/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include "eeprom.h" #define I2C_ADDR_EEPROM 0x57 /* * Check Signature in EEPROM (M24C32-FMN6TP) * If signature is there we assume that that the content is valid */ int check_signature(const size_t offset, const uint64_t signature) { u8 blob[8] = {0}; if (!eeprom_read_buffer(blob, offset, ARRAY_SIZE(blob))) { /* Check signature */ if (*(uint64_t *)blob == signature) { printk(BIOS_DEBUG, "CFG EEPROM: Signature valid.\n"); return 1; } printk(BIOS_DEBUG, "CFG EEPROM: Signature invalid - skipping option write.\n"); return 0; } return 0; } /* * Read board settings from the EEPROM and verify their checksum. * If checksum is valid, we assume the settings are sane as well. */ static size_t get_board_settings_from_eeprom(struct eeprom_board_settings *board_cfg) { const size_t board_settings_offset = offsetof(struct eeprom_layout, board_settings); if (eeprom_read_buffer(board_cfg, board_settings_offset, sizeof(*board_cfg))) { printk(BIOS_ERR, "CFG EEPROM: Failed to read board settings\n"); return 0; } /* * Ideally, the definition for board settings would always be the same across * coreboot and the BMC. However, this is not always the case. When there's a * mismatch, coreboot often has the newer definition with more settings. When * there's a mismatch, coreboot and the BMC calculate the CRC for a different * set of bytes, which results in two different CRC values. * * As existing board settings do not get repurposed, it is relatively easy to * make coreboot backwards compatible with older BMC firmware revisions which * do not provide the latest board settings. Starting with all board settings * coreboot knows about, if the CRC does not match, we drop the last byte and * try again until we find a match or exhaust all bytes. */ for (size_t len = sizeof(board_cfg->raw_settings); len > 0; len--) { const uint32_t crc = CRC(&board_cfg->raw_settings, len, crc32_byte); if (crc != board_cfg->signature) continue; printk(BIOS_DEBUG, "CFG EEPROM: Board settings CRC OK for %zu / %zu bytes\n", len, sizeof(board_cfg->raw_settings)); return len; } printk(BIOS_ERR, "CFG EEPROM: Board settings have invalid checksum\n"); return 0; } struct eeprom_board_settings *get_board_settings(void) { /* * Default settings to be used if the EEPROM settings are unavailable. * Unspecified settings default to 0. These default values do not get * passed to edk2 in any way, so there is no need to provide defaults * for edk2-only options like `secureboot`. */ const struct eeprom_board_settings default_cfg = { .deep_sx_enabled = 1, .wake_on_usb = 1, .power_state_after_g3 = !CONFIG_MAINBOARD_POWER_FAILURE_STATE, .blue_rear_vref = 2, .pink_rear_vref = 2, }; static struct eeprom_board_settings board_cfg = {0}; static bool cfg_cached = false; if (cfg_cached) return &board_cfg; const size_t valid_bytes = get_board_settings_from_eeprom(&board_cfg); /* If we could not read all settings from the EEPROM, get the rest from defaults */ for (size_t i = valid_bytes; i < sizeof(board_cfg.raw_settings); i++) board_cfg.raw_settings[i] = default_cfg.raw_settings[i]; cfg_cached = true; return &board_cfg; } struct eeprom_bmc_settings *get_bmc_settings(void) { const size_t bmc_settings_offset = offsetof(struct eeprom_layout, bmc_settings); static struct eeprom_bmc_settings bmc_cfg = {0}; /* 0: uninitialized, 1: settings are valid */ static int valid = 0; if (valid == 0) { if (eeprom_read_buffer(&bmc_cfg, bmc_settings_offset, sizeof(bmc_cfg))) { printk(BIOS_ERR, "CFG EEPROM: Failed to read BMC settings\n"); return NULL; } valid = 1; } return &bmc_cfg; } const char *eeprom_read_serial(const size_t offset, const char *const fallback) { static char serial_no[HERMES_SN_PN_LENGTH + 1] = { 0 }; memset(serial_no, 0, sizeof(serial_no)); if (eeprom_read_buffer(serial_no, offset, HERMES_SN_PN_LENGTH) == 0) return serial_no; else return fallback; } uint8_t get_bmc_hsi(void) { uint8_t hsi = 0; struct eeprom_bmc_settings *s = get_bmc_settings(); if (s) hsi = s->hsi; printk(BIOS_DEBUG, "CFG EEPROM: HSI 0x%x\n", hsi); return hsi; } /* Read data from an EEPROM on SMBus and write it to a buffer */ bool eeprom_read_buffer(void *blob, size_t read_offset, size_t size) { int ret = 0; u32 smb_ctrl_reg = pci_read_config32(PCH_DEV_SMBUS, HOSTC); pci_write_config32(PCH_DEV_SMBUS, HOSTC, smb_ctrl_reg | I2C_EN); printk(BIOS_SPEW, "%s\tOffset: %04zx\tSize: %02zx\n", __func__, read_offset, size); /* We can always read two bytes at a time */ for (size_t i = 0; i < size; i = i + 2) { u8 tmp[2] = {0}; ret = do_smbus_process_call(SMBUS_IO_BASE, I2C_ADDR_EEPROM, 0, swab16(read_offset + i), (uint16_t *)&tmp[0]); if (ret < 0) break; /* Write to UPD */ uint8_t *write_ptr = (uint8_t *)blob + i; write_ptr[0] = tmp[0]; if (size - i > 1) write_ptr[1] = tmp[1]; } /* Restore I2C_EN bit */ pci_write_config32(PCH_DEV_SMBUS, HOSTC, smb_ctrl_reg); return ret; } void report_eeprom_error(const size_t off) { printk(BIOS_ERR, "MB: Failed to read from EEPROM at addr. 0x%zx\n", off); } /* * Write a single byte into the EEPROM at specified offset. * Returns true on error, false on success. */ bool eeprom_write_byte(const uint8_t data, const uint16_t write_offset) { int ret = 0; printk(BIOS_SPEW, "CFG EEPROM: Writing %x at %x\n", data, write_offset); const uint32_t smb_ctrl_reg = pci_read_config32(PCH_DEV_SMBUS, HOSTC); pci_write_config32(PCH_DEV_SMBUS, HOSTC, smb_ctrl_reg | I2C_EN); /* * The EEPROM expects two address bytes. * Use the first byte of the block data as second address byte. */ uint8_t buffer[2] = { write_offset & 0xff, data, }; for (size_t retry = 3; retry > 0; retry--) { /* The EEPROM NACKs request when busy writing */ ret = do_smbus_block_write(SMBUS_IO_BASE, I2C_ADDR_EEPROM, (write_offset >> 8) & 0xff, sizeof(buffer), buffer); if (ret == sizeof(buffer)) break; /* Maximum of 5 milliseconds write duration */ mdelay(5); } /* Restore I2C_EN bit */ pci_write_config32(PCH_DEV_SMBUS, HOSTC, smb_ctrl_reg); return ret != sizeof(buffer); } /* * Write board layout if it has changed into EEPROM. * Return true on error, false on success. */ bool write_board_settings(const struct eeprom_board_layout *new_layout) { const size_t off = offsetof(struct eeprom_layout, board_layout); struct eeprom_board_layout old_layout = {0}; bool ret = false; bool changed = false; /* Read old settings */ if (eeprom_read_buffer(&old_layout, off, sizeof(old_layout))) { printk(BIOS_ERR, "CFG EEPROM: Read operation failed\n"); return true; } assert(sizeof(old_layout) == sizeof(*new_layout)); const uint8_t *const old = (const uint8_t *)&old_layout; const uint8_t *const new = (const uint8_t *)new_layout; /* Compare with new settings and only write changed bytes */ for (size_t i = 0; i < sizeof(old_layout); i++) { if (old[i] != new[i]) { changed = true; if (eeprom_write_byte(new[i], off + i)) { printk(BIOS_ERR, "CFG EEPROM: Write operation failed\n"); ret = true; break; } } } printk(BIOS_DEBUG, "CFG EEPROM: Board Layout up%s\n", changed ? "dated" : " to date"); return ret; }