/* * This file is part of the coreboot project. * * Copyright (C) 2009 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA */ #include <types.h> #include <string.h> #include <cbmem.h> #include <console/console.h> #if CONFIG_HAVE_ACPI_RESUME && !defined(__PRE_RAM__) #include <arch/acpi.h> #endif // The CBMEM TOC reserves 512 bytes to keep // the other entries somewhat aligned. // Increase if MAX_CBMEM_ENTRIES exceeds 21 #define CBMEM_TOC_RESERVED 512 #define MAX_CBMEM_ENTRIES 16 #define CBMEM_MAGIC 0x434f5245 struct cbmem_entry { u32 magic; u32 id; u64 base; u64 size; } __attribute__((packed)); #ifndef __PRE_RAM__ static struct cbmem_entry *bss_cbmem_toc; struct cbmem_entry *__attribute__((weak)) get_cbmem_toc(void) { return bss_cbmem_toc; } void __attribute__((weak)) set_cbmem_toc(struct cbmem_entry * x) { /* do nothing, this should be called by chipset to save TOC in NVRAM */ } #else struct cbmem_entry *__attribute__((weak)) get_cbmem_toc(void) { printk(BIOS_WARNING, "WARNING: you need to define get_cbmem_toc() for your chipset\n"); return NULL; } #endif /** * cbmem is a simple mechanism to do some kind of book keeping of the coreboot * high tables memory. This is a small amount of memory which is "stolen" from * the system memory for coreboot purposes. Usually this memory is used for * - the coreboot table * - legacy tables (PIRQ, MP table) * - ACPI tables * - suspend/resume backup memory */ void cbmem_init(u64 baseaddr, u64 size) { struct cbmem_entry *cbmem_toc; cbmem_toc = (struct cbmem_entry *)(unsigned long)baseaddr; #ifndef __PRE_RAM__ bss_cbmem_toc = cbmem_toc; #endif printk(BIOS_DEBUG, "Initializing CBMEM area to 0x%llx (%lld bytes)\n", baseaddr, size); if (size < (64 * 1024)) { printk(BIOS_DEBUG, "Increase CBMEM size!\n"); for (;;) ; } /* we don't need to call this in romstage, usefull only from ramstage */ #ifndef __PRE_RAM__ set_cbmem_toc((struct cbmem_entry *)(unsigned long)baseaddr); #endif memset(cbmem_toc, 0, CBMEM_TOC_RESERVED); cbmem_toc[0] = (struct cbmem_entry) { .magic = CBMEM_MAGIC, .id = CBMEM_ID_FREESPACE, .base = baseaddr + CBMEM_TOC_RESERVED, .size = size - CBMEM_TOC_RESERVED }; } int cbmem_reinit(u64 baseaddr) { struct cbmem_entry *cbmem_toc; cbmem_toc = (struct cbmem_entry *)(unsigned long)baseaddr; printk(BIOS_DEBUG, "Re-Initializing CBMEM area to 0x%lx\n", (unsigned long)baseaddr); #ifndef __PRE_RAM__ bss_cbmem_toc = cbmem_toc; #endif return (cbmem_toc[0].magic == CBMEM_MAGIC); } void *cbmem_add(u32 id, u64 size) { struct cbmem_entry *cbmem_toc; int i; void *p; /* * This could be a restart, check if the section is there already. It * is remotely possible that the dram contents persisted over the * bootloader upgrade AND the same section now needs more room, but * this is quite a remote possibility and it is ignored here. */ p = cbmem_find(id); if (p) { printk(BIOS_NOTICE, "CBMEM section %x: using existing location at %p.\n", id, p); return p; } cbmem_toc = get_cbmem_toc(); if (cbmem_toc == NULL) { return NULL; } if (cbmem_toc[0].magic != CBMEM_MAGIC) { printk(BIOS_ERR, "ERROR: CBMEM was not initialized yet.\n"); return NULL; } /* Will the entry fit at all? */ if (size > cbmem_toc[0].size) { printk(BIOS_ERR, "ERROR: Not enough memory for table %x\n", id); return NULL; } /* Align size to 512 byte blocks */ size = ALIGN(size, 512) < cbmem_toc[0].size ? ALIGN(size, 512) : cbmem_toc[0].size; /* Now look for the first free/usable TOC entry */ for (i = 0; i < MAX_CBMEM_ENTRIES; i++) { if (cbmem_toc[i].id == CBMEM_ID_NONE) break; } if (i >= MAX_CBMEM_ENTRIES) { printk(BIOS_ERR, "ERROR: No more CBMEM entries available.\n"); return NULL; } printk(BIOS_DEBUG, "Adding CBMEM entry as no. %d\n", i); cbmem_toc[i] = (struct cbmem_entry) { .magic = CBMEM_MAGIC, .id = id, .base = cbmem_toc[0].base, .size = size }; cbmem_toc[0].base += size; cbmem_toc[0].size -= size; return (void *)(u32)cbmem_toc[i].base; } void *cbmem_find(u32 id) { struct cbmem_entry *cbmem_toc; int i; cbmem_toc = get_cbmem_toc(); if (cbmem_toc == NULL) return NULL; for (i = 0; i < MAX_CBMEM_ENTRIES; i++) { if (cbmem_toc[i].id == id) return (void *)(unsigned long)cbmem_toc[i].base; } return (void *)NULL; } #if CONFIG_EARLY_CBMEM_INIT || !defined(__PRE_RAM__) /* Returns True if it was not intialized before. */ int cbmem_initialize(void) { int rv = 0; #ifdef __PRE_RAM__ extern unsigned long get_top_of_ram(void); uint64_t high_tables_base = get_top_of_ram() - HIGH_MEMORY_SIZE; uint64_t high_tables_size = HIGH_MEMORY_SIZE; #endif /* We expect the romstage to always initialize it. */ if (!cbmem_reinit(high_tables_base)) { #if CONFIG_HAVE_ACPI_RESUME && !defined(__PRE_RAM__) /* Something went wrong, our high memory area got wiped */ if (acpi_slp_type == 3 || acpi_slp_type == 2) acpi_slp_type = 0; #endif cbmem_init(high_tables_base, high_tables_size); rv = 1; } #ifndef __PRE_RAM__ cbmem_arch_init(); #endif return rv; } #endif #ifndef __PRE_RAM__ void cbmem_list(void) { struct cbmem_entry *cbmem_toc; int i; cbmem_toc = get_cbmem_toc(); if (cbmem_toc == NULL) return; for (i = 0; i < MAX_CBMEM_ENTRIES; i++) { if (cbmem_toc[i].magic != CBMEM_MAGIC) continue; printk(BIOS_DEBUG, "%2d. ", i); switch (cbmem_toc[i].id) { case CBMEM_ID_FREESPACE: printk(BIOS_DEBUG, "FREE SPACE "); break; case CBMEM_ID_GDT: printk(BIOS_DEBUG, "GDT "); break; case CBMEM_ID_ACPI: printk(BIOS_DEBUG, "ACPI "); break; case CBMEM_ID_CBTABLE: printk(BIOS_DEBUG, "COREBOOT "); break; case CBMEM_ID_PIRQ: printk(BIOS_DEBUG, "IRQ TABLE "); break; case CBMEM_ID_MPTABLE: printk(BIOS_DEBUG, "SMP TABLE "); break; case CBMEM_ID_RESUME: printk(BIOS_DEBUG, "ACPI RESUME"); break; case CBMEM_ID_RESUME_SCRATCH: printk(BIOS_DEBUG, "ACPISCRATCH"); break; case CBMEM_ID_ACPI_GNVS: printk(BIOS_DEBUG, "ACPI GNVS "); break; case CBMEM_ID_SMBIOS: printk(BIOS_DEBUG, "SMBIOS "); break; case CBMEM_ID_TIMESTAMP: printk(BIOS_DEBUG, "TIME STAMP "); break; case CBMEM_ID_MRCDATA: printk(BIOS_DEBUG, "MRC DATA "); break; case CBMEM_ID_CONSOLE: printk(BIOS_DEBUG, "CONSOLE "); break; case CBMEM_ID_ELOG: printk(BIOS_DEBUG, "ELOG "); break; case CBMEM_ID_COVERAGE: printk(BIOS_DEBUG, "COVERAGE "); break; case CBMEM_ID_ROMSTAGE_INFO: printk(BIOS_DEBUG, "ROMSTAGE "); break; default: printk(BIOS_DEBUG, "%08x ", cbmem_toc[i].id); } printk(BIOS_DEBUG, "%08llx ", cbmem_toc[i].base); printk(BIOS_DEBUG, "%08llx\n", cbmem_toc[i].size); } } #endif