/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if ENV_X86 && (ENV_POSTCAR || ENV_SMM) struct mem_pool cbfs_cache = MEM_POOL_INIT(NULL, 0, 0); #elif CONFIG(POSTRAM_CBFS_CACHE_IN_BSS) && ENV_RAMSTAGE static u8 cache_buffer[CONFIG_RAMSTAGE_CBFS_CACHE_SIZE]; struct mem_pool cbfs_cache = MEM_POOL_INIT(cache_buffer, sizeof(cache_buffer), CONFIG_CBFS_CACHE_ALIGN); #else struct mem_pool cbfs_cache = MEM_POOL_INIT(_cbfs_cache, REGION_SIZE(cbfs_cache), CONFIG_CBFS_CACHE_ALIGN); #endif static void switch_to_postram_cache(int unused) { if (_preram_cbfs_cache != _postram_cbfs_cache) mem_pool_init(&cbfs_cache, _postram_cbfs_cache, REGION_SIZE(postram_cbfs_cache), CONFIG_CBFS_CACHE_ALIGN); } CBMEM_CREATION_HOOK(switch_to_postram_cache); enum cb_err _cbfs_boot_lookup(const char *name, bool force_ro, union cbfs_mdata *mdata, struct region_device *rdev) { const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro); if (!cbd) return CB_ERR; size_t data_offset; enum cb_err err = CB_CBFS_CACHE_FULL; if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size) err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size, name, mdata, &data_offset); if (err == CB_CBFS_CACHE_FULL) { struct vb2_hash *metadata_hash = NULL; if (CONFIG(TOCTOU_SAFETY)) { if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */ dead_code(); if (!cbd->mcache_size) die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n"); /* We can only reach this for the RW CBFS -- an mcache overflow in the RO CBFS would have been caught when building the mcache in cbfs_get boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */ assert(cbd == vboot_get_cbfs_boot_device()); if (!CONFIG(VBOOT) || vb2api_get_metadata_hash(vboot_get_context(), &metadata_hash) != VB2_SUCCESS) die("Failed to get RW metadata hash"); } err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash); } if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) { printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name); return _cbfs_boot_lookup(name, true, mdata, rdev); } if (err) { if (err == CB_CBFS_NOT_FOUND) printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name); else if (err == CB_CBFS_HASH_MISMATCH) printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n"); else printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n", err, name); return err; } if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len))) return CB_ERR; return CB_SUCCESS; } void cbfs_unmap(void *mapping) { /* * This is save to call with mappings that weren't allocated in the cache (e.g. x86 * direct mappings) -- mem_pool_free() just does nothing for addresses it doesn't * recognize. This hardcodes the assumption that if platforms implement an rdev_mmap() * that requires a free() for the boot_device, they need to implement it via the * cbfs_cache mem_pool. */ mem_pool_free(&cbfs_cache, mapping); } static inline bool fsps_env(void) { /* FSP-S is assumed to be loaded in ramstage. */ if (ENV_RAMSTAGE) return true; return false; } static inline bool fspm_env(void) { /* FSP-M is assumed to be loaded in romstage. */ if (ENV_RAMINIT) return true; return false; } static inline bool cbfs_lz4_enabled(void) { if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4)) return true; if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4)) return true; if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES)) return false; if (ENV_SMM) return false; return true; } static inline bool cbfs_lzma_enabled(void) { if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA)) return true; if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA)) return true; /* We assume here romstage and postcar are never compressed. */ if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) return false; if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE)) return false; if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE_LZMA)) return false; if (ENV_SMM) return false; return true; } static bool cbfs_file_hash_mismatch(const void *buffer, size_t size, const union cbfs_mdata *mdata, bool skip_verification) { /* Avoid linking hash functions when verification and measurement are disabled. */ if (!CONFIG(CBFS_VERIFICATION) && !CONFIG(TPM_MEASURED_BOOT)) return false; const struct vb2_hash *hash = NULL; if (CONFIG(CBFS_VERIFICATION) && !skip_verification) { hash = cbfs_file_hash(mdata); if (!hash) { ERROR("'%s' does not have a file hash!\n", mdata->h.filename); return true; } vb2_error_t rv = vb2_hash_verify(vboot_hwcrypto_allowed(), buffer, size, hash); if (rv != VB2_SUCCESS) { ERROR("'%s' file hash mismatch!\n", mdata->h.filename); if (CONFIG(VBOOT_CBFS_INTEGRATION) && !vboot_recovery_mode_enabled() && vboot_logic_executed()) vboot_fail_and_reboot(vboot_get_context(), VB2_RECOVERY_FW_BODY, rv); return true; } } if (CONFIG(TPM_MEASURED_BOOT) && !ENV_SMM) { struct vb2_hash calculated_hash; /* No need to re-hash file if we already have it from verification. */ if (!hash || hash->algo != TPM_MEASURE_ALGO) { if (vb2_hash_calculate(vboot_hwcrypto_allowed(), buffer, size, TPM_MEASURE_ALGO, &calculated_hash)) hash = NULL; else hash = &calculated_hash; } if (!hash || tspi_cbfs_measurement(mdata->h.filename, be32toh(mdata->h.type), hash)) ERROR("failed to measure '%s' into TPM log\n", mdata->h.filename); /* We intentionally continue to boot on measurement errors. */ } return false; } static size_t cbfs_load_and_decompress(const struct region_device *rdev, void *buffer, size_t buffer_size, uint32_t compression, const union cbfs_mdata *mdata, bool skip_verification) { size_t in_size = region_device_sz(rdev); size_t out_size = 0; void *map; DEBUG("Decompressing %zu bytes from '%s' to %p with algo %d\n", in_size, mdata->h.filename, buffer, compression); if (CONFIG(CBFS_VERIFICATION) && !CONFIG(CBFS_ALLOW_UNVERIFIED_DECOMPRESSION) && skip_verification && compression != CBFS_COMPRESS_NONE) { ERROR("Refusing to decompress unverified file '%s' with algo %d\n", mdata->h.filename, compression); return 0; } switch (compression) { case CBFS_COMPRESS_NONE: if (buffer_size < in_size) return 0; if (rdev_readat(rdev, buffer, 0, in_size) != in_size) return 0; if (cbfs_file_hash_mismatch(buffer, in_size, mdata, skip_verification)) return 0; return in_size; case CBFS_COMPRESS_LZ4: if (!cbfs_lz4_enabled()) return 0; /* cbfs_prog_stage_load() takes care of in-place LZ4 decompression by setting up the rdev to be in memory. */ map = rdev_mmap_full(rdev); if (map == NULL) return 0; if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) { timestamp_add_now(TS_ULZ4F_START); out_size = ulz4fn(map, in_size, buffer, buffer_size); timestamp_add_now(TS_ULZ4F_END); } rdev_munmap(rdev, map); return out_size; case CBFS_COMPRESS_LZMA: if (!cbfs_lzma_enabled()) return 0; map = rdev_mmap_full(rdev); if (map == NULL) return 0; if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) { /* Note: timestamp not useful for memory-mapped media (x86) */ timestamp_add_now(TS_ULZMA_START); out_size = ulzman(map, in_size, buffer, buffer_size); timestamp_add_now(TS_ULZMA_END); } rdev_munmap(rdev, map); return out_size; default: return 0; } } struct cbfs_preload_context { struct region_device rdev; struct thread_handle handle; struct list_node list_node; void *buffer; char name[]; }; static struct list_node cbfs_preload_context_list; static struct cbfs_preload_context *alloc_cbfs_preload_context(size_t additional) { struct cbfs_preload_context *context; size_t size = sizeof(*context) + additional; context = mem_pool_alloc(&cbfs_cache, size); if (!context) return NULL; memset(context, 0, size); return context; } static void append_cbfs_preload_context(struct cbfs_preload_context *context) { list_append(&context->list_node, &cbfs_preload_context_list); } static void free_cbfs_preload_context(struct cbfs_preload_context *context) { list_remove(&context->list_node); mem_pool_free(&cbfs_cache, context); } static enum cb_err cbfs_preload_thread_entry(void *arg) { struct cbfs_preload_context *context = arg; if (rdev_read_full(&context->rdev, context->buffer) < 0) { ERROR("%s(name='%s') readat failed\n", __func__, context->name); return CB_ERR; } return CB_SUCCESS; } void cbfs_preload(const char *name) { struct region_device rdev; union cbfs_mdata mdata; struct cbfs_preload_context *context; bool force_ro = false; size_t size; if (!CONFIG(CBFS_PRELOAD)) dead_code(); /* We don't want to cross the vboot boundary */ if (ENV_ROMSTAGE && CONFIG(VBOOT_STARTS_IN_ROMSTAGE)) return; DEBUG("%s(name='%s')\n", __func__, name); if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev)) return; size = region_device_sz(&rdev); context = alloc_cbfs_preload_context(strlen(name) + 1); if (!context) { ERROR("%s(name='%s') failed to allocate preload context\n", __func__, name); return; } context->buffer = mem_pool_alloc(&cbfs_cache, size); if (context->buffer == NULL) { ERROR("%s(name='%s') failed to allocate %zu bytes for preload buffer\n", __func__, name, size); goto out; } context->rdev = rdev; strcpy(context->name, name); append_cbfs_preload_context(context); if (thread_run(&context->handle, cbfs_preload_thread_entry, context) == 0) return; ERROR("%s(name='%s') failed to start preload thread\n", __func__, name); mem_pool_free(&cbfs_cache, context->buffer); out: free_cbfs_preload_context(context); } static struct cbfs_preload_context *find_cbfs_preload_context(const char *name) { struct cbfs_preload_context *context; list_for_each(context, cbfs_preload_context_list, list_node) { if (strcmp(context->name, name) == 0) return context; } return NULL; } static enum cb_err get_preload_rdev(struct region_device *rdev, const char *name) { enum cb_err err; struct cbfs_preload_context *context; if (!CONFIG(CBFS_PRELOAD) || !ENV_SUPPORTS_COOP) return CB_ERR_ARG; context = find_cbfs_preload_context(name); if (!context) return CB_ERR_ARG; err = thread_join(&context->handle); if (err != CB_SUCCESS) { ERROR("%s(name='%s') Preload thread failed: %u\n", __func__, name, err); goto out; } if (rdev_chain_mem(rdev, context->buffer, region_device_sz(&context->rdev)) != 0) { ERROR("%s(name='%s') chaining failed\n", __func__, name); err = CB_ERR; goto out; } err = CB_SUCCESS; DEBUG("%s(name='%s') preload successful\n", __func__, name); out: free_cbfs_preload_context(context); return err; } static void *do_alloc(union cbfs_mdata *mdata, struct region_device *rdev, cbfs_allocator_t allocator, void *arg, size_t *size_out, bool skip_verification) { size_t size = region_device_sz(rdev); void *loc = NULL; uint32_t compression = CBFS_COMPRESS_NONE; const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(mdata, CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr)); if (cattr) { compression = be32toh(cattr->compression); size = be32toh(cattr->decompressed_size); } if (size_out) *size_out = size; /* allocator == NULL means do a cbfs_map() */ if (allocator) { loc = allocator(arg, size, mdata); } else if (compression == CBFS_COMPRESS_NONE) { void *mapping = rdev_mmap_full(rdev); if (!mapping) return NULL; if (cbfs_file_hash_mismatch(mapping, size, mdata, skip_verification)) { rdev_munmap(rdev, mapping); return NULL; } return mapping; } else if (!cbfs_cache.size) { /* In order to use the cbfs_cache you need to add a CBFS_CACHE to your * memlayout. */ ERROR("Cannot map compressed file %s without cbfs_cache\n", mdata->h.filename); return NULL; } else { loc = mem_pool_alloc(&cbfs_cache, size); } if (!loc) { ERROR("'%s' allocation failure\n", mdata->h.filename); return NULL; } size = cbfs_load_and_decompress(rdev, loc, size, compression, mdata, skip_verification); if (!size) return NULL; return loc; } void *_cbfs_alloc(const char *name, cbfs_allocator_t allocator, void *arg, size_t *size_out, bool force_ro, enum cbfs_type *type) { struct region_device rdev; bool preload_successful = false; union cbfs_mdata mdata; DEBUG("%s(name='%s', alloc=%p(%p), force_ro=%s, type=%d)\n", __func__, name, allocator, arg, force_ro ? "true" : "false", type ? *type : -1); if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev)) return NULL; if (type) { const enum cbfs_type real_type = be32toh(mdata.h.type); if (*type == CBFS_TYPE_QUERY) *type = real_type; else if (*type != real_type) { ERROR("'%s' type mismatch (is %u, expected %u)\n", mdata.h.filename, real_type, *type); return NULL; } } /* Update the rdev with the preload content */ if (!force_ro && get_preload_rdev(&rdev, name) == CB_SUCCESS) preload_successful = true; void *ret = do_alloc(&mdata, &rdev, allocator, arg, size_out, false); /* When using cbfs_preload we need to free the preload buffer after populating the * destination buffer. We know we must have a mem_rdev here, so extra mmap is fine. */ if (preload_successful) cbfs_unmap(rdev_mmap_full(&rdev)); return ret; } void *_cbfs_unverified_area_alloc(const char *area, const char *name, cbfs_allocator_t allocator, void *arg, size_t *size_out) { struct region_device area_rdev, file_rdev; union cbfs_mdata mdata; size_t data_offset; DEBUG("%s(area='%s', name='%s', alloc=%p(%p))\n", __func__, area, name, allocator, arg); if (fmap_locate_area_as_rdev(area, &area_rdev)) return NULL; if (cbfs_lookup(&area_rdev, name, &mdata, &data_offset, NULL)) { ERROR("'%s' not found in '%s'\n", name, area); return NULL; } if (rdev_chain(&file_rdev, &area_rdev, data_offset, be32toh(mdata.h.len))) return NULL; return do_alloc(&mdata, &file_rdev, allocator, arg, size_out, true); } void *_cbfs_default_allocator(void *arg, size_t size, const union cbfs_mdata *unused) { struct _cbfs_default_allocator_arg *darg = arg; if (size > darg->buf_size) return NULL; return darg->buf; } void *_cbfs_cbmem_allocator(void *arg, size_t size, const union cbfs_mdata *unused) { return cbmem_add((uintptr_t)arg, size); } enum cb_err cbfs_prog_stage_load(struct prog *pstage) { union cbfs_mdata mdata; struct region_device rdev; enum cb_err err; prog_locate_hook(pstage); if ((err = _cbfs_boot_lookup(prog_name(pstage), false, &mdata, &rdev))) return err; assert(be32toh(mdata.h.type) == CBFS_TYPE_STAGE); pstage->cbfs_type = CBFS_TYPE_STAGE; enum cbfs_compression compression = CBFS_COMPRESS_NONE; const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(&mdata, CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr)); if (cattr) compression = be32toh(cattr->compression); const struct cbfs_file_attr_stageheader *sattr = cbfs_find_attr(&mdata, CBFS_FILE_ATTR_TAG_STAGEHEADER, sizeof(*sattr)); if (!sattr) return CB_ERR; prog_set_area(pstage, (void *)(uintptr_t)be64toh(sattr->loadaddr), be32toh(sattr->memlen)); prog_set_entry(pstage, prog_start(pstage) + be32toh(sattr->entry_offset), NULL); /* Hacky way to not load programs over read only media. The stages * that would hit this path initialize themselves. */ if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) { void *mapping = rdev_mmap_full(&rdev); rdev_munmap(&rdev, mapping); if (cbfs_file_hash_mismatch(mapping, region_device_sz(&rdev), &mdata, false)) return CB_CBFS_HASH_MISMATCH; if (mapping == prog_start(pstage)) return CB_SUCCESS; } /* LZ4 stages can be decompressed in-place to save mapping scratch space. Load the compressed data to the end of the buffer and point &rdev to that memory location. */ if (cbfs_lz4_enabled() && compression == CBFS_COMPRESS_LZ4) { size_t in_size = region_device_sz(&rdev); void *compr_start = prog_start(pstage) + prog_size(pstage) - in_size; if (rdev_readat(&rdev, compr_start, 0, in_size) != in_size) return CB_ERR; rdev_chain_mem(&rdev, compr_start, in_size); } size_t fsize = cbfs_load_and_decompress(&rdev, prog_start(pstage), prog_size(pstage), compression, &mdata, false); if (!fsize) return CB_ERR; /* Clear area not covered by file. */ memset(prog_start(pstage) + fsize, 0, prog_size(pstage) - fsize); prog_segment_loaded((uintptr_t)prog_start(pstage), prog_size(pstage), SEG_FINAL); return CB_SUCCESS; } void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id) { if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM) return; if (cbd->mcache_size) return; const struct cbmem_entry *entry; if (cbmem_possibly_online() && (entry = cbmem_entry_find(id))) { cbd->mcache = cbmem_entry_start(entry); cbd->mcache_size = cbmem_entry_size(entry); } else if (ENV_ROMSTAGE_OR_BEFORE) { u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) * CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100; boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT); if (id == CBMEM_ID_CBFS_RO_MCACHE) { cbd->mcache = _cbfs_mcache; cbd->mcache_size = boundary - _cbfs_mcache; } else if (id == CBMEM_ID_CBFS_RW_MCACHE) { cbd->mcache = boundary; cbd->mcache_size = _ecbfs_mcache - boundary; } } } enum cb_err cbfs_init_boot_device(const struct cbfs_boot_device *cbd, struct vb2_hash *mdata_hash) { /* If we have an mcache, mcache_build() will also check mdata hash. */ if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0) return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, mdata_hash); /* No mcache and no verification means we have nothing special to do. */ if (!CONFIG(CBFS_VERIFICATION) || !mdata_hash) return CB_SUCCESS; /* Verification only: use cbfs_walk() without a walker() function to just run through the CBFS once, will return NOT_FOUND by default. */ enum cb_err err = cbfs_walk(&cbd->rdev, NULL, NULL, mdata_hash, 0); if (err == CB_CBFS_NOT_FOUND) err = CB_SUCCESS; return err; } const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro) { static struct cbfs_boot_device ro; /* Ensure we always init RO mcache, even if the first file is from the RW CBFS. Otherwise it may not be available when needed in later stages. */ if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev)) cbfs_get_boot_device(true); if (!force_ro) { const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device(); /* This will return NULL if vboot isn't enabled, didn't run yet or decided to boot into recovery mode. */ if (rw) return rw; } /* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't lock in the result of find_mcache() on the first try and should keep trying every time until an mcache is found. */ cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE); if (region_device_sz(&ro.rdev)) return &ro; if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev)) die("Cannot locate primary CBFS"); if (ENV_INITIAL_STAGE) { enum cb_err err = cbfs_init_boot_device(&ro, metadata_hash_get()); if (err == CB_CBFS_HASH_MISMATCH) die("RO CBFS metadata hash verification failure"); else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL) die("RO mcache overflow breaks TOCTOU safety!\n"); else if (err && err != CB_CBFS_CACHE_FULL) die("RO CBFS initialization error: %d", err); } return &ro; } #if !CONFIG(NO_CBFS_MCACHE) static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id) { if (!cbd) return; size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size); void *cbmem_mcache = cbmem_add(cbmem_id, real_size); if (!cbmem_mcache) { printk(BIOS_ERR, "Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n", cbmem_id, real_size); return; } memcpy(cbmem_mcache, cbd->mcache, real_size); } static void cbfs_mcache_migrate(int unused) { mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE); mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE); } CBMEM_CREATION_HOOK(cbfs_mcache_migrate); #endif