/* SPDX-License-Identifier: GPL-2.0-only */ #include <boot_device.h> #include <cbmem.h> #include <console/console.h> #include <fmap.h> #include <metadata_hash.h> #include <stddef.h> #include <string.h> #include <symbols.h> #include <endian.h> #include "fmap_config.h" /* * See http://code.google.com/p/flashmap/ for more information on FMAP. */ static int fmap_print_once; static struct region_device fmap_cache; #define print_once(...) do { \ if (!fmap_print_once) \ printk(__VA_ARGS__); \ } while (0) uint64_t get_fmap_flash_offset(void) { return FMAP_OFFSET; } static int verify_fmap(const struct fmap *fmap) { if (memcmp(fmap->signature, FMAP_SIGNATURE, sizeof(fmap->signature))) { if (ENV_INITIAL_STAGE) printk(BIOS_ERR, "Invalid FMAP at %#x\n", FMAP_OFFSET); return -1; } static bool done = false; if (!CONFIG(CBFS_VERIFICATION) || !ENV_INITIAL_STAGE || done) return 0; /* Only need to check hash in first stage. */ /* On error we need to die right here, lest we risk a TOCTOU attack where the cache is filled with a tampered FMAP but the later fallback path is fed a valid one. */ if (metadata_hash_verify_fmap(fmap, FMAP_SIZE) != VB2_SUCCESS) die("FMAP verification failure"); done = true; return 0; } static void report(const struct fmap *fmap) { print_once(BIOS_DEBUG, "FMAP: Found \"%s\" version %d.%d at %#x.\n", fmap->name, fmap->ver_major, fmap->ver_minor, FMAP_OFFSET); print_once(BIOS_DEBUG, "FMAP: base = %#llx size = %#x #areas = %d\n", (long long)le64toh(fmap->base), le32toh(fmap->size), le16toh(fmap->nareas)); fmap_print_once = 1; } static void setup_preram_cache(struct region_device *cache_rdev) { if (CONFIG(NO_FMAP_CACHE)) return; /* No need to use FMAP cache in SMM */ if (ENV_SMM) return; if (!ENV_ROMSTAGE_OR_BEFORE) { /* We get here if ramstage makes an FMAP access before calling cbmem_initialize(). We should avoid letting it come to that, so print a warning. */ print_once(BIOS_WARNING, "WARNING: Post-RAM FMAP access too early for cache!\n"); return; } struct fmap *fmap = (struct fmap *)_fmap_cache; if (!(ENV_INITIAL_STAGE)) { /* NOTE: This assumes that the first stage will make at least one FMAP access (usually from finding CBFS). */ if (!verify_fmap(fmap)) goto register_cache; /* This shouldn't happen, so no point providing a fallback path here. */ die("FMAP cache corrupted?!\n"); } /* In case we fail below, make sure the cache is invalid. */ memset(fmap->signature, 0, sizeof(fmap->signature)); boot_device_init(); const struct region_device *boot_rdev = boot_device_ro(); if (!boot_rdev) return; /* memlayout statically guarantees that the FMAP_CACHE is big enough. */ if (rdev_readat(boot_rdev, fmap, FMAP_OFFSET, FMAP_SIZE) != FMAP_SIZE) return; if (verify_fmap(fmap)) return; report(fmap); register_cache: rdev_chain_mem(cache_rdev, fmap, FMAP_SIZE); } static int find_fmap_directory(struct region_device *fmrd) { const struct region_device *boot; struct fmap *fmap; size_t offset = FMAP_OFFSET; /* Try FMAP cache first */ if (!region_device_sz(&fmap_cache)) setup_preram_cache(&fmap_cache); if (region_device_sz(&fmap_cache)) return rdev_chain_full(fmrd, &fmap_cache); /* Cache setup in pre-RAM stages can't fail, unless flash I/O in general failed. */ if (!CONFIG(NO_FMAP_CACHE) && ENV_ROMSTAGE_OR_BEFORE) return -1; boot_device_init(); boot = boot_device_ro(); if (boot == NULL) return -1; fmap = rdev_mmap(boot, offset, CONFIG(CBFS_VERIFICATION) ? FMAP_SIZE : sizeof(struct fmap)); if (fmap == NULL) return -1; if (verify_fmap(fmap)) { rdev_munmap(boot, fmap); return -1; } report(fmap); rdev_munmap(boot, fmap); return rdev_chain(fmrd, boot, offset, FMAP_SIZE); } int fmap_locate_area_as_rdev(const char *name, struct region_device *area) { struct region ar; if (fmap_locate_area(name, &ar)) return -1; return boot_device_ro_subregion(&ar, area); } int fmap_locate_area_as_rdev_rw(const char *name, struct region_device *area) { struct region ar; if (fmap_locate_area(name, &ar)) return -1; return boot_device_rw_subregion(&ar, area); } int fmap_locate_area(const char *name, struct region *ar) { struct region_device fmrd; size_t offset; if (name == NULL || ar == NULL) return -1; if (find_fmap_directory(&fmrd)) return -1; /* Start reading the areas just after fmap header. */ offset = sizeof(struct fmap); while (1) { struct fmap_area *area; area = rdev_mmap(&fmrd, offset, sizeof(*area)); if (area == NULL) return -1; if (strcmp((const char *)area->name, name)) { rdev_munmap(&fmrd, area); offset += sizeof(struct fmap_area); continue; } printk(BIOS_DEBUG, "FMAP: area %s found @ %x (%d bytes)\n", name, le32toh(area->offset), le32toh(area->size)); ar->offset = le32toh(area->offset); ar->size = le32toh(area->size); rdev_munmap(&fmrd, area); return 0; } printk(BIOS_DEBUG, "FMAP: area %s not found\n", name); return -1; } int fmap_find_region_name(const struct region * const ar, char name[FMAP_STRLEN]) { struct region_device fmrd; size_t offset; if (name == NULL || ar == NULL) return -1; if (find_fmap_directory(&fmrd)) return -1; /* Start reading the areas just after fmap header. */ offset = sizeof(struct fmap); while (1) { struct fmap_area *area; area = rdev_mmap(&fmrd, offset, sizeof(*area)); if (area == NULL) return -1; if (region_offset(ar) != le32toh(area->offset) || region_sz(ar) != le32toh(area->size)) { rdev_munmap(&fmrd, area); offset += sizeof(struct fmap_area); continue; } printk(BIOS_DEBUG, "FMAP: area (%zx, %zx) found, named %s\n", region_offset(ar), region_sz(ar), area->name); memcpy(name, area->name, FMAP_STRLEN); rdev_munmap(&fmrd, area); return 0; } printk(BIOS_DEBUG, "FMAP: area (%zx, %zx) not found\n", region_offset(ar), region_sz(ar)); return -1; } ssize_t fmap_read_area(const char *name, void *buffer, size_t size) { struct region_device rdev; if (fmap_locate_area_as_rdev(name, &rdev)) return -1; return rdev_readat(&rdev, buffer, 0, MIN(size, region_device_sz(&rdev))); } ssize_t fmap_overwrite_area(const char *name, const void *buffer, size_t size) { struct region_device rdev; if (fmap_locate_area_as_rdev_rw(name, &rdev)) return -1; if (size > region_device_sz(&rdev)) return -1; if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) return -1; return rdev_writeat(&rdev, buffer, 0, size); } static void fmap_register_cbmem_cache(void) { const struct cbmem_entry *e; /* Find the FMAP cache installed by previous stage */ e = cbmem_entry_find(CBMEM_ID_FMAP); /* Don't set fmap_cache so that find_fmap_directory will use regular path */ if (!e) return; rdev_chain_mem(&fmap_cache, cbmem_entry_start(e), cbmem_entry_size(e)); } /* * The main reason to copy the FMAP into CBMEM is to make it available to the * OS on every architecture. As side effect use the CBMEM copy as cache. */ static void fmap_add_cbmem_cache(void) { struct region_device fmrd; if (find_fmap_directory(&fmrd)) return; /* Reloads the FMAP even on ACPI S3 resume */ const size_t s = region_device_sz(&fmrd); struct fmap *fmap = cbmem_add(CBMEM_ID_FMAP, s); if (!fmap) { printk(BIOS_ERR, "Failed to allocate CBMEM\n"); return; } const ssize_t ret = rdev_readat(&fmrd, fmap, 0, s); if (ret != s) { printk(BIOS_ERR, "Failed to read FMAP into CBMEM\n"); cbmem_entry_remove(cbmem_entry_find(CBMEM_ID_FMAP)); return; } } static void fmap_setup_cbmem_cache(int unused) { if (ENV_CREATES_CBMEM) fmap_add_cbmem_cache(); /* Finally advertise the cache for the current stage */ fmap_register_cbmem_cache(); } CBMEM_READY_HOOK(fmap_setup_cbmem_cache);