH) { /* The path is deeper than MAX_PATH_DEPTH devices, error. */ printk(BIOS_ERR, "Too many bridges for %s\n", dev_path(dev)); return CB_ERR; } /* Now construct the mapping based on the device chain starting from */ /* root bridge device to the device itself. */ mapping[0] = 1; mapping[1] = chain_len; for (i = 0; i < chain_len; i++) mapping[i + 4] = buf[chain_len - i - 1]; /* Open main hwinfo block */ if (hwilib_find_blocks("hwinfo.hex") != CB_SUCCESS) return CB_ERR; /* Now try to find a valid MAC address in hwinfo for this mapping.*/ for (i = 0; i < MAX_NUM_MAPPINGS; i++) { if ((hwilib_get_field(XMac1Mapping + i, buf, 16) == 16) && !(memcmp(buf, mapping, chain_len + 4))) { /* There is a matching mapping available, get MAC address. */ if ((hwilib_get_field(XMac1 + i, mac, 6) == 6) && (is_mac_adr_valid(mac))) { return CB_SUCCESS; } else { return CB_ERR; } } else continue; } /* No MAC address found for */ return CB_ERR; } static void wait_for_legacy_dev(void *unused) { uint32_t legacy_delay, us_since_boot; struct stopwatch sw; /* Open main hwinfo block. */ if (hwilib_find_blocks("hwinfo.hex") != CB_SUCCESS) return; /* Get legacy delay parameter from hwinfo. */ if (hwilib_get_field(LegacyDelay, (uint8_t *) &legacy_delay, sizeof(legacy_delay)) != sizeof(legacy_delay)) return; us_since_boot = get_us_since_boot(); /* No need to wait if the time since boot is already long enough.*/ if (us_since_boot > legacy_delay) return; stopwatch_init_msecs_expire(&sw, (legacy_delay - us_since_boot) / 1000); printk(BIOS_NOTICE, "Wait remaining %d of %d us for legacy devices...", legacy_delay - us_since_boot, legacy_delay); stopwatch_wait_until_expired(&sw); printk(BIOS_NOTICE, "done!\n"); } /* * To access the I/O expander PCA9538 we need to know its device structure. * This function will provide it as mainboard code has the knowledge of the * right I2C slave address for the I/O expander. */ struct device *pca9538_get_dev(void) { struct device *dev = NULL; do { dev = dev_find_path(dev, DEVICE_PATH_I2C); if (dev->path.i2c.device == PCA9538_SLAVE_ADR) break; } while (dev); return dev; } BOOT_STATE_INIT_ENTRY(BS_DEV_ENUMERATE, BS_ON_ENTRY, wait_for_legacy_dev, NULL); struct chip_operations mainboard_ops = { .enable_dev = mainboard_enable, .init = mainboard_init, .final = mainboard_final };