#ifndef CPU_X86_MTRR_H #define CPU_X86_MTRR_H /* These are the region types */ #define MTRR_TYPE_UNCACHEABLE 0 #define MTRR_TYPE_WRCOMB 1 #define MTRR_TYPE_WRTHROUGH 4 #define MTRR_TYPE_WRPROT 5 #define MTRR_TYPE_WRBACK 6 #define MTRR_NUM_TYPES 7 #define MTRR_CAP_MSR 0x0fe #define MTRR_CAP_SMRR (1 << 11) #define MTRR_CAP_WC (1 << 10) #define MTRR_CAP_FIX (1 << 8) #define MTRR_CAP_VCNT 0xff #define MTRR_DEF_TYPE_MSR 0x2ff #define MTRR_DEF_TYPE_MASK 0xff #define MTRR_DEF_TYPE_EN (1 << 11) #define MTRR_DEF_TYPE_FIX_EN (1 << 10) #define SMRR_PHYS_BASE 0x1f2 #define SMRR_PHYS_MASK 0x1f3 #define MTRR_PHYS_BASE(reg) (0x200 + 2 * (reg)) #define MTRR_PHYS_MASK(reg) (MTRR_PHYS_BASE(reg) + 1) #define MTRR_PHYS_MASK_VALID (1 << 11) #define NUM_FIXED_RANGES 88 #define RANGES_PER_FIXED_MTRR 8 #define MTRR_FIX_64K_00000 0x250 #define MTRR_FIX_16K_80000 0x258 #define MTRR_FIX_16K_A0000 0x259 #define MTRR_FIX_4K_C0000 0x268 #define MTRR_FIX_4K_C8000 0x269 #define MTRR_FIX_4K_D0000 0x26a #define MTRR_FIX_4K_D8000 0x26b #define MTRR_FIX_4K_E0000 0x26c #define MTRR_FIX_4K_E8000 0x26d #define MTRR_FIX_4K_F0000 0x26e #define MTRR_FIX_4K_F8000 0x26f #if !defined(__ASSEMBLER__) && !defined(__PRE_RAM__) #include #include /* * The MTRR code has some side effects that the callers should be aware for. * 1. The call sequence matters. x86_setup_mtrrs() calls * x86_setup_fixed_mtrrs_no_enable() then enable_fixed_mtrrs() (equivalent * of x86_setup_fixed_mtrrs()) then x86_setup_var_mtrrs(). If the callers * want to call the components of x86_setup_mtrrs() because of other * requirements the ordering should still preserved. * 2. enable_fixed_mtrr() will enable both variable and fixed MTRRs because * of the nature of the global MTRR enable flag. Therefore, all direct * or indirect callers of enable_fixed_mtrr() should ensure that the * variable MTRR MSRs do not contain bad ranges. * * Note that this function sets up MTRRs for addresses above 4GiB. */ void x86_setup_mtrrs(void); /* * x86_setup_mtrrs_with_detect() does the same thing as x86_setup_mtrrs(), but * it always dynamically detects the number of variable MTRRs available. */ void x86_setup_mtrrs_with_detect(void); /* * x86_setup_var_mtrrs() parameters: * address_bits - number of physical address bits supported by cpu * above4gb - if set setup MTRRs for addresses above 4GiB else ignore * memory ranges above 4GiB */ void x86_setup_var_mtrrs(unsigned int address_bits, unsigned int above4gb); void enable_fixed_mtrr(void); void x86_setup_fixed_mtrrs(void); /* Set up fixed MTRRs but do not enable them. */ void x86_setup_fixed_mtrrs_no_enable(void); void x86_mtrr_check(void); /* Insert a temporary MTRR range for the duration of coreboot's runtime. * This function needs to be called after the first MTRR solution is derived. */ void mtrr_use_temp_range(uintptr_t begin, size_t size, int type); #endif #if !defined(__ASSEMBLER__) && !defined(__ROMCC__) void set_var_mtrr(unsigned int reg, unsigned int base, unsigned int size, unsigned int type); int get_free_var_mtrr(void); /* fms: find most significant bit set, stolen from Linux Kernel Source. */ static inline unsigned int fms(unsigned int x) { int r; __asm__("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $0,%0\n" "1:" : "=r" (r) : "g" (x)); return r; } /* fls: find least significant bit set */ static inline unsigned int fls(unsigned int x) { int r; __asm__("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $32,%0\n" "1:" : "=r" (r) : "g" (x)); return r; } #endif /* Align up to next power of 2, suitable for ROMCC and assembler too. * Range of result 256kB to 128MB is good enough here. */ #define _POW2_MASK(x) ((x>>1)|(x>>2)|(x>>3)|(x>>4)|(x>>5)| \ (x>>6)|(x>>7)|(x>>8)|((1<<18)-1)) #define _ALIGN_UP_POW2(x) ((x + _POW2_MASK(x)) & ~_POW2_MASK(x)) /* At the end of romstage, low RAM 0..CACHE_TM_RAMTOP may be set * as write-back cacheable to speed up ramstage decompression. * Note MTRR boundaries, must be power of two. */ #define CACHE_TMP_RAMTOP (16<<20) #if ((CONFIG_XIP_ROM_SIZE & (CONFIG_XIP_ROM_SIZE - 1)) != 0) # error "CONFIG_XIP_ROM_SIZE is not a power of 2" #endif /* Select CACHE_ROM_SIZE to use with MTRR setup. For most cases this * resolves to a suitable CONFIG_ROM_SIZE but some odd cases need to * use CONFIG_CACHE_ROM_SIZE_OVERRIDE in the mainboard Kconfig. */ #if (CONFIG_CACHE_ROM_SIZE_OVERRIDE != 0) # define CACHE_ROM_SIZE CONFIG_CACHE_ROM_SIZE_OVERRIDE #else # if ((CONFIG_ROM_SIZE & (CONFIG_ROM_SIZE-1)) == 0) # define CACHE_ROM_SIZE CONFIG_ROM_SIZE # else # define CACHE_ROM_SIZE _ALIGN_UP_POW2(CONFIG_ROM_SIZE) # if (CACHE_ROM_SIZE < CONFIG_ROM_SIZE) || (CACHE_ROM_SIZE >= \ (2 * CONFIG_ROM_SIZE)) # error "CACHE_ROM_SIZE is not optimal." # endif # endif #endif #if ((CACHE_ROM_SIZE & (CACHE_ROM_SIZE-1)) != 0) # error "CACHE_ROM_SIZE is not a power of 2." #endif #define CACHE_ROM_BASE (((1<<20) - (CACHE_ROM_SIZE>>12))<<12) #if (IS_ENABLED(CONFIG_SOC_SETS_MSRS) && !defined(__ASSEMBLER__) \ && !defined(__ROMCC__)) #include #include /* * Set the MTRRs using the data on the stack from setup_stack_and_mtrrs. * Return a new top_of_stack value which removes the setup_stack_and_mtrrs data. */ asmlinkage void *soc_set_mtrrs(void *top_of_stack); asmlinkage void soc_enable_mtrrs(void); #endif /* CONFIG_SOC_SETS_MSRS ... */ #endif /* CPU_X86_MTRR_H */