/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include cb_err_t cbfs_boot_lookup(const char *name, bool force_ro, union cbfs_mdata *mdata, struct region_device *rdev) { const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro); if (!cbd) return CB_ERR; size_t data_offset; cb_err_t err = CB_CBFS_CACHE_FULL; if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size) err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size, name, mdata, &data_offset); if (err == CB_CBFS_CACHE_FULL) { struct vb2_hash *metadata_hash = NULL; if (CONFIG(TOCTOU_SAFETY)) { if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */ dead_code(); if (!cbd->mcache_size) die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n"); /* We can only reach this for the RW CBFS -- an mcache overflow in the RO CBFS would have been caught when building the mcache in cbfs_get_boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */ assert(cbd == vboot_get_cbfs_boot_device()); /* TODO: set metadata_hash to RW metadata hash here. */ } err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash); } if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) { printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name); return cbfs_boot_lookup(name, true, mdata, rdev); } if (err) { if (err == CB_CBFS_NOT_FOUND) printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name); else if (err == CB_CBFS_HASH_MISMATCH) printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n"); else printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n", err, name); return err; } if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len))) return CB_ERR; if (tspi_measure_cbfs_hook(rdev, name, be32toh(mdata->h.type))) return CB_ERR; return CB_SUCCESS; } int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type) { if (cbfs_boot_lookup(name, false, &fh->mdata, &fh->data)) return -1; size_t msize = be32toh(fh->mdata.h.offset); if (rdev_chain(&fh->metadata, &addrspace_32bit.rdev, (uintptr_t)&fh->mdata, msize)) return -1; if (type) { if (!*type) *type = be32toh(fh->mdata.h.type); else if (*type != be32toh(fh->mdata.h.type)) return -1; } return 0; } static void *_cbfs_map(const char *name, size_t *size_out, bool force_ro) { struct region_device rdev; union cbfs_mdata mdata; if (cbfs_boot_lookup(name, force_ro, &mdata, &rdev)) return NULL; if (size_out != NULL) *size_out = region_device_sz(&rdev); return rdev_mmap_full(&rdev); } void *cbfs_map(const char *name, size_t *size_out) { return _cbfs_map(name, size_out, false); } void *cbfs_ro_map(const char *name, size_t *size_out) { return _cbfs_map(name, size_out, true); } int cbfs_unmap(void *mapping) { /* This works because munmap() only works on the root rdev and never cares about which chained subregion something was mapped from. */ return rdev_munmap(boot_device_ro(), mapping); } int cbfs_locate_file_in_region(struct cbfsf *fh, const char *region_name, const char *name, uint32_t *type) { struct region_device rdev; int ret = 0; if (fmap_locate_area_as_rdev(region_name, &rdev)) { LOG("%s region not found while looking for %s\n", region_name, name); return -1; } uint32_t dummy_type = 0; if (!type) type = &dummy_type; ret = cbfs_locate(fh, &rdev, name, type); if (!ret) if (tspi_measure_cbfs_hook(&rdev, name, *type)) return -1; return ret; } static inline bool fsps_env(void) { /* FSP-S is assumed to be loaded in ramstage. */ if (ENV_RAMSTAGE) return true; return false; } static inline bool fspm_env(void) { /* FSP-M is assumed to be loaded in romstage. */ if (ENV_ROMSTAGE) return true; return false; } static inline bool cbfs_lz4_enabled(void) { if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4)) return true; if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4)) return true; if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES)) return false; return true; } static inline bool cbfs_lzma_enabled(void) { if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA)) return true; if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA)) return true; /* We assume here romstage and postcar are never compressed. */ if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) return false; if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE)) return false; if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE)) return false; return true; } size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset, size_t in_size, void *buffer, size_t buffer_size, uint32_t compression) { size_t out_size; void *map; switch (compression) { case CBFS_COMPRESS_NONE: if (buffer_size < in_size) return 0; if (rdev_readat(rdev, buffer, offset, in_size) != in_size) return 0; return in_size; case CBFS_COMPRESS_LZ4: if (!cbfs_lz4_enabled()) return 0; /* cbfs_stage_load_and_decompress() takes care of in-place lz4 decompression by setting up the rdev to be in memory. */ map = rdev_mmap(rdev, offset, in_size); if (map == NULL) return 0; timestamp_add_now(TS_START_ULZ4F); out_size = ulz4fn(map, in_size, buffer, buffer_size); timestamp_add_now(TS_END_ULZ4F); rdev_munmap(rdev, map); return out_size; case CBFS_COMPRESS_LZMA: if (!cbfs_lzma_enabled()) return 0; map = rdev_mmap(rdev, offset, in_size); if (map == NULL) return 0; /* Note: timestamp not useful for memory-mapped media (x86) */ timestamp_add_now(TS_START_ULZMA); out_size = ulzman(map, in_size, buffer, buffer_size); timestamp_add_now(TS_END_ULZMA); rdev_munmap(rdev, map); return out_size; default: return 0; } } static size_t cbfs_stage_load_and_decompress(const struct region_device *rdev, size_t offset, size_t in_size, void *buffer, size_t buffer_size, uint32_t compression) { struct region_device rdev_src; if (compression == CBFS_COMPRESS_LZ4) { if (!cbfs_lz4_enabled()) return 0; /* Load the compressed image to the end of the available memory * area for in-place decompression. It is the responsibility of * the caller to ensure that buffer_size is large enough * (see compression.h, guaranteed by cbfstool for stages). */ void *compr_start = buffer + buffer_size - in_size; if (rdev_readat(rdev, compr_start, offset, in_size) != in_size) return 0; /* Create a region device backed by memory. */ rdev_chain(&rdev_src, &addrspace_32bit.rdev, (uintptr_t)compr_start, in_size); return cbfs_load_and_decompress(&rdev_src, 0, in_size, buffer, buffer_size, compression); } /* All other algorithms can use the generic implementation. */ return cbfs_load_and_decompress(rdev, offset, in_size, buffer, buffer_size, compression); } static inline int tohex4(unsigned int c) { return (c <= 9) ? (c + '0') : (c - 10 + 'a'); } static void tohex8(unsigned int val, char *dest) { dest[0] = tohex4((val >> 4) & 0xf); dest[1] = tohex4(val & 0xf); } static void tohex16(unsigned int val, char *dest) { dest[0] = tohex4(val >> 12); dest[1] = tohex4((val >> 8) & 0xf); dest[2] = tohex4((val >> 4) & 0xf); dest[3] = tohex4(val & 0xf); } void *cbfs_boot_map_optionrom(uint16_t vendor, uint16_t device) { char name[17] = "pciXXXX,XXXX.rom"; tohex16(vendor, name + 3); tohex16(device, name + 8); return cbfs_map(name, NULL); } void *cbfs_boot_map_optionrom_revision(uint16_t vendor, uint16_t device, uint8_t rev) { char name[20] = "pciXXXX,XXXX,XX.rom"; tohex16(vendor, name + 3); tohex16(device, name + 8); tohex8(rev, name + 13); return cbfs_map(name, NULL); } static size_t _cbfs_load(const char *name, void *buf, size_t buf_size, bool force_ro) { struct region_device rdev; union cbfs_mdata mdata; if (cbfs_boot_lookup(name, force_ro, &mdata, &rdev)) return 0; uint32_t compression = CBFS_COMPRESS_NONE; const struct cbfs_file_attr_compression *attr = cbfs_find_attr(&mdata, CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*attr)); if (attr) { compression = be32toh(attr->compression); if (buf_size < be32toh(attr->decompressed_size)) return 0; } return cbfs_load_and_decompress(&rdev, 0, region_device_sz(&rdev), buf, buf_size, compression); } size_t cbfs_load(const char *name, void *buf, size_t buf_size) { return _cbfs_load(name, buf, buf_size, false); } size_t cbfs_ro_load(const char *name, void *buf, size_t buf_size) { return _cbfs_load(name, buf, buf_size, true); } int cbfs_prog_stage_load(struct prog *pstage) { struct cbfs_stage stage; uint8_t *load; void *entry; size_t fsize; size_t foffset; const struct region_device *fh = prog_rdev(pstage); if (rdev_readat(fh, &stage, 0, sizeof(stage)) != sizeof(stage)) return -1; fsize = region_device_sz(fh); fsize -= sizeof(stage); foffset = 0; foffset += sizeof(stage); /* cbfs_stage fields are written in little endian despite the other cbfs data types being encoded in big endian. */ stage.compression = read_le32(&stage.compression); stage.entry = read_le64(&stage.entry); stage.load = read_le64(&stage.load); stage.len = read_le32(&stage.len); stage.memlen = read_le32(&stage.memlen); assert(fsize == stage.len); load = (void *)(uintptr_t)stage.load; entry = (void *)(uintptr_t)stage.entry; /* Hacky way to not load programs over read only media. The stages * that would hit this path initialize themselves. */ if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) { void *mapping = rdev_mmap(fh, foffset, fsize); rdev_munmap(fh, mapping); if (mapping == load) goto out; } fsize = cbfs_stage_load_and_decompress(fh, foffset, fsize, load, stage.memlen, stage.compression); if (!fsize) return -1; /* Clear area not covered by file. */ memset(&load[fsize], 0, stage.memlen - fsize); prog_segment_loaded((uintptr_t)load, stage.memlen, SEG_FINAL); out: prog_set_area(pstage, load, stage.memlen); prog_set_entry(pstage, entry, NULL); return 0; } void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id) { if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM) return; if (cbd->mcache_size) return; const struct cbmem_entry *entry; if (cbmem_possibly_online() && (entry = cbmem_entry_find(id))) { cbd->mcache = cbmem_entry_start(entry); cbd->mcache_size = cbmem_entry_size(entry); } else if (ENV_ROMSTAGE_OR_BEFORE) { u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) * CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100; boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT); if (id == CBMEM_ID_CBFS_RO_MCACHE) { cbd->mcache = _cbfs_mcache; cbd->mcache_size = boundary - _cbfs_mcache; } else if (id == CBMEM_ID_CBFS_RW_MCACHE) { cbd->mcache = boundary; cbd->mcache_size = _ecbfs_mcache - boundary; } } } cb_err_t cbfs_init_boot_device(const struct cbfs_boot_device *cbd, struct vb2_hash *metadata_hash) { /* If we have an mcache, mcache_build() will also check mdata hash. */ if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0) return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, metadata_hash); /* No mcache and no verification means we have nothing special to do. */ if (!CONFIG(CBFS_VERIFICATION) || !metadata_hash) return CB_SUCCESS; /* Verification only: use cbfs_walk() without a walker() function to just run through the CBFS once, will return NOT_FOUND by default. */ cb_err_t err = cbfs_walk(&cbd->rdev, NULL, NULL, metadata_hash, 0); if (err == CB_CBFS_NOT_FOUND) err = CB_SUCCESS; return err; } const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro) { static struct cbfs_boot_device ro; /* Ensure we always init RO mcache, even if first file is from RW. Otherwise it may not be available when needed in later stages. */ if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev)) cbfs_get_boot_device(true); if (!force_ro) { const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device(); /* This will return NULL if vboot isn't enabled, didn't run yet or decided to boot into recovery mode. */ if (rw) return rw; } /* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't lock in the result of find_mcache() on the first try and should keep trying every time until an mcache is found. */ cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE); if (region_device_sz(&ro.rdev)) return &ro; if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev)) die("Cannot locate primary CBFS"); if (ENV_INITIAL_STAGE) { cb_err_t err = cbfs_init_boot_device(&ro, metadata_hash_get()); if (err == CB_CBFS_HASH_MISMATCH) die("RO CBFS metadata hash verification failure"); else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL) die("RO mcache overflow breaks TOCTOU safety!\n"); else if (err && err != CB_CBFS_CACHE_FULL) die("RO CBFS initialization error: %d", err); } return &ro; } #if !CONFIG(NO_CBFS_MCACHE) static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id) { if (!cbd) return; size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size); void *cbmem_mcache = cbmem_add(cbmem_id, real_size); if (!cbmem_mcache) { printk(BIOS_ERR, "ERROR: Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n", cbmem_id, real_size); return; } memcpy(cbmem_mcache, cbd->mcache, real_size); } static void cbfs_mcache_migrate(int unused) { mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE); mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE); } ROMSTAGE_CBMEM_INIT_HOOK(cbfs_mcache_migrate) #endif