/* SPDX-License-Identifier: BSD-2-Clause */

/*
 * xxHash - Extremely Fast Hash algorithm
 * Copyright (C) 2012-2016, Yann Collet.
 *
 * You can contact the author at:
 * - xxHash homepage: http://cyan4973.github.io/xxHash/
 * - xxHash source repository: https://github.com/Cyan4973/xxHash
 */

#include <arch/byteorder.h>
#include <endian.h>
#include <string.h>
#include <xxhash.h>

/*-*************************************
 * Macros
 **************************************/
#define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
#define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))

/*-*************************************
 * Constants
 **************************************/
static const uint32_t PRIME32_1 = 2654435761U;
static const uint32_t PRIME32_2 = 2246822519U;
static const uint32_t PRIME32_3 = 3266489917U;
static const uint32_t PRIME32_4 =  668265263U;
static const uint32_t PRIME32_5 =  374761393U;

static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 =  1609587929392839161ULL;
static const uint64_t PRIME64_4 =  9650029242287828579ULL;
static const uint64_t PRIME64_5 =  2870177450012600261ULL;

/*-**************************
 *  Utils
 ***************************/
void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src)
{
	memcpy(dst, src, sizeof(*dst));
}

void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src)
{
	memcpy(dst, src, sizeof(*dst));
}

static uint32_t xxh_get_unaligned_le32(const void *p)
{
	const uint32_t *p32 = (const uint32_t *)p;
	return le32toh(*p32);
}

static uint64_t xxh_get_unaligned_le64(const void *p)
{
	const uint64_t *p64 = (const uint64_t *)p;
	return le64toh(*p64);
}

/*-***************************
 * Simple Hash Functions
 ****************************/
static uint32_t xxh32_round(uint32_t seed, const uint32_t input)
{
	seed += input * PRIME32_2;
	seed = xxh_rotl32(seed, 13);
	seed *= PRIME32_1;
	return seed;
}

uint32_t xxh32(const void *input, const size_t len, const uint32_t seed)
{
	const uint8_t *p = (const uint8_t *)input;
	const uint8_t *b_end = p + len;
	uint32_t h32;

	if (len >= 16) {
		const uint8_t *const limit = b_end - 16;
		uint32_t v1 = seed + PRIME32_1 + PRIME32_2;
		uint32_t v2 = seed + PRIME32_2;
		uint32_t v3 = seed + 0;
		uint32_t v4 = seed - PRIME32_1;

		do {
			v1 = xxh32_round(v1, xxh_get_unaligned_le32(p));
			p += 4;
			v2 = xxh32_round(v2, xxh_get_unaligned_le32(p));
			p += 4;
			v3 = xxh32_round(v3, xxh_get_unaligned_le32(p));
			p += 4;
			v4 = xxh32_round(v4, xxh_get_unaligned_le32(p));
			p += 4;
		} while (p <= limit);

		h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) +
			xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18);
	} else {
		h32 = seed + PRIME32_5;
	}

	h32 += (uint32_t)len;

	while (p + 4 <= b_end) {
		h32 += xxh_get_unaligned_le32(p) * PRIME32_3;
		h32 = xxh_rotl32(h32, 17) * PRIME32_4;
		p += 4;
	}

	while (p < b_end) {
		h32 += (*p) * PRIME32_5;
		h32 = xxh_rotl32(h32, 11) * PRIME32_1;
		p++;
	}

	h32 ^= h32 >> 15;
	h32 *= PRIME32_2;
	h32 ^= h32 >> 13;
	h32 *= PRIME32_3;
	h32 ^= h32 >> 16;

	return h32;
}

static uint64_t xxh64_round(uint64_t acc, const uint64_t input)
{
	acc += input * PRIME64_2;
	acc = xxh_rotl64(acc, 31);
	acc *= PRIME64_1;
	return acc;
}

static uint64_t xxh64_merge_round(uint64_t acc, uint64_t val)
{
	val = xxh64_round(0, val);
	acc ^= val;
	acc = acc * PRIME64_1 + PRIME64_4;
	return acc;
}

uint64_t xxh64(const void *input, const size_t len, const uint64_t seed)
{
	const uint8_t *p = (const uint8_t *)input;
	const uint8_t *const b_end = p + len;
	uint64_t h64;

	if (len >= 32) {
		const uint8_t *const limit = b_end - 32;
		uint64_t v1 = seed + PRIME64_1 + PRIME64_2;
		uint64_t v2 = seed + PRIME64_2;
		uint64_t v3 = seed + 0;
		uint64_t v4 = seed - PRIME64_1;

		do {
			v1 = xxh64_round(v1, xxh_get_unaligned_le64(p));
			p += 8;
			v2 = xxh64_round(v2, xxh_get_unaligned_le64(p));
			p += 8;
			v3 = xxh64_round(v3, xxh_get_unaligned_le64(p));
			p += 8;
			v4 = xxh64_round(v4, xxh_get_unaligned_le64(p));
			p += 8;
		} while (p <= limit);

		h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
			xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
		h64 = xxh64_merge_round(h64, v1);
		h64 = xxh64_merge_round(h64, v2);
		h64 = xxh64_merge_round(h64, v3);
		h64 = xxh64_merge_round(h64, v4);

	} else {
		h64  = seed + PRIME64_5;
	}

	h64 += (uint64_t)len;

	while (p + 8 <= b_end) {
		const uint64_t k1 = xxh64_round(0, xxh_get_unaligned_le64(p));

		h64 ^= k1;
		h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
		p += 8;
	}

	if (p + 4 <= b_end) {
		h64 ^= (uint64_t)(xxh_get_unaligned_le32(p)) * PRIME64_1;
		h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
		p += 4;
	}

	while (p < b_end) {
		h64 ^= (*p) * PRIME64_5;
		h64 = xxh_rotl64(h64, 11) * PRIME64_1;
		p++;
	}

	h64 ^= h64 >> 33;
	h64 *= PRIME64_2;
	h64 ^= h64 >> 29;
	h64 *= PRIME64_3;
	h64 ^= h64 >> 32;

	return h64;
}

/*-**************************************************
 * Advanced Hash Functions
 ***************************************************/
void xxh32_reset(struct xxh32_state *statePtr, const uint32_t seed)
{
	/* use a local state for memcpy() to avoid strict-aliasing warnings */
	struct xxh32_state state;

	memset(&state, 0, sizeof(state));
	state.v1 = seed + PRIME32_1 + PRIME32_2;
	state.v2 = seed + PRIME32_2;
	state.v3 = seed + 0;
	state.v4 = seed - PRIME32_1;
	memcpy(statePtr, &state, sizeof(state));
}

void xxh64_reset(struct xxh64_state *statePtr, const uint64_t seed)
{
	/* use a local state for memcpy() to avoid strict-aliasing warnings */
	struct xxh64_state state;

	memset(&state, 0, sizeof(state));
	state.v1 = seed + PRIME64_1 + PRIME64_2;
	state.v2 = seed + PRIME64_2;
	state.v3 = seed + 0;
	state.v4 = seed - PRIME64_1;
	memcpy(statePtr, &state, sizeof(state));
}

int xxh32_update(struct xxh32_state *state, const void *input, const size_t len)
{
	const uint8_t *p = (const uint8_t *)input;
	const uint8_t *const b_end = p + len;

	if (input == NULL)
		return -1;

	state->total_len_32 += (uint32_t)len;
	state->large_len |= (len >= 16) | (state->total_len_32 >= 16);

	if (state->memsize + len < 16) { /* fill in tmp buffer */
		memcpy((uint8_t *)(state->mem32) + state->memsize, input, len);
		state->memsize += (uint32_t)len;
		return 0;
	}

	if (state->memsize) { /* some data left from previous update */
		const uint32_t *p32 = state->mem32;

		memcpy((uint8_t *)(state->mem32) + state->memsize, input,
			16 - state->memsize);

		state->v1 = xxh32_round(state->v1, xxh_get_unaligned_le32(p32));
		p32++;
		state->v2 = xxh32_round(state->v2, xxh_get_unaligned_le32(p32));
		p32++;
		state->v3 = xxh32_round(state->v3, xxh_get_unaligned_le32(p32));
		p32++;
		state->v4 = xxh32_round(state->v4, xxh_get_unaligned_le32(p32));
		p32++;

		p += 16-state->memsize;
		state->memsize = 0;
	}

	if (p <= b_end - 16) {
		const uint8_t *const limit = b_end - 16;
		uint32_t v1 = state->v1;
		uint32_t v2 = state->v2;
		uint32_t v3 = state->v3;
		uint32_t v4 = state->v4;

		do {
			v1 = xxh32_round(v1, xxh_get_unaligned_le32(p));
			p += 4;
			v2 = xxh32_round(v2, xxh_get_unaligned_le32(p));
			p += 4;
			v3 = xxh32_round(v3, xxh_get_unaligned_le32(p));
			p += 4;
			v4 = xxh32_round(v4, xxh_get_unaligned_le32(p));
			p += 4;
		} while (p <= limit);

		state->v1 = v1;
		state->v2 = v2;
		state->v3 = v3;
		state->v4 = v4;
	}

	if (p < b_end) {
		memcpy(state->mem32, p, (size_t)(b_end-p));
		state->memsize = (uint32_t)(b_end-p);
	}

	return 0;
}

uint32_t xxh32_digest(const struct xxh32_state *state)
{
	const uint8_t *p = (const uint8_t *)state->mem32;
	const uint8_t *const b_end = (const uint8_t *)(state->mem32) +
		state->memsize;
	uint32_t h32;

	if (state->large_len) {
		h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) +
			xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18);
	} else {
		h32 = state->v3 /* == seed */ + PRIME32_5;
	}

	h32 += state->total_len_32;

	while (p + 4 <= b_end) {
		h32 += xxh_get_unaligned_le32(p) * PRIME32_3;
		h32 = xxh_rotl32(h32, 17) * PRIME32_4;
		p += 4;
	}

	while (p < b_end) {
		h32 += (*p) * PRIME32_5;
		h32 = xxh_rotl32(h32, 11) * PRIME32_1;
		p++;
	}

	h32 ^= h32 >> 15;
	h32 *= PRIME32_2;
	h32 ^= h32 >> 13;
	h32 *= PRIME32_3;
	h32 ^= h32 >> 16;

	return h32;
}

int xxh64_update(struct xxh64_state *state, const void *input, const size_t len)
{
	const uint8_t *p = (const uint8_t *)input;
	const uint8_t *const b_end = p + len;

	if (input == NULL)
		return -1;

	state->total_len += len;

	if (state->memsize + len < 32) { /* fill in tmp buffer */
		memcpy(((uint8_t *)state->mem64) + state->memsize, input, len);
		state->memsize += (uint32_t)len;
		return 0;
	}

	if (state->memsize) { /* tmp buffer is full */
		uint64_t *p64 = state->mem64;

		memcpy(((uint8_t *)p64) + state->memsize, input,
			32 - state->memsize);

		state->v1 = xxh64_round(state->v1, xxh_get_unaligned_le64(p64));
		p64++;
		state->v2 = xxh64_round(state->v2, xxh_get_unaligned_le64(p64));
		p64++;
		state->v3 = xxh64_round(state->v3, xxh_get_unaligned_le64(p64));
		p64++;
		state->v4 = xxh64_round(state->v4, xxh_get_unaligned_le64(p64));

		p += 32 - state->memsize;
		state->memsize = 0;
	}

	if (p + 32 <= b_end) {
		const uint8_t *const limit = b_end - 32;
		uint64_t v1 = state->v1;
		uint64_t v2 = state->v2;
		uint64_t v3 = state->v3;
		uint64_t v4 = state->v4;

		do {
			v1 = xxh64_round(v1, xxh_get_unaligned_le64(p));
			p += 8;
			v2 = xxh64_round(v2, xxh_get_unaligned_le64(p));
			p += 8;
			v3 = xxh64_round(v3, xxh_get_unaligned_le64(p));
			p += 8;
			v4 = xxh64_round(v4, xxh_get_unaligned_le64(p));
			p += 8;
		} while (p <= limit);

		state->v1 = v1;
		state->v2 = v2;
		state->v3 = v3;
		state->v4 = v4;
	}

	if (p < b_end) {
		memcpy(state->mem64, p, (size_t)(b_end-p));
		state->memsize = (uint32_t)(b_end - p);
	}

	return 0;
}

uint64_t xxh64_digest(const struct xxh64_state *state)
{
	const uint8_t *p = (const uint8_t *)state->mem64;
	const uint8_t *const b_end = (const uint8_t *)state->mem64 +
		state->memsize;
	uint64_t h64;

	if (state->total_len >= 32) {
		const uint64_t v1 = state->v1;
		const uint64_t v2 = state->v2;
		const uint64_t v3 = state->v3;
		const uint64_t v4 = state->v4;

		h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
			xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
		h64 = xxh64_merge_round(h64, v1);
		h64 = xxh64_merge_round(h64, v2);
		h64 = xxh64_merge_round(h64, v3);
		h64 = xxh64_merge_round(h64, v4);
	} else {
		h64  = state->v3 + PRIME64_5;
	}

	h64 += (uint64_t)state->total_len;

	while (p + 8 <= b_end) {
		const uint64_t k1 = xxh64_round(0, xxh_get_unaligned_le64(p));

		h64 ^= k1;
		h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
		p += 8;
	}

	if (p + 4 <= b_end) {
		h64 ^= (uint64_t)(xxh_get_unaligned_le32(p)) * PRIME64_1;
		h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
		p += 4;
	}

	while (p < b_end) {
		h64 ^= (*p) * PRIME64_5;
		h64 = xxh_rotl64(h64, 11) * PRIME64_1;
		p++;
	}

	h64 ^= h64 >> 33;
	h64 *= PRIME64_2;
	h64 ^= h64 >> 29;
	h64 *= PRIME64_3;
	h64 ^= h64 >> 32;

	return h64;
}