/* SPDX-License-Identifier: BSD-3-Clause */ /* Host communication command constants for Chrome EC */ /* * TODO(b/272518464): Work around coreboot GCC preprocessor bug. * #line marks the *next* line, so it is off by one. */ #line 13 #ifndef __CROS_EC_EC_COMMANDS_H #define __CROS_EC_EC_COMMANDS_H #if !defined(__ACPI__) && !defined(__KERNEL__) #include #endif #ifdef CHROMIUM_EC /* * CHROMIUM_EC is defined by the Makefile system of Chromium EC repository. * It is used to not include macros that may cause conflicts in foreign * projects (refer to crbug.com/984623). */ /* * Include common.h for CONFIG_HOSTCMD_ALIGNED, if it's defined. This * generates more efficient code for accessing request/response structures on * ARM Cortex-M if the structures are guaranteed 32-bit aligned. */ #include "common.h" #include "compile_time_macros.h" #else /* If BUILD_ASSERT isn't already defined, make it a no-op */ #ifndef BUILD_ASSERT #define BUILD_ASSERT(_cond) #endif /* !BUILD_ASSERT */ #endif /* CHROMIUM_EC */ #ifdef __KERNEL__ #include #else /* * Defines macros that may be needed but are for sure defined by the linux * kernel. This section is removed when cros_ec_commands.h is generated (by * util/make_linux_ec_commands_h.sh). * cros_ec_commands.h looks more integrated to the kernel. */ #ifndef BIT #define BIT(nr) (1UL << (nr)) #endif #ifndef BIT_ULL #define BIT_ULL(nr) (1ULL << (nr)) #endif /* * When building Zephyr, this file ends up being included before Zephyr's * include/sys/util.h so causes a warning there. We don't want to add an #ifdef * in that file since it won't be accepted upstream. So work around it here. */ #ifndef CONFIG_ZEPHYR #ifndef GENMASK #define GENMASK(h, l) (((BIT(h) << 1) - 1) ^ (BIT(l) - 1)) #endif #ifndef GENMASK_ULL #define GENMASK_ULL(h, l) (((BIT_ULL(h) << 1) - 1) ^ (BIT_ULL(l) - 1)) #endif #endif #endif /* __KERNEL__ */ #ifdef __cplusplus extern "C" { #endif /** * Constant for creation of flexible array members that work in both C and * C++. Flexible array members were added in C99 and are not part of the C++ * standard. However, clang++ supports them for C++. * When compiling with gcc, flexible array members are not allowed to appear * in an otherwise empty struct, so we use the GCC zero-length array * extension that works with both clang/gcc/g++. */ #if defined(__cplusplus) && defined(__clang__) #define FLEXIBLE_ARRAY_MEMBER_SIZE #else #define FLEXIBLE_ARRAY_MEMBER_SIZE 0 #endif /* * Current version of this protocol * * TODO(crosbug.com/p/11223): This is effectively useless; protocol is * determined in other ways. Remove this once the kernel code no longer * depends on it. */ #define EC_PROTO_VERSION 0x00000002 /* Command version mask */ #define EC_VER_MASK(version) BIT(version) /* I/O addresses for ACPI commands */ #define EC_LPC_ADDR_ACPI_DATA 0x62 #define EC_LPC_ADDR_ACPI_CMD 0x66 /* I/O addresses for host command */ #define EC_LPC_ADDR_HOST_DATA 0x200 #define EC_LPC_ADDR_HOST_CMD 0x204 /* I/O addresses for host command args and params */ /* Protocol version 2 */ #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ /* For version 2 params; size is EC_PROTO2_MAX_PARAM_SIZE */ #define EC_LPC_ADDR_HOST_PARAM 0x804 /* Protocol version 3 */ #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ /* * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff * and they tell the kernel that so we have to think of it as two parts. * * Other BIOSes report only the I/O port region spanned by the Microchip * MEC series EC; an attempt to address a larger region may fail. */ #define EC_HOST_CMD_REGION0 0x800 #define EC_HOST_CMD_REGION1 0x880 #define EC_HOST_CMD_REGION_SIZE 0x80 #define EC_HOST_CMD_MEC_REGION_SIZE 0x8 /* EC command register bit functions */ #define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */ #define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */ #define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */ #define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */ #define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */ #define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */ #define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */ #define EC_LPC_ADDR_MEMMAP 0x900 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ /* The offset address of each type of data in mapped memory. */ #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ /* Unused 0x28 - 0x2f */ #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ /* Unused 0x31 - 0x33 */ #define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */ /* Battery values are all 32 bits, unless otherwise noted. */ #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */ #define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */ #define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */ /* Unused 0x4f */ #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ /* Unused 0x84 - 0x8f */ #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ /* Unused 0x91 */ #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */ /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */ /* 0x94 - 0x99: 1st Accelerometer */ /* 0x9a - 0x9f: 2nd Accelerometer */ #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ #define EC_MEMMAP_GPU 0xa6 /* GPU-specific, 8 bits */ /* * Bit fields for EC_MEMMAP_GPU * 0:2: D-Notify level (0:D1, ... 4:D5) * 3: Over temperature */ #define EC_MEMMAP_GPU_D_NOTIFY_MASK GENMASK(2, 0) #define EC_MEMMAP_GPU_OVERT_BIT BIT(3) /* Power Participant related components */ #define EC_MEMMAP_PWR_SRC 0xa7 /* Power source (8-bit) */ /* Unused 0xa8 - 0xdf */ /* * ACPI is unable to access memory mapped data at or above this offset due to * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe * which might be needed by ACPI. */ #define EC_MEMMAP_NO_ACPI 0xe0 /* Define the format of the accelerometer mapped memory status byte. */ #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f #define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4) #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7) /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ #define EC_TEMP_SENSOR_ENTRIES 16 /* * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. * * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. */ #define EC_TEMP_SENSOR_B_ENTRIES 8 /* Max temp sensor entries for host commands */ #define EC_MAX_TEMP_SENSOR_ENTRIES \ (EC_TEMP_SENSOR_ENTRIES + EC_TEMP_SENSOR_B_ENTRIES) /* Special values for mapped temperature sensors */ #define EC_TEMP_SENSOR_NOT_PRESENT 0xff #define EC_TEMP_SENSOR_ERROR 0xfe #define EC_TEMP_SENSOR_NOT_POWERED 0xfd #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc /* * The offset of temperature value stored in mapped memory. This allows * reporting a temperature range of 200K to 454K = -73C to 181C. */ #define EC_TEMP_SENSOR_OFFSET 200 /* * Number of ALS readings at EC_MEMMAP_ALS */ #define EC_ALS_ENTRIES 2 /* * The default value a temperature sensor will return when it is present but * has not been read this boot. This is a reasonable number to avoid * triggering alarms on the host. */ #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ /* Report 0 for fan stalled so userspace applications can take * an appropriate action based on this value to control the fan. */ #define EC_FAN_SPEED_STALLED 0x0 /* This should be used only for ectool to support old ECs. */ #define EC_FAN_SPEED_STALLED_DEPRECATED 0xfffe /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ #define EC_BATT_FLAG_AC_PRESENT 0x01 #define EC_BATT_FLAG_BATT_PRESENT 0x02 #define EC_BATT_FLAG_DISCHARGING 0x04 #define EC_BATT_FLAG_CHARGING 0x08 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 /* Set if some of the static/dynamic data is invalid (or outdated). */ #define EC_BATT_FLAG_INVALID_DATA 0x20 #define EC_BATT_FLAG_CUT_OFF 0x40 /* Switch flags at EC_MEMMAP_SWITCHES */ #define EC_SWITCH_LID_OPEN 0x01 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 /* Was recovery requested via keyboard; now unused. */ #define EC_SWITCH_IGNORE1 0x08 /* Recovery requested via dedicated signal (from servo board) */ #define EC_SWITCH_DEDICATED_RECOVERY 0x10 /* Was fake developer mode switch; now unused. Remove in next refactor. */ #define EC_SWITCH_IGNORE0 0x20 /* Host command interface flags */ /* Host command interface supports LPC args (LPC interface only) */ #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 /* Host command interface supports version 3 protocol */ #define EC_HOST_CMD_FLAG_VERSION_3 0x02 /* Wireless switch flags */ #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ /*****************************************************************************/ /* * ACPI commands * * These are valid ONLY on the ACPI command/data port. */ /* * ACPI Read Embedded Controller * * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). * * Use the following sequence: * * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write address to EC_LPC_ADDR_ACPI_DATA * - Wait for EC_LPC_CMDR_DATA bit to set * - Read value from EC_LPC_ADDR_ACPI_DATA */ #define EC_CMD_ACPI_READ 0x0080 /* * ACPI Write Embedded Controller * * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). * * Use the following sequence: * * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write address to EC_LPC_ADDR_ACPI_DATA * - Wait for EC_LPC_CMDR_PENDING bit to clear * - Write value to EC_LPC_ADDR_ACPI_DATA */ #define EC_CMD_ACPI_WRITE 0x0081 /* * ACPI Burst Enable Embedded Controller * * This enables burst mode on the EC to allow the host to issue several * commands back-to-back. While in this mode, writes to mapped multi-byte * data are locked out to ensure data consistency. */ #define EC_CMD_ACPI_BURST_ENABLE 0x0082 /* * ACPI Burst Disable Embedded Controller * * This disables burst mode on the EC and stops preventing EC writes to mapped * multi-byte data. */ #define EC_CMD_ACPI_BURST_DISABLE 0x0083 /* * ACPI Query Embedded Controller * * This clears the lowest-order bit in the currently pending host events, and * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, * event 0x80000000 = 32), or 0 if no event was pending. */ #define EC_CMD_ACPI_QUERY_EVENT 0x0084 /* Valid addresses in ACPI memory space, for read/write commands */ /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ #define EC_ACPI_MEM_VERSION 0x00 /* * Test location; writing value here updates test compliment byte to (0xff - * value). */ #define EC_ACPI_MEM_TEST 0x01 /* Test compliment; writes here are ignored. */ #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 /* Keyboard backlight brightness percent (0 - 100) */ #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ #define EC_ACPI_MEM_FAN_DUTY 0x04 /* * DPTF temp thresholds. Any of the EC's temp sensors can have up to two * independent thresholds attached to them. The current value of the ID * register determines which sensor is affected by the THRESHOLD and COMMIT * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme * as the memory-mapped sensors. The COMMIT register applies those settings. * * The spec does not mandate any way to read back the threshold settings * themselves, but when a threshold is crossed the AP needs a way to determine * which sensor(s) are responsible. Each reading of the ID register clears and * returns one sensor ID that has crossed one of its threshold (in either * direction) since the last read. A value of 0xFF means "no new thresholds * have tripped". Setting or enabling the thresholds for a sensor will clear * the unread event count for that sensor. */ #define EC_ACPI_MEM_TEMP_ID 0x05 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 /* * Here are the bits for the COMMIT register: * bit 0 selects the threshold index for the chosen sensor (0/1) * bit 1 enables/disables the selected threshold (0 = off, 1 = on) * Each write to the commit register affects one threshold. */ #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0) #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1) /* * Example: * * Set the thresholds for sensor 2 to 50 C and 60 C: * write 2 to [0x05] -- select temp sensor 2 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET * write 0x2 to [0x07] -- enable threshold 0 with this value * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET * write 0x3 to [0x07] -- enable threshold 1 with this value * * Disable the 60 C threshold, leaving the 50 C threshold unchanged: * write 2 to [0x05] -- select temp sensor 2 * write 0x1 to [0x07] -- disable threshold 1 */ /* DPTF battery charging current limit */ #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 /* Charging limit is specified in 64 mA steps */ #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 /* Value to disable DPTF battery charging limit */ #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff /* * Report device orientation * Bits Definition * 4 Off Body/On Body status: 0 = Off Body. * 3:1 Device DPTF Profile Number (DDPN) * 0 = Reserved for backward compatibility (indicates no valid * profile number. Host should fall back to using TBMD). * 1..7 = DPTF Profile number to indicate to host which table needs * to be loaded. * 0 Tablet Mode Device Indicator (TBMD) */ #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09 #define EC_ACPI_MEM_TBMD_SHIFT 0 #define EC_ACPI_MEM_TBMD_MASK 0x1 #define EC_ACPI_MEM_DDPN_SHIFT 1 #define EC_ACPI_MEM_DDPN_MASK 0x7 #define EC_ACPI_MEM_STTB_SHIFT 4 #define EC_ACPI_MEM_STTB_MASK 0x1 /* * Report device features. Uses the same format as the host command, except: * * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set * of features", which is of limited interest when the system is already * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since * these are supported, it defaults to 0. * This allows detecting the presence of this field since older versions of * the EC codebase would simply return 0xff to that unknown address. Check * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits * are valid. */ #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11 #define EC_ACPI_MEM_BATTERY_INDEX 0x12 /* * USB Port Power. Each bit indicates whether the corresponding USB ports' power * is enabled (1) or disabled (0). * bit 0 USB port ID 0 * ... * bit 7 USB port ID 7 */ #define EC_ACPI_MEM_USB_PORT_POWER 0x13 /* * USB Retimer firmware update. * Read: * Result of last operation AP requested * Write: * bits[3:0]: USB-C port number * bits[7:4]: Operation requested by AP * * NDA (no device attached) case: * To update retimer firmware, AP needs set up TBT Alt mode. * AP requests operations in this sequence: * 1. Get port information about which ports support retimer firmware update. * In the query result, each bit represents one port. * 2. Get current MUX mode, it's NDA. * 3. Suspend specified PD port's task. * 4. AP requests EC to enter USB mode -> enter Safe mode -> enter TBT mode -> * update firmware -> disconnect MUX -> resume PD task. * * DA (device attached) cases: * Retimer firmware update is not supported in DA cases. * 1. Get port information about which ports support retimer firmware update * 2. Get current MUX mode, it's DA. * 3. AP continues. No more retimer firmware update activities. * */ #define EC_ACPI_MEM_USB_RETIMER_FW_UPDATE 0x14 #define USB_RETIMER_FW_UPDATE_OP_SHIFT 4 #define USB_RETIMER_FW_UPDATE_ERR 0xfe #define USB_RETIMER_FW_UPDATE_INVALID_MUX 0xff /* Mask to clear unused MUX bits in retimer firmware update */ #define USB_RETIMER_FW_UPDATE_MUX_MASK \ (USB_PD_MUX_USB_ENABLED | USB_PD_MUX_DP_ENABLED | \ USB_PD_MUX_SAFE_MODE | USB_PD_MUX_TBT_COMPAT_ENABLED | \ USB_PD_MUX_USB4_ENABLED) /* Retimer firmware update operations */ #define USB_RETIMER_FW_UPDATE_QUERY_PORT 0 /* Which ports has retimer */ #define USB_RETIMER_FW_UPDATE_SUSPEND_PD 1 /* Suspend PD port */ #define USB_RETIMER_FW_UPDATE_RESUME_PD 2 /* Resume PD port */ #define USB_RETIMER_FW_UPDATE_GET_MUX 3 /* Read current USB MUX */ #define USB_RETIMER_FW_UPDATE_SET_USB 4 /* Set MUX to USB mode */ #define USB_RETIMER_FW_UPDATE_SET_SAFE 5 /* Set MUX to Safe mode */ #define USB_RETIMER_FW_UPDATE_SET_TBT 6 /* Set MUX to TBT mode */ #define USB_RETIMER_FW_UPDATE_DISCONNECT 7 /* Set MUX to disconnect */ #define EC_ACPI_MEM_USB_RETIMER_PORT(x) ((x) & 0x0f) #define EC_ACPI_MEM_USB_RETIMER_OP(x) \ (((x) & 0xf0) >> USB_RETIMER_FW_UPDATE_OP_SHIFT) /* * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2. */ #define EC_ACPI_MEM_MAPPED_BEGIN 0x20 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0 /* Current version of ACPI memory address space */ #define EC_ACPI_MEM_VERSION_CURRENT 2 /* * This header file is used in coreboot both in C and ACPI code. The ACPI code * is pre-processed to handle constants but the ASL compiler is unable to * handle actual C code so keep it separate. */ #ifndef __ACPI__ #ifndef __KERNEL__ /* * Define __packed if someone hasn't beat us to it. Linux kernel style * checking prefers __packed over __attribute__((packed)). */ #ifndef __packed #define __packed __attribute__((packed)) #endif #ifndef __aligned #define __aligned(x) __attribute__((aligned(x))) #endif #endif /* __KERNEL__ */ /* * Attributes for EC request and response packets. Just defining __packed * results in inefficient assembly code on ARM, if the structure is actually * 32-bit aligned, as it should be for all buffers. * * Be very careful when adding these to existing structures. They will round * up the structure size to the specified boundary. * * Also be very careful to make that if a structure is included in some other * parent structure that the alignment will still be true given the packing of * the parent structure. This is particularly important if the sub-structure * will be passed as a pointer to another function, since that function will * not know about the misalignment caused by the parent structure's packing. * * Also be very careful using __packed - particularly when nesting non-packed * structures inside packed ones. In fact, DO NOT use __packed directly; * always use one of these attributes. * * Once everything is annotated properly, the following search strings should * not return ANY matches in this file other than right here: * * "__packed" - generates inefficient code; all sub-structs must also be packed * * "struct [^_]" - all structs should be annotated, except for structs that are * members of other structs/unions (and their original declarations should be * annotated). */ #ifdef CONFIG_HOSTCMD_ALIGNED /* * Packed structures where offset and size are always aligned to 1, 2, or 4 * byte boundary. */ #define __ec_align1 __packed #define __ec_align2 __packed __aligned(2) #define __ec_align4 __packed __aligned(4) /* * Packed structure which must be under-aligned, because its size is not a * 4-byte multiple. This is sub-optimal because it forces byte-wise access * of all multi-byte fields in it, even though they are themselves aligned. * * In theory, we could duplicate the structure with __aligned(4) for accessing * its members, but use the __packed version for sizeof(). */ #define __ec_align_size1 __packed /* * Packed structure which must be under-aligned, because its offset inside a * parent structure is not a 4-byte multiple. */ #define __ec_align_offset1 __packed #define __ec_align_offset2 __packed __aligned(2) /* * Structures which are complicated enough that I'm skipping them on the first * pass. They are effectively unchanged from their previous definitions. * * TODO(rspangler): Figure out what to do with these. It's likely necessary * to work out the size and offset of each member and add explicit padding to * maintain those. */ #define __ec_todo_packed __packed #define __ec_todo_unpacked #else /* !CONFIG_HOSTCMD_ALIGNED */ /* * Packed structures make no assumption about alignment, so they do inefficient * byte-wise reads. */ #define __ec_align1 __packed #define __ec_align2 __packed #define __ec_align4 __packed #define __ec_align_size1 __packed #define __ec_align_offset1 __packed #define __ec_align_offset2 __packed #define __ec_todo_packed __packed #define __ec_todo_unpacked #endif /* !CONFIG_HOSTCMD_ALIGNED */ /* LPC command status byte masks */ /* EC has written a byte in the data register and host hasn't read it yet */ #define EC_LPC_STATUS_TO_HOST 0x01 /* Host has written a command/data byte and the EC hasn't read it yet */ #define EC_LPC_STATUS_FROM_HOST 0x02 /* EC is processing a command */ #define EC_LPC_STATUS_PROCESSING 0x04 /* Last write to EC was a command, not data */ #define EC_LPC_STATUS_LAST_CMD 0x08 /* EC is in burst mode */ #define EC_LPC_STATUS_BURST_MODE 0x10 /* SCI event is pending (requesting SCI query) */ #define EC_LPC_STATUS_SCI_PENDING 0x20 /* SMI event is pending (requesting SMI query) */ #define EC_LPC_STATUS_SMI_PENDING 0x40 /* (reserved) */ #define EC_LPC_STATUS_RESERVED 0x80 /* * EC is busy. This covers both the EC processing a command, and the host has * written a new command but the EC hasn't picked it up yet. */ #define EC_LPC_STATUS_BUSY_MASK \ (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) /* * Host command response codes (16-bit). */ enum ec_status { EC_RES_SUCCESS = 0, EC_RES_INVALID_COMMAND = 1, EC_RES_ERROR = 2, EC_RES_INVALID_PARAM = 3, EC_RES_ACCESS_DENIED = 4, EC_RES_INVALID_RESPONSE = 5, EC_RES_INVALID_VERSION = 6, EC_RES_INVALID_CHECKSUM = 7, EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ EC_RES_UNAVAILABLE = 9, /* No response available */ EC_RES_TIMEOUT = 10, /* We got a timeout */ EC_RES_OVERFLOW = 11, /* Table / data overflow */ EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */ EC_RES_BUS_ERROR = 15, /* Communications bus error */ EC_RES_BUSY = 16, /* Up but too busy. Should retry */ EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */ EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */ EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */ EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */ EC_RES_COUNT, EC_RES_MAX = UINT16_MAX, /**< Force enum to be 16 bits */ } __packed; BUILD_ASSERT(sizeof(enum ec_status) == sizeof(uint16_t)); #ifdef CONFIG_EC_HOST_CMD /* * Make sure Zephyre uses the same status codes. */ #include BUILD_ASSERT((uint16_t)EC_RES_SUCCESS == (uint16_t)EC_HOST_CMD_SUCCESS); BUILD_ASSERT((uint16_t)EC_RES_INVALID_COMMAND == (uint16_t)EC_HOST_CMD_INVALID_COMMAND); BUILD_ASSERT((uint16_t)EC_RES_ERROR == (uint16_t)EC_HOST_CMD_ERROR); BUILD_ASSERT((uint16_t)EC_RES_INVALID_PARAM == (uint16_t)EC_HOST_CMD_INVALID_PARAM); BUILD_ASSERT((uint16_t)EC_RES_ACCESS_DENIED == (uint16_t)EC_HOST_CMD_ACCESS_DENIED); BUILD_ASSERT((uint16_t)EC_RES_INVALID_RESPONSE == (uint16_t)EC_HOST_CMD_INVALID_RESPONSE); BUILD_ASSERT((uint16_t)EC_RES_INVALID_VERSION == (uint16_t)EC_HOST_CMD_INVALID_VERSION); BUILD_ASSERT((uint16_t)EC_RES_INVALID_CHECKSUM == (uint16_t)EC_HOST_CMD_INVALID_CHECKSUM); BUILD_ASSERT((uint16_t)EC_RES_IN_PROGRESS == (uint16_t)EC_HOST_CMD_IN_PROGRESS); BUILD_ASSERT((uint16_t)EC_RES_UNAVAILABLE == (uint16_t)EC_HOST_CMD_UNAVAILABLE); BUILD_ASSERT((uint16_t)EC_RES_TIMEOUT == (uint16_t)EC_HOST_CMD_TIMEOUT); BUILD_ASSERT((uint16_t)EC_RES_OVERFLOW == (uint16_t)EC_HOST_CMD_OVERFLOW); BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER == (uint16_t)EC_HOST_CMD_INVALID_HEADER); BUILD_ASSERT((uint16_t)EC_RES_REQUEST_TRUNCATED == (uint16_t)EC_HOST_CMD_REQUEST_TRUNCATED); BUILD_ASSERT((uint16_t)EC_RES_RESPONSE_TOO_BIG == (uint16_t)EC_HOST_CMD_RESPONSE_TOO_BIG); BUILD_ASSERT((uint16_t)EC_RES_BUS_ERROR == (uint16_t)EC_HOST_CMD_BUS_ERROR); BUILD_ASSERT((uint16_t)EC_RES_BUSY == (uint16_t)EC_HOST_CMD_BUSY); BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER_VERSION == (uint16_t)EC_HOST_CMD_INVALID_HEADER_VERSION); BUILD_ASSERT((uint16_t)EC_RES_INVALID_HEADER_CRC == (uint16_t)EC_HOST_CMD_INVALID_HEADER_CRC); BUILD_ASSERT((uint16_t)EC_RES_INVALID_DATA_CRC == (uint16_t)EC_HOST_CMD_INVALID_DATA_CRC); BUILD_ASSERT((uint16_t)EC_RES_DUP_UNAVAILABLE == (uint16_t)EC_HOST_CMD_DUP_UNAVAILABLE); BUILD_ASSERT((uint16_t)EC_RES_MAX == (uint16_t)EC_HOST_CMD_MAX); #endif /* clang-format off */ #define EC_STATUS_TEXT \ { \ EC_MAP_ITEM(EC_RES_SUCCESS, SUCCESS), \ EC_MAP_ITEM(EC_RES_INVALID_COMMAND, INVALID_COMMAND), \ EC_MAP_ITEM(EC_RES_ERROR, ERROR), \ EC_MAP_ITEM(EC_RES_INVALID_PARAM, INVALID_PARAM), \ EC_MAP_ITEM(EC_RES_ACCESS_DENIED, ACCESS_DENIED), \ EC_MAP_ITEM(EC_RES_INVALID_RESPONSE, INVALID_RESPONSE), \ EC_MAP_ITEM(EC_RES_INVALID_VERSION, INVALID_VERSION), \ EC_MAP_ITEM(EC_RES_INVALID_CHECKSUM, INVALID_CHECKSUM), \ EC_MAP_ITEM(EC_RES_IN_PROGRESS, IN_PROGRESS), \ EC_MAP_ITEM(EC_RES_UNAVAILABLE, UNAVAILABLE), \ EC_MAP_ITEM(EC_RES_TIMEOUT, TIMEOUT), \ EC_MAP_ITEM(EC_RES_OVERFLOW, OVERFLOW), \ EC_MAP_ITEM(EC_RES_INVALID_HEADER, INVALID_HEADER), \ EC_MAP_ITEM(EC_RES_REQUEST_TRUNCATED, REQUEST_TRUNCATED), \ EC_MAP_ITEM(EC_RES_RESPONSE_TOO_BIG, RESPONSE_TOO_BIG), \ EC_MAP_ITEM(EC_RES_BUS_ERROR, BUS_ERROR), \ EC_MAP_ITEM(EC_RES_BUSY, BUSY), \ EC_MAP_ITEM(EC_RES_INVALID_HEADER_VERSION, INVALID_HEADER_VERSION), \ EC_MAP_ITEM(EC_RES_INVALID_HEADER_CRC, INVALID_HEADER_CRC), \ EC_MAP_ITEM(EC_RES_INVALID_DATA_CRC, INVALID_DATA_CRC), \ EC_MAP_ITEM(EC_RES_DUP_UNAVAILABLE, DUP_UNAVAILABLE), \ } /* clang-format on */ #ifndef __cplusplus #define EC_MAP_ITEM(k, v) [k] = #v BUILD_ASSERT(ARRAY_SIZE(((const char *[])EC_STATUS_TEXT)) == EC_RES_COUNT); #undef EC_MAP_ITEM #endif /* * Host event codes. ACPI query EC command uses code 0 to mean "no event * pending". We explicitly specify each value in the enum listing so they won't * change if we delete/insert an item or rearrange the list (it needs to be * stable across platforms, not just within a single compiled instance). */ enum host_event_code { EC_HOST_EVENT_NONE = 0, EC_HOST_EVENT_LID_CLOSED = 1, EC_HOST_EVENT_LID_OPEN = 2, EC_HOST_EVENT_POWER_BUTTON = 3, EC_HOST_EVENT_AC_CONNECTED = 4, EC_HOST_EVENT_AC_DISCONNECTED = 5, EC_HOST_EVENT_BATTERY_LOW = 6, EC_HOST_EVENT_BATTERY_CRITICAL = 7, EC_HOST_EVENT_BATTERY = 8, EC_HOST_EVENT_THERMAL_THRESHOLD = 9, /* Event generated by a device attached to the EC */ EC_HOST_EVENT_DEVICE = 10, EC_HOST_EVENT_THERMAL = 11, /* GPU related event. Formerly named EC_HOST_EVENT_USB_CHARGER. */ EC_HOST_EVENT_GPU = 12, EC_HOST_EVENT_KEY_PRESSED = 13, /* * EC has finished initializing the host interface. The host can check * for this event following sending a EC_CMD_REBOOT_EC command to * determine when the EC is ready to accept subsequent commands. */ EC_HOST_EVENT_INTERFACE_READY = 14, /* Keyboard recovery combo has been pressed */ EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, /* Shutdown due to thermal overload */ EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, /* Shutdown due to battery level too low */ EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, /* Suggest that the AP throttle itself */ EC_HOST_EVENT_THROTTLE_START = 18, /* Suggest that the AP resume normal speed */ EC_HOST_EVENT_THROTTLE_STOP = 19, /* Hang detect logic detected a hang and host event timeout expired */ EC_HOST_EVENT_HANG_DETECT = 20, /* Hang detect logic detected a hang and warm rebooted the AP */ EC_HOST_EVENT_HANG_REBOOT = 21, /* PD MCU triggering host event */ EC_HOST_EVENT_PD_MCU = 22, /* Battery Status flags have changed */ EC_HOST_EVENT_BATTERY_STATUS = 23, /* EC encountered a panic, triggering a reset */ EC_HOST_EVENT_PANIC = 24, /* Keyboard fastboot combo has been pressed */ EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25, /* EC RTC event occurred */ EC_HOST_EVENT_RTC = 26, /* Emulate MKBP event */ EC_HOST_EVENT_MKBP = 27, /* EC desires to change state of host-controlled USB mux */ EC_HOST_EVENT_USB_MUX = 28, /* * The device has changed "modes". This can be one of the following: * * - TABLET/LAPTOP mode * - detachable base attach/detach event * - on body/off body transition event */ EC_HOST_EVENT_MODE_CHANGE = 29, /* Keyboard recovery combo with hardware reinitialization */ EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30, /* WoV */ EC_HOST_EVENT_WOV = 31, /* * The high bit of the event mask is not used as a host event code. If * it reads back as set, then the entire event mask should be * considered invalid by the host. This can happen when reading the * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is * not initialized on the EC, or improperly configured on the host. */ EC_HOST_EVENT_INVALID = 32, /* Body detect (lap/desk) change event */ EC_HOST_EVENT_BODY_DETECT_CHANGE = 33, /* * Only 64 host events are supported. This enum uses 1-based counting so * it can skip 0 (NONE), so the last legal host event number is 64. */ }; /* Host event mask */ #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code)-1) /* clang-format off */ #define HOST_EVENT_TEXT \ { \ [EC_HOST_EVENT_NONE] = "NONE", \ [EC_HOST_EVENT_LID_CLOSED] = "LID_CLOSED", \ [EC_HOST_EVENT_LID_OPEN] = "LID_OPEN", \ [EC_HOST_EVENT_POWER_BUTTON] = "POWER_BUTTON", \ [EC_HOST_EVENT_AC_CONNECTED] = "AC_CONNECTED", \ [EC_HOST_EVENT_AC_DISCONNECTED] = "AC_DISCONNECTED", \ [EC_HOST_EVENT_BATTERY_LOW] = "BATTERY_LOW", \ [EC_HOST_EVENT_BATTERY_CRITICAL] = "BATTERY_CRITICAL", \ [EC_HOST_EVENT_BATTERY] = "BATTERY", \ [EC_HOST_EVENT_THERMAL_THRESHOLD] = "THERMAL_THRESHOLD", \ [EC_HOST_EVENT_DEVICE] = "DEVICE", \ [EC_HOST_EVENT_THERMAL] = "THERMAL", \ [EC_HOST_EVENT_GPU] = "GPU", \ [EC_HOST_EVENT_KEY_PRESSED] = "KEY_PRESSED", \ [EC_HOST_EVENT_INTERFACE_READY] = "INTERFACE_READY", \ [EC_HOST_EVENT_KEYBOARD_RECOVERY] = "KEYBOARD_RECOVERY", \ [EC_HOST_EVENT_THERMAL_SHUTDOWN] = "THERMAL_SHUTDOWN", \ [EC_HOST_EVENT_BATTERY_SHUTDOWN] = "BATTERY_SHUTDOWN", \ [EC_HOST_EVENT_THROTTLE_START] = "THROTTLE_START", \ [EC_HOST_EVENT_THROTTLE_STOP] = "THROTTLE_STOP", \ [EC_HOST_EVENT_HANG_DETECT] = "HANG_DETECT", \ [EC_HOST_EVENT_HANG_REBOOT] = "HANG_REBOOT", \ [EC_HOST_EVENT_PD_MCU] = "PD_MCU", \ [EC_HOST_EVENT_BATTERY_STATUS] = "BATTERY_STATUS", \ [EC_HOST_EVENT_PANIC] = "PANIC", \ [EC_HOST_EVENT_KEYBOARD_FASTBOOT] = "KEYBOARD_FASTBOOT", \ [EC_HOST_EVENT_RTC] = "RTC", \ [EC_HOST_EVENT_MKBP] = "MKBP", \ [EC_HOST_EVENT_USB_MUX] = "USB_MUX", \ [EC_HOST_EVENT_MODE_CHANGE] = "MODE_CHANGE", \ [EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT] = \ "KEYBOARD_RECOVERY_HW_REINIT", \ [EC_HOST_EVENT_WOV] = "WOV", \ [EC_HOST_EVENT_INVALID] = "INVALID", \ [EC_HOST_EVENT_BODY_DETECT_CHANGE] = "BODY_DETECT_CHANGE", \ } /* clang-format on */ /** * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS * @flags: The host argument flags. * @command_version: Command version. * @data_size: The length of data. * @checksum: Checksum; sum of command + flags + command_version + data_size + * all params/response data bytes. */ struct ec_lpc_host_args { uint8_t flags; uint8_t command_version; uint8_t data_size; uint8_t checksum; } __ec_align4; /* Flags for ec_lpc_host_args.flags */ /* * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command * params. * * If EC gets a command and this flag is not set, this is an old-style command. * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with * unknown length. EC must respond with an old-style response (that is, * without setting EC_HOST_ARGS_FLAG_TO_HOST). */ #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 /* * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. * * If EC responds to a command and this flag is not set, this is an old-style * response. Command version is 0 and response data from EC is at * EC_LPC_ADDR_OLD_PARAM with unknown length. */ #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 /*****************************************************************************/ /* * Byte codes returned by EC over SPI interface. * * These can be used by the AP to debug the EC interface, and to determine * when the EC is not in a state where it will ever get around to responding * to the AP. * * Example of sequence of bytes read from EC for a current good transfer: * 1. - - AP asserts chip select (CS#) * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request * 3. - - EC starts handling CS# interrupt * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in * bytes looking for EC_SPI_FRAME_START * 6. - - EC finishes processing and sets up response * 7. EC_SPI_FRAME_START - AP reads frame byte * 8. (response packet) - AP reads response packet * 9. EC_SPI_PAST_END - Any additional bytes read by AP * 10 - - AP deasserts chip select * 11 - - EC processes CS# interrupt and sets up DMA for * next request * * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than * the following byte values: * EC_SPI_OLD_READY * EC_SPI_RX_READY * EC_SPI_RECEIVING * EC_SPI_PROCESSING * * Then the EC found an error in the request, or was not ready for the request * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, * because the EC is unable to tell when the AP is done sending its request. */ /* * Framing byte which precedes a response packet from the EC. After sending a * request, the AP will clock in bytes until it sees the framing byte, then * clock in the response packet. */ #define EC_SPI_FRAME_START 0xec /* * Padding bytes which are clocked out after the end of a response packet. */ #define EC_SPI_PAST_END 0xed /* * EC is ready to receive, and has ignored the byte sent by the AP. EC expects * that the AP will send a valid packet header (starting with * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. * * NOTE: Some SPI configurations place the Most Significant Bit on SDO when * CS goes low. This macro has the Most Significant Bit set to zero, * so SDO will not be driven high when CS goes low. */ #define EC_SPI_RX_READY 0x78 /* * EC has started receiving the request from the AP, but hasn't started * processing it yet. */ #define EC_SPI_RECEIVING 0xf9 /* EC has received the entire request from the AP and is processing it. */ #define EC_SPI_PROCESSING 0xfa /* * EC received bad data from the AP, such as a packet header with an invalid * length. EC will ignore all data until chip select deasserts. */ #define EC_SPI_RX_BAD_DATA 0xfb /* * EC received data from the AP before it was ready. That is, the AP asserted * chip select and started clocking data before the EC was ready to receive it. * EC will ignore all data until chip select deasserts. */ #define EC_SPI_NOT_READY 0xfc /* * EC was ready to receive a request from the AP. EC has treated the byte sent * by the AP as part of a request packet, or (for old-style ECs) is processing * a fully received packet but is not ready to respond yet. */ #define EC_SPI_OLD_READY 0xfd /*****************************************************************************/ /* * Protocol version 2 for I2C and SPI send a request this way: * * 0 EC_CMD_VERSION0 + (command version) * 1 Command number * 2 Length of params = N * 3..N+2 Params, if any * N+3 8-bit checksum of bytes 0..N+2 * * The corresponding response is: * * 0 Result code (EC_RES_*) * 1 Length of params = M * 2..M+1 Params, if any * M+2 8-bit checksum of bytes 0..M+1 */ #define EC_PROTO2_REQUEST_HEADER_BYTES 3 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 #define EC_PROTO2_REQUEST_OVERHEAD \ (EC_PROTO2_REQUEST_HEADER_BYTES + EC_PROTO2_REQUEST_TRAILER_BYTES) #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 #define EC_PROTO2_RESPONSE_OVERHEAD \ (EC_PROTO2_RESPONSE_HEADER_BYTES + EC_PROTO2_RESPONSE_TRAILER_BYTES) /* Parameter length was limited by the LPC interface */ #define EC_PROTO2_MAX_PARAM_SIZE 0xfc /* Maximum request and response packet sizes for protocol version 2 */ #define EC_PROTO2_MAX_REQUEST_SIZE \ (EC_PROTO2_REQUEST_OVERHEAD + EC_PROTO2_MAX_PARAM_SIZE) #define EC_PROTO2_MAX_RESPONSE_SIZE \ (EC_PROTO2_RESPONSE_OVERHEAD + EC_PROTO2_MAX_PARAM_SIZE) /*****************************************************************************/ /* * Value written to legacy command port / prefix byte to indicate protocol * 3+ structs are being used. Usage is bus-dependent. */ #define EC_COMMAND_PROTOCOL_3 0xda #define EC_HOST_REQUEST_VERSION 3 /** * struct ec_host_request - Version 3 request from host. * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it * receives a header with a version it doesn't know how to * parse. * @checksum: Checksum of request and data; sum of all bytes including checksum * should total to 0. * @command: Command to send (EC_CMD_...) * @command_version: Command version. * @reserved: Unused byte in current protocol version; set to 0. * @data_len: Length of data which follows this header. */ struct ec_host_request { uint8_t struct_version; uint8_t checksum; uint16_t command; uint8_t command_version; uint8_t reserved; uint16_t data_len; } __ec_align4; #define EC_HOST_RESPONSE_VERSION 3 /** * struct ec_host_response - Version 3 response from EC. * @struct_version: Struct version (=3). * @checksum: Checksum of response and data; sum of all bytes including * checksum should total to 0. * @result: EC's response to the command (separate from communication failure) * @data_len: Length of data which follows this header. * @reserved: Unused bytes in current protocol version; set to 0. */ struct ec_host_response { uint8_t struct_version; uint8_t checksum; uint16_t result; uint16_t data_len; uint16_t reserved; } __ec_align4; /*****************************************************************************/ /* * Host command protocol V4. * * Packets always start with a request or response header. They are followed * by data_len bytes of data. If the data_crc_present flag is set, the data * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1 * polynomial. * * Host algorithm when sending a request q: * * 101) tries_left=(some value, e.g. 3); * 102) q.seq_num++ * 103) q.seq_dup=0 * 104) Calculate q.header_crc. * 105) Send request q to EC. * 106) Wait for response r. Go to 201 if received or 301 if timeout. * * 201) If r.struct_version != 4, go to 301. * 202) If r.header_crc mismatches calculated CRC for r header, go to 301. * 203) If r.data_crc_present and r.data_crc mismatches, go to 301. * 204) If r.seq_num != q.seq_num, go to 301. * 205) If r.seq_dup == q.seq_dup, return success. * 207) If r.seq_dup == 1, go to 301. * 208) Return error. * * 301) If --tries_left <= 0, return error. * 302) If q.seq_dup == 1, go to 105. * 303) q.seq_dup = 1 * 304) Go to 104. * * EC algorithm when receiving a request q. * EC has response buffer r, error buffer e. * * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION * and go to 301 * 102) If q.header_crc mismatches calculated CRC, set e.result = * EC_RES_INVALID_HEADER_CRC and go to 301 * 103) If q.data_crc_present, calculate data CRC. If that mismatches the CRC * byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC * and go to 301. * 104) If q.seq_dup == 0, go to 201. * 105) If q.seq_num != r.seq_num, go to 201. * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203. * * 201) Process request q into response r. * 202) r.seq_num = q.seq_num * 203) r.seq_dup = q.seq_dup * 204) Calculate r.header_crc * 205) If r.data_len > 0 and data is no longer available, set e.result = * EC_RES_DUP_UNAVAILABLE and go to 301. * 206) Send response r. * * 301) e.seq_num = q.seq_num * 302) e.seq_dup = q.seq_dup * 303) Calculate e.header_crc. * 304) Send error response e. */ /* Version 4 request from host */ struct ec_host_request4 { /* * bits 0-3: struct_version: Structure version (=4) * bit 4: is_response: Is response (=0) * bits 5-6: seq_num: Sequence number * bit 7: seq_dup: Sequence duplicate flag */ uint8_t fields0; /* * bits 0-4: command_version: Command version * bits 5-6: Reserved (set 0, ignore on read) * bit 7: data_crc_present: Is data CRC present after data */ uint8_t fields1; /* Command code (EC_CMD_*) */ uint16_t command; /* Length of data which follows this header (not including data CRC) */ uint16_t data_len; /* Reserved (set 0, ignore on read) */ uint8_t reserved; /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ uint8_t header_crc; } __ec_align4; /* Version 4 response from EC */ struct ec_host_response4 { /* * bits 0-3: struct_version: Structure version (=4) * bit 4: is_response: Is response (=1) * bits 5-6: seq_num: Sequence number * bit 7: seq_dup: Sequence duplicate flag */ uint8_t fields0; /* * bits 0-6: Reserved (set 0, ignore on read) * bit 7: data_crc_present: Is data CRC present after data */ uint8_t fields1; /* Result code (EC_RES_*) */ uint16_t result; /* Length of data which follows this header (not including data CRC) */ uint16_t data_len; /* Reserved (set 0, ignore on read) */ uint8_t reserved; /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ uint8_t header_crc; } __ec_align4; /* Fields in fields0 byte */ #define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f #define EC_PACKET4_0_IS_RESPONSE_MASK 0x10 #define EC_PACKET4_0_SEQ_NUM_SHIFT 5 #define EC_PACKET4_0_SEQ_NUM_MASK 0x60 #define EC_PACKET4_0_SEQ_DUP_MASK 0x80 /* Fields in fields1 byte */ #define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */ #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80 /*****************************************************************************/ /* * Notes on commands: * * Each command is an 16-bit command value. Commands which take params or * return response data specify structures for that data. If no structure is * specified, the command does not input or output data, respectively. * Parameter/response length is implicit in the structs. Some underlying * communication protocols (I2C, SPI) may add length or checksum headers, but * those are implementation-dependent and not defined here. * * All commands MUST be #defined to be 4-digit UPPER CASE hex values * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. */ /*****************************************************************************/ /* General / test commands */ /* * Get protocol version, used to deal with non-backward compatible protocol * changes. */ #define EC_CMD_PROTO_VERSION 0x0000 /** * struct ec_response_proto_version - Response to the proto version command. * @version: The protocol version. */ struct ec_response_proto_version { uint32_t version; } __ec_align4; /* * Hello. This is a simple command to test the EC is responsive to * commands. */ #define EC_CMD_HELLO 0x0001 /** * struct ec_params_hello - Parameters to the hello command. * @in_data: Pass anything here. */ struct ec_params_hello { uint32_t in_data; } __ec_align4; /** * struct ec_response_hello - Response to the hello command. * @out_data: Output will be in_data + 0x01020304. */ struct ec_response_hello { uint32_t out_data; } __ec_align4; /* Get version number */ #define EC_CMD_GET_VERSION 0x0002 enum ec_image { EC_IMAGE_UNKNOWN = 0, EC_IMAGE_RO, EC_IMAGE_RW, EC_IMAGE_RW_A = EC_IMAGE_RW, EC_IMAGE_RO_B, EC_IMAGE_RW_B, }; /** * struct ec_response_get_version - Response to the v0 get version command. * @version_string_ro: Null-terminated RO firmware version string. * @version_string_rw: Null-terminated RW firmware version string. * @reserved: Unused bytes; was previously RW-B firmware version string. * @current_image: One of ec_image. */ struct ec_response_get_version { char version_string_ro[32]; char version_string_rw[32]; char reserved[32]; /* Changed to cros_fwid_ro in version 1 */ uint32_t current_image; } __ec_align4; /** * struct ec_response_get_version_v1 - Response to the v1 get version command. * * ec_response_get_version_v1 is a strict superset of ec_response_get_version. * The v1 response changes the semantics of one field (reserved to cros_fwid_ro) * and adds one additional field (cros_fwid_rw). * * @version_string_ro: Null-terminated RO firmware version string. * @version_string_rw: Null-terminated RW firmware version string. * @cros_fwid_ro: Null-terminated RO CrOS FWID string. * @current_image: One of ec_image. * @cros_fwid_rw: Null-terminated RW CrOS FWID string. */ struct ec_response_get_version_v1 { char version_string_ro[32]; char version_string_rw[32]; char cros_fwid_ro[32]; /* Added in version 1 (Used to be reserved) */ uint32_t current_image; char cros_fwid_rw[32]; /* Added in version 1 */ } __ec_align4; /* Read test - OBSOLETE */ #define EC_CMD_READ_TEST 0x0003 /* * Get build information * * Response is null-terminated string. */ #define EC_CMD_GET_BUILD_INFO 0x0004 /* Get chip info */ #define EC_CMD_GET_CHIP_INFO 0x0005 /** * struct ec_response_get_chip_info - Response to the get chip info command. * @vendor: Null-terminated string for chip vendor. * @name: Null-terminated string for chip name. * @revision: Null-terminated string for chip mask version. */ struct ec_response_get_chip_info { char vendor[32]; char name[32]; char revision[32]; } __ec_align4; /* Get board HW version */ #define EC_CMD_GET_BOARD_VERSION 0x0006 /** * struct ec_response_board_version - Response to the board version command. * @board_version: A monotonously incrementing number. */ struct ec_response_board_version { uint16_t board_version; } __ec_align2; /* * Read memory-mapped data. * * This is an alternate interface to memory-mapped data for bus protocols * which don't support direct-mapped memory - I2C, SPI, etc. * * Response is params.size bytes of data. */ #define EC_CMD_READ_MEMMAP 0x0007 /** * struct ec_params_read_memmap - Parameters for the read memory map command. * @offset: Offset in memmap (EC_MEMMAP_*). * @size: Size to read in bytes. */ struct ec_params_read_memmap { uint8_t offset; uint8_t size; } __ec_align1; /* Read versions supported for a command */ #define EC_CMD_GET_CMD_VERSIONS 0x0008 /** * struct ec_params_get_cmd_versions - Parameters for the get command versions. * @cmd: Command to check. */ struct ec_params_get_cmd_versions { uint8_t cmd; } __ec_align1; /** * struct ec_params_get_cmd_versions_v1 - Parameters for the get command * versions (v1) * @cmd: Command to check. */ struct ec_params_get_cmd_versions_v1 { uint16_t cmd; } __ec_align2; /** * struct ec_response_get_cmd_version - Response to the get command versions. * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with * a desired version. */ struct ec_response_get_cmd_versions { uint32_t version_mask; } __ec_align4; /* * Check EC communications status (busy). This is needed on i2c/spi but not * on lpc since it has its own out-of-band busy indicator. * * lpc must read the status from the command register. Attempting this on * lpc will overwrite the args/parameter space and corrupt its data. */ #define EC_CMD_GET_COMMS_STATUS 0x0009 /* Avoid using ec_status which is for return values */ enum ec_comms_status { EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */ }; /** * struct ec_response_get_comms_status - Response to the get comms status * command. * @flags: Mask of enum ec_comms_status. */ struct ec_response_get_comms_status { uint32_t flags; /* Mask of enum ec_comms_status */ } __ec_align4; /* Fake a variety of responses, purely for testing purposes. */ #define EC_CMD_TEST_PROTOCOL 0x000A /* Tell the EC what to send back to us. */ struct ec_params_test_protocol { uint32_t ec_result; uint32_t ret_len; uint8_t buf[32]; } __ec_align4; /* Here it comes... */ struct ec_response_test_protocol { uint8_t buf[32]; } __ec_align4; /* Get protocol information */ #define EC_CMD_GET_PROTOCOL_INFO 0x000B /* Flags for ec_response_get_protocol_info.flags */ /* EC_RES_IN_PROGRESS may be returned if a command is slow */ #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0) /** * struct ec_response_get_protocol_info - Response to the get protocol info. * @protocol_versions: Bitmask of protocol versions supported (1 << n means * version n). * @max_request_packet_size: Maximum request packet size in bytes. * @max_response_packet_size: Maximum response packet size in bytes. * @flags: see EC_PROTOCOL_INFO_* */ struct ec_response_get_protocol_info { /* Fields which exist if at least protocol version 3 supported */ uint32_t protocol_versions; uint16_t max_request_packet_size; uint16_t max_response_packet_size; uint32_t flags; } __ec_align4; /*****************************************************************************/ /* Get/Set miscellaneous values */ /* The upper byte of .flags tells what to do (nothing means "get") */ #define EC_GSV_SET 0x80000000 /* * The lower three bytes of .flags identifies the parameter, if that has * meaning for an individual command. */ #define EC_GSV_PARAM_MASK 0x00ffffff struct ec_params_get_set_value { uint32_t flags; uint32_t value; } __ec_align4; struct ec_response_get_set_value { uint32_t flags; uint32_t value; } __ec_align4; /* More than one command can use these structs to get/set parameters. */ #define EC_CMD_GSV_PAUSE_IN_S5 0x000C /*****************************************************************************/ /* List the features supported by the firmware */ #define EC_CMD_GET_FEATURES 0x000D /* Supported features */ enum ec_feature_code { /* * This image contains a limited set of features. Another image * in RW partition may support more features. */ EC_FEATURE_LIMITED = 0, /* * Commands for probing/reading/writing/erasing the flash in the * EC are present. */ EC_FEATURE_FLASH = 1, /* * Can control the fan speed directly. */ EC_FEATURE_PWM_FAN = 2, /* * Can control the intensity of the keyboard backlight. */ EC_FEATURE_PWM_KEYB = 3, /* * Support Google lightbar, introduced on Pixel. */ EC_FEATURE_LIGHTBAR = 4, /* Control of LEDs */ EC_FEATURE_LED = 5, /* Exposes an interface to control gyro and sensors. * The host goes through the EC to access these sensors. * In addition, the EC may provide composite sensors, like lid angle. */ EC_FEATURE_MOTION_SENSE = 6, /* The keyboard is controlled by the EC */ EC_FEATURE_KEYB = 7, /* The AP can use part of the EC flash as persistent storage. */ EC_FEATURE_PSTORE = 8, /* The EC monitors BIOS port 80h, and can return POST codes. */ EC_FEATURE_PORT80 = 9, /* * Thermal management: include TMP specific commands. * Higher level than direct fan control. */ EC_FEATURE_THERMAL = 10, /* Can switch the screen backlight on/off */ EC_FEATURE_BKLIGHT_SWITCH = 11, /* Can switch the wifi module on/off */ EC_FEATURE_WIFI_SWITCH = 12, /* Monitor host events, through for example SMI or SCI */ EC_FEATURE_HOST_EVENTS = 13, /* The EC exposes GPIO commands to control/monitor connected devices. */ EC_FEATURE_GPIO = 14, /* The EC can send i2c messages to downstream devices. */ EC_FEATURE_I2C = 15, /* Command to control charger are included */ EC_FEATURE_CHARGER = 16, /* Simple battery support. */ EC_FEATURE_BATTERY = 17, /* * Support Smart battery protocol * (Common Smart Battery System Interface Specification) */ EC_FEATURE_SMART_BATTERY = 18, /* EC can detect when the host hangs. */ EC_FEATURE_HANG_DETECT = 19, /* Report power information, for pit only */ EC_FEATURE_PMU = 20, /* Another Cros EC device is present downstream of this one */ EC_FEATURE_SUB_MCU = 21, /* Support USB Power delivery (PD) commands */ EC_FEATURE_USB_PD = 22, /* Control USB multiplexer, for audio through USB port for instance. */ EC_FEATURE_USB_MUX = 23, /* Motion Sensor code has an internal software FIFO */ EC_FEATURE_MOTION_SENSE_FIFO = 24, /* Support temporary secure vstore */ EC_FEATURE_VSTORE = 25, /* EC decides on USB-C SS mux state, muxes configured by host */ EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26, /* EC has RTC feature that can be controlled by host commands */ EC_FEATURE_RTC = 27, /* The MCU exposes a Fingerprint sensor */ EC_FEATURE_FINGERPRINT = 28, /* The MCU exposes a Touchpad */ EC_FEATURE_TOUCHPAD = 29, /* The MCU has RWSIG task enabled */ EC_FEATURE_RWSIG = 30, /* EC has device events support */ EC_FEATURE_DEVICE_EVENT = 31, /* EC supports the unified wake masks for LPC/eSPI systems */ EC_FEATURE_UNIFIED_WAKE_MASKS = 32, /* EC supports 64-bit host events */ EC_FEATURE_HOST_EVENT64 = 33, /* EC runs code in RAM (not in place, a.k.a. XIP) */ EC_FEATURE_EXEC_IN_RAM = 34, /* EC supports CEC commands */ EC_FEATURE_CEC = 35, /* EC supports tight sensor timestamping. */ EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36, /* * EC supports tablet mode detection aligned to Chrome and allows * setting of threshold by host command using * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37, /* * Early Firmware Selection ver.2. Enabled by CONFIG_VBOOT_EFS2. * Note this is a RO feature. So, a query (EC_CMD_GET_FEATURES) should * be sent to RO to be precise. */ EC_FEATURE_EFS2 = 38, /* The MCU is a System Companion Processor (SCP). */ EC_FEATURE_SCP = 39, /* The MCU is an Integrated Sensor Hub */ EC_FEATURE_ISH = 40, /* New TCPMv2 TYPEC_ prefaced commands supported */ EC_FEATURE_TYPEC_CMD = 41, /* * The EC will wait for direction from the AP to enter Type-C alternate * modes or USB4. */ EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42, /* * The EC will wait for an acknowledge from the AP after setting the * mux. */ EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43, /* * The EC supports entering and residing in S4. */ EC_FEATURE_S4_RESIDENCY = 44, /* * The EC supports the AP directing mux sets for the board. */ EC_FEATURE_TYPEC_AP_MUX_SET = 45, /* * The EC supports the AP composing VDMs for us to send. */ EC_FEATURE_TYPEC_AP_VDM_SEND = 46, /* * The EC supports system safe mode panic recovery. */ EC_FEATURE_SYSTEM_SAFE_MODE = 47, /* * The EC will reboot on runtime assertion failures. */ EC_FEATURE_ASSERT_REBOOTS = 48, /* * The EC image is built with tokenized logging enabled. */ EC_FEATURE_TOKENIZED_LOGGING = 49, /* * The EC supports triggering an STB dump. */ EC_FEATURE_AMD_STB_DUMP = 50, /* * The EC supports memory dump commands. */ EC_FEATURE_MEMORY_DUMP = 51, /* * The EC supports DP2.1 capability */ EC_FEATURE_TYPEC_DP2_1 = 52, /* * The MCU is System Companion Processor Core 1 */ EC_FEATURE_SCP_C1 = 53, /* * The EC supports UCSI PPM. */ EC_FEATURE_UCSI_PPM = 54, }; #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32) #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32) struct ec_response_get_features { uint32_t flags[2]; } __ec_align4; /*****************************************************************************/ /* Get the board's SKU ID from EC */ #define EC_CMD_GET_SKU_ID 0x000E /* Set SKU ID from AP */ #define EC_CMD_SET_SKU_ID 0x000F struct ec_sku_id_info { uint32_t sku_id; } __ec_align4; /*****************************************************************************/ /* Flash commands */ /* Get flash info */ #define EC_CMD_FLASH_INFO 0x0010 #define EC_VER_FLASH_INFO 2 /** * struct ec_response_flash_info - Response to the flash info command. * @flash_size: Usable flash size in bytes. * @write_block_size: Write block size. Write offset and size must be a * multiple of this. * @erase_block_size: Erase block size. Erase offset and size must be a * multiple of this. * @protect_block_size: Protection block size. Protection offset and size * must be a multiple of this. * * Version 0 returns these fields. */ struct ec_response_flash_info { uint32_t flash_size; uint32_t write_block_size; uint32_t erase_block_size; uint32_t protect_block_size; } __ec_align4; /* * Flags for version 1+ flash info command * EC flash erases bits to 0 instead of 1. */ #define EC_FLASH_INFO_ERASE_TO_0 BIT(0) /* * Flash must be selected for read/write/erase operations to succeed. This may * be necessary on a chip where write/erase can be corrupted by other board * activity, or where the chip needs to enable some sort of programming voltage, * or where the read/write/erase operations require cleanly suspending other * chip functionality. */ #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1) /** * struct ec_response_flash_info_1 - Response to the flash info v1 command. * @flash_size: Usable flash size in bytes. * @write_block_size: Write block size. Write offset and size must be a * multiple of this. * @erase_block_size: Erase block size. Erase offset and size must be a * multiple of this. * @protect_block_size: Protection block size. Protection offset and size * must be a multiple of this. * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if * size is exactly this and offset is a multiple of this. * For example, an EC may have a write buffer which can do * half-page operations if data is aligned, and a slower * word-at-a-time write mode. * @flags: Flags; see EC_FLASH_INFO_* * * Version 1 returns the same initial fields as version 0, with additional * fields following. * * gcc anonymous structs don't seem to get along with the __packed directive; * if they did we'd define the version 0 structure as a sub-structure of this * one. * * Version 2 supports flash banks of different sizes: * The caller specified the number of banks it has preallocated * (num_banks_desc) * The EC returns the number of banks describing the flash memory. * It adds banks descriptions up to num_banks_desc. */ struct ec_response_flash_info_1 { /* Version 0 fields; see above for description */ uint32_t flash_size; uint32_t write_block_size; uint32_t erase_block_size; uint32_t protect_block_size; /* Version 1 adds these fields: */ uint32_t write_ideal_size; uint32_t flags; } __ec_align4; struct ec_params_flash_info_2 { /* Number of banks to describe */ uint16_t num_banks_desc; /* Reserved; set 0; ignore on read */ uint8_t reserved[2]; } __ec_align4; struct ec_flash_bank { /* Number of sector is in this bank. */ uint16_t count; /* Size in power of 2 of each sector (8 --> 256 bytes) */ uint8_t size_exp; /* Minimal write size for the sectors in this bank */ uint8_t write_size_exp; /* Erase size for the sectors in this bank */ uint8_t erase_size_exp; /* Size for write protection, usually identical to erase size. */ uint8_t protect_size_exp; /* Reserved; set 0; ignore on read */ uint8_t reserved[2]; }; struct ec_response_flash_info_2 { /* Total flash in the EC. */ uint32_t flash_size; /* Flags; see EC_FLASH_INFO_* */ uint32_t flags; /* Maximum size to use to send data to write to the EC. */ uint32_t write_ideal_size; /* Number of banks present in the EC. */ uint16_t num_banks_total; /* Number of banks described in banks array. */ uint16_t num_banks_desc; struct ec_flash_bank banks[0]; } __ec_align4; /* * Read flash * * Response is params.size bytes of data. */ #define EC_CMD_FLASH_READ 0x0011 /** * struct ec_params_flash_read - Parameters for the flash read command. * @offset: Byte offset to read. * @size: Size to read in bytes. */ struct ec_params_flash_read { uint32_t offset; uint32_t size; } __ec_align4; /* Write flash */ #define EC_CMD_FLASH_WRITE 0x0012 #define EC_VER_FLASH_WRITE 1 /* Version 0 of the flash command supported only 64 bytes of data */ #define EC_FLASH_WRITE_VER0_SIZE 64 /** * struct ec_params_flash_write - Parameters for the flash write command. * @offset: Byte offset to write. * @size: Size to write in bytes. * @data: Data to write. * @data.words32: uint32_t data to write. * @data.bytes: uint8_t data to write. */ struct ec_params_flash_write { uint32_t offset; uint32_t size; /* Followed by data to write. This union allows accessing an * underlying buffer as uint32s or uint8s for convenience. */ union { uint32_t words32[FLEXIBLE_ARRAY_MEMBER_SIZE]; uint8_t bytes[FLEXIBLE_ARRAY_MEMBER_SIZE]; } data; } __ec_align4; BUILD_ASSERT(member_size(struct ec_params_flash_write, data) == 0); /* Erase flash */ #define EC_CMD_FLASH_ERASE 0x0013 /** * struct ec_params_flash_erase - Parameters for the flash erase command, v0. * @offset: Byte offset to erase. * @size: Size to erase in bytes. */ struct ec_params_flash_erase { uint32_t offset; uint32_t size; } __ec_align4; /* * v1 add async erase: * subcommands can returns: * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below). * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary. * EC_RES_ERROR : other errors. * EC_RES_BUSY : an existing erase operation is in progress. * EC_RES_ACCESS_DENIED: Trying to erase running image. * * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just * properly queued. The user must call ERASE_GET_RESULT subcommand to get * the proper result. * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC. * ERASE_GET_RESULT command may timeout on EC where flash access is not * permitted while erasing. (For instance, STM32F4). */ enum ec_flash_erase_cmd { FLASH_ERASE_SECTOR, /* Erase and wait for result */ FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */ FLASH_ERASE_GET_RESULT, /* Ask for last erase result */ }; /** * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1. * @cmd: One of ec_flash_erase_cmd. * @reserved: Pad byte; currently always contains 0. * @flag: No flags defined yet; set to 0. * @params: Same as v0 parameters. */ struct ec_params_flash_erase_v1 { uint8_t cmd; uint8_t reserved; uint16_t flag; struct ec_params_flash_erase params; } __ec_align4; /* * Get/set flash protection. * * If mask!=0, sets/clear the requested bits of flags. Depending on the * firmware write protect GPIO, not all flags will take effect immediately; * some flags require a subsequent hard reset to take effect. Check the * returned flags bits to see what actually happened. * * If mask=0, simply returns the current flags state. */ #define EC_CMD_FLASH_PROTECT 0x0015 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ /* Flags for flash protection */ /* RO flash code protected when the EC boots */ #define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0) /* * RO flash code protected now. If this bit is set, at-boot status cannot * be changed. */ #define EC_FLASH_PROTECT_RO_NOW BIT(1) /* Entire flash code protected now, until reboot. */ #define EC_FLASH_PROTECT_ALL_NOW BIT(2) /* Flash write protect GPIO is asserted now */ #define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3) /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ #define EC_FLASH_PROTECT_ERROR_STUCK BIT(4) /* * Error - flash protection is in inconsistent state. At least one bank of * flash which should be protected is not protected. Usually fixed by * re-requesting the desired flags, or by a hard reset if that fails. */ #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5) /* Entire flash code protected when the EC boots */ #define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6) /* RW flash code protected when the EC boots */ #define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7) /* RW flash code protected now. */ #define EC_FLASH_PROTECT_RW_NOW BIT(8) /* Rollback information flash region protected when the EC boots */ #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9) /* Rollback information flash region protected now */ #define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10) /* Error - Unknown error */ #define EC_FLASH_PROTECT_ERROR_UNKNOWN BIT(11) /** * struct ec_params_flash_protect - Parameters for the flash protect command. * @mask: Bits in flags to apply. * @flags: New flags to apply. */ struct ec_params_flash_protect { uint32_t mask; uint32_t flags; } __ec_align4; enum flash_protect_action { FLASH_PROTECT_ASYNC = 0, FLASH_PROTECT_GET_RESULT = 1, }; /* Version 2 of the command is "asynchronous". */ struct ec_params_flash_protect_v2 { uint8_t action; /**< enum flash_protect_action */ uint8_t reserved[3]; /**< padding for alignment */ uint32_t mask; uint32_t flags; } __ec_align4; /** * struct ec_response_flash_protect - Response to the flash protect command. * @flags: Current value of flash protect flags. * @valid_flags: Flags which are valid on this platform. This allows the * caller to distinguish between flags which aren't set vs. flags * which can't be set on this platform. * @writable_flags: Flags which can be changed given the current protection * state. */ struct ec_response_flash_protect { uint32_t flags; uint32_t valid_flags; uint32_t writable_flags; } __ec_align4; /* * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash * write protect. These commands may be reused with version > 0. */ /* Get the region offset/size */ #define EC_CMD_FLASH_REGION_INFO 0x0016 #define EC_VER_FLASH_REGION_INFO 1 enum ec_flash_region { /* Region which holds read-only EC image */ EC_FLASH_REGION_RO = 0, /* * Region which holds active RW image. 'Active' is different from * 'running'. Active means 'scheduled-to-run'. Since RO image always * scheduled to run, active/non-active applies only to RW images (for * the same reason 'update' applies only to RW images. It's a state of * an image on a flash. Running image can be RO, RW_A, RW_B but active * image can only be RW_A or RW_B. In recovery mode, an active RW image * doesn't enter 'running' state but it's still active on a flash. */ EC_FLASH_REGION_ACTIVE, /* * Region which should be write-protected in the factory (a superset of * EC_FLASH_REGION_RO) */ EC_FLASH_REGION_WP_RO, /* Region which holds updatable (non-active) RW image */ EC_FLASH_REGION_UPDATE, /* Number of regions */ EC_FLASH_REGION_COUNT, }; /* * 'RW' is vague if there are multiple RW images; we mean the active one, * so the old constant is deprecated. */ #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE /** * struct ec_params_flash_region_info - Parameters for the flash region info * command. * @region: Flash region; see EC_FLASH_REGION_* */ struct ec_params_flash_region_info { uint32_t region; } __ec_align4; struct ec_response_flash_region_info { uint32_t offset; uint32_t size; } __ec_align4; /* Get SPI flash information */ #define EC_CMD_FLASH_SPI_INFO 0x0018 struct ec_response_flash_spi_info { /* JEDEC info from command 0x9F (manufacturer, memory type, size) */ uint8_t jedec[3]; /* Pad byte; currently always contains 0 */ uint8_t reserved0; /* Manufacturer / device ID from command 0x90 */ uint8_t mfr_dev_id[2]; /* Status registers from command 0x05 and 0x35 */ uint8_t sr1, sr2; } __ec_align1; /* Select flash during flash operations */ #define EC_CMD_FLASH_SELECT 0x0019 /** * struct ec_params_flash_select - Parameters for the flash select command. * @select: 1 to select flash, 0 to deselect flash */ struct ec_params_flash_select { uint8_t select; } __ec_align4; /** * Request random numbers to be generated and returned. * Can be used to test the random number generator is truly random. * See https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final and * https://webhome.phy.duke.edu/~rgb/General/dieharder.php. */ #define EC_CMD_RAND_NUM 0x001A #define EC_VER_RAND_NUM 0 struct ec_params_rand_num { uint16_t num_rand_bytes; /**< num random bytes to generate */ } __ec_align4; struct ec_response_rand_num { /** * generated random numbers in the range of 1 to EC_MAX_INSIZE. The true * size of rand is determined by ec_params_rand_num's num_rand_bytes. */ uint8_t rand[FLEXIBLE_ARRAY_MEMBER_SIZE]; } __ec_align1; BUILD_ASSERT(sizeof(struct ec_response_rand_num) == 0); /** * Get information about the key used to sign the RW firmware. * For more details on the fields, see "struct vb21_packed_key". */ #define EC_CMD_RWSIG_INFO 0x001B #define EC_VER_RWSIG_INFO 0 #define VBOOT2_KEY_ID_BYTES 20 #ifdef CHROMIUM_EC /* Don't force external projects to depend on the vboot headers. */ #include "vb21_struct.h" BUILD_ASSERT(sizeof(struct vb2_id) == VBOOT2_KEY_ID_BYTES); #endif struct ec_response_rwsig_info { /** * Signature algorithm used by the key * (enum vb2_signature_algorithm). */ uint16_t sig_alg; /** * Hash digest algorithm used with the key * (enum vb2_hash_algorithm). */ uint16_t hash_alg; /** Key version. */ uint32_t key_version; /** Key ID (struct vb2_id). */ uint8_t key_id[VBOOT2_KEY_ID_BYTES]; uint8_t key_is_valid; /** Alignment padding. */ uint8_t reserved[3]; } __ec_align4; BUILD_ASSERT(sizeof(struct ec_response_rwsig_info) == 32); /** * Get information about the system, such as reset flags, locked state, etc. */ #define EC_CMD_SYSINFO 0x001C #define EC_VER_SYSINFO 0 enum sysinfo_flags { SYSTEM_IS_LOCKED = BIT(0), SYSTEM_IS_FORCE_LOCKED = BIT(1), SYSTEM_JUMP_ENABLED = BIT(2), SYSTEM_JUMPED_TO_CURRENT_IMAGE = BIT(3), SYSTEM_REBOOT_AT_SHUTDOWN = BIT(4), /* * Used internally. It's set when EC_HOST_EVENT_KEYBOARD_RECOVERY is * set and cleared when the system shuts down (not when the host event * flag is cleared). */ SYSTEM_IN_MANUAL_RECOVERY = BIT(5), }; struct ec_response_sysinfo { uint32_t reset_flags; /**< EC_RESET_FLAG_* flags */ uint32_t current_image; /**< enum ec_image */ uint32_t flags; /**< enum sysinfo_flags */ } __ec_align4; /*****************************************************************************/ /* PWM commands */ /* Get fan target RPM */ #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020 struct ec_response_pwm_get_fan_rpm { uint32_t rpm; } __ec_align4; /* Set target fan RPM */ #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021 /* Version 0 of input params */ struct ec_params_pwm_set_fan_target_rpm_v0 { uint32_t rpm; } __ec_align4; /* Version 1 of input params */ struct ec_params_pwm_set_fan_target_rpm_v1 { uint32_t rpm; uint8_t fan_idx; } __ec_align_size1; /* Get keyboard backlight */ /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022 struct ec_response_pwm_get_keyboard_backlight { uint8_t percent; uint8_t enabled; } __ec_align1; /* Set keyboard backlight */ /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023 struct ec_params_pwm_set_keyboard_backlight { uint8_t percent; } __ec_align1; /* Set target fan PWM duty cycle */ #define EC_CMD_PWM_SET_FAN_DUTY 0x0024 /* Version 0 of input params */ struct ec_params_pwm_set_fan_duty_v0 { uint32_t percent; } __ec_align4; /* Version 1 of input params */ struct ec_params_pwm_set_fan_duty_v1 { uint32_t percent; uint8_t fan_idx; } __ec_align_size1; #define EC_CMD_PWM_SET_DUTY 0x0025 /* 16 bit duty cycle, 0xffff = 100% */ #define EC_PWM_MAX_DUTY 0xffff enum ec_pwm_type { /* All types, indexed by board-specific enum pwm_channel */ EC_PWM_TYPE_GENERIC = 0, /* Keyboard backlight */ EC_PWM_TYPE_KB_LIGHT, /* Display backlight */ EC_PWM_TYPE_DISPLAY_LIGHT, EC_PWM_TYPE_COUNT, }; struct ec_params_pwm_set_duty { uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ uint8_t pwm_type; /* ec_pwm_type */ uint8_t index; /* Type-specific index, or 0 if unique */ } __ec_align4; #define EC_CMD_PWM_GET_DUTY 0x0026 struct ec_params_pwm_get_duty { uint8_t pwm_type; /* ec_pwm_type */ uint8_t index; /* Type-specific index, or 0 if unique */ } __ec_align1; struct ec_response_pwm_get_duty { uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ } __ec_align2; /*****************************************************************************/ /* * Lightbar commands. This looks worse than it is. Since we only use one HOST * command to say "talk to the lightbar", we put the "and tell it to do X" part * into a subcommand. We'll make separate structs for subcommands with * different input args, so that we know how much to expect. */ #define EC_CMD_LIGHTBAR_CMD 0x0028 struct rgb_s { uint8_t r, g, b; } __ec_todo_unpacked; #define LB_BATTERY_LEVELS 4 /* * List of tweakable parameters. NOTE: It's __packed so it can be sent in a * host command, but the alignment is the same regardless. Keep it that way. */ struct lightbar_params_v0 { /* Timing */ int32_t google_ramp_up; int32_t google_ramp_down; int32_t s3s0_ramp_up; int32_t s0_tick_delay[2]; /* AC=0/1 */ int32_t s0a_tick_delay[2]; /* AC=0/1 */ int32_t s0s3_ramp_down; int32_t s3_sleep_for; int32_t s3_ramp_up; int32_t s3_ramp_down; /* Oscillation */ uint8_t new_s0; uint8_t osc_min[2]; /* AC=0/1 */ uint8_t osc_max[2]; /* AC=0/1 */ uint8_t w_ofs[2]; /* AC=0/1 */ /* Brightness limits based on the backlight and AC. */ uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ uint8_t bright_bl_on_min[2]; /* AC=0/1 */ uint8_t bright_bl_on_max[2]; /* AC=0/1 */ /* Battery level thresholds */ uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; /* Map [AC][battery_level] to color index */ uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ /* Color palette */ struct rgb_s color[8]; /* 0-3 are Google colors */ } __ec_todo_packed; struct lightbar_params_v1 { /* Timing */ int32_t google_ramp_up; int32_t google_ramp_down; int32_t s3s0_ramp_up; int32_t s0_tick_delay[2]; /* AC=0/1 */ int32_t s0a_tick_delay[2]; /* AC=0/1 */ int32_t s0s3_ramp_down; int32_t s3_sleep_for; int32_t s3_ramp_up; int32_t s3_ramp_down; int32_t s5_ramp_up; int32_t s5_ramp_down; int32_t tap_tick_delay; int32_t tap_gate_delay; int32_t tap_display_time; /* Tap-for-battery params */ uint8_t tap_pct_red; uint8_t tap_pct_green; uint8_t tap_seg_min_on; uint8_t tap_seg_max_on; uint8_t tap_seg_osc; uint8_t tap_idx[3]; /* Oscillation */ uint8_t osc_min[2]; /* AC=0/1 */ uint8_t osc_max[2]; /* AC=0/1 */ uint8_t w_ofs[2]; /* AC=0/1 */ /* Brightness limits based on the backlight and AC. */ uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ uint8_t bright_bl_on_min[2]; /* AC=0/1 */ uint8_t bright_bl_on_max[2]; /* AC=0/1 */ /* Battery level thresholds */ uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; /* Map [AC][battery_level] to color index */ uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ /* s5: single color pulse on inhibited power-up */ uint8_t s5_idx; /* Color palette */ struct rgb_s color[8]; /* 0-3 are Google colors */ } __ec_todo_packed; /* Lightbar command params v2 * crbug.com/467716 * * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by * logical groups to make it more manageable ( < 120 bytes). * * NOTE: Each of these groups must be less than 120 bytes. */ struct lightbar_params_v2_timing { /* Timing */ int32_t google_ramp_up; int32_t google_ramp_down; int32_t s3s0_ramp_up; int32_t s0_tick_delay[2]; /* AC=0/1 */ int32_t s0a_tick_delay[2]; /* AC=0/1 */ int32_t s0s3_ramp_down; int32_t s3_sleep_for; int32_t s3_ramp_up; int32_t s3_ramp_down; int32_t s5_ramp_up; int32_t s5_ramp_down; int32_t tap_tick_delay; int32_t tap_gate_delay; int32_t tap_display_time; } __ec_todo_packed; struct lightbar_params_v2_tap { /* Tap-for-battery params */ uint8_t tap_pct_red; uint8_t tap_pct_green; uint8_t tap_seg_min_on; uint8_t tap_seg_max_on; uint8_t tap_seg_osc; uint8_t tap_idx[3]; } __ec_todo_packed; struct lightbar_params_v2_oscillation { /* Oscillation */ uint8_t osc_min[2]; /* AC=0/1 */ uint8_t osc_max[2]; /* AC=0/1 */ uint8_t w_ofs[2]; /* AC=0/1 */ } __ec_todo_packed; struct lightbar_params_v2_brightness { /* Brightness limits based on the backlight and AC. */ uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ uint8_t bright_bl_on_min[2]; /* AC=0/1 */ uint8_t bright_bl_on_max[2]; /* AC=0/1 */ } __ec_todo_packed; struct lightbar_params_v2_thresholds { /* Battery level thresholds */ uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; } __ec_todo_packed; struct lightbar_params_v2_colors { /* Map [AC][battery_level] to color index */ uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ /* s5: single color pulse on inhibited power-up */ uint8_t s5_idx; /* Color palette */ struct rgb_s color[8]; /* 0-3 are Google colors */ } __ec_todo_packed; /* Lightbar program. */ #define EC_LB_PROG_LEN 192 struct lightbar_program { uint8_t size; uint8_t data[EC_LB_PROG_LEN]; } __ec_todo_unpacked; struct ec_params_lightbar { uint8_t cmd; /* Command (see enum lightbar_command) */ union { /* * The following commands have no args: * * dump, off, on, init, get_seq, get_params_v0, get_params_v1, * version, get_brightness, get_demo, suspend, resume, * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc, * get_params_v2_bright, get_params_v2_thlds, * get_params_v2_colors * * Don't use an empty struct, because C++ hates that. */ struct __ec_todo_unpacked { uint8_t num; } set_brightness, seq, demo; struct __ec_todo_unpacked { uint8_t ctrl, reg, value; } reg; struct __ec_todo_unpacked { uint8_t led, red, green, blue; } set_rgb; struct __ec_todo_unpacked { uint8_t led; } get_rgb; struct __ec_todo_unpacked { uint8_t enable; } manual_suspend_ctrl; struct lightbar_params_v0 set_params_v0; struct lightbar_params_v1 set_params_v1; struct lightbar_params_v2_timing set_v2par_timing; struct lightbar_params_v2_tap set_v2par_tap; struct lightbar_params_v2_oscillation set_v2par_osc; struct lightbar_params_v2_brightness set_v2par_bright; struct lightbar_params_v2_thresholds set_v2par_thlds; struct lightbar_params_v2_colors set_v2par_colors; struct lightbar_program set_program; }; } __ec_todo_packed; struct ec_response_lightbar { union { struct __ec_todo_unpacked { struct __ec_todo_unpacked { uint8_t reg; uint8_t ic0; uint8_t ic1; } vals[23]; } dump; struct __ec_todo_unpacked { uint8_t num; } get_seq, get_brightness, get_demo; struct lightbar_params_v0 get_params_v0; struct lightbar_params_v1 get_params_v1; struct lightbar_params_v2_timing get_params_v2_timing; struct lightbar_params_v2_tap get_params_v2_tap; struct lightbar_params_v2_oscillation get_params_v2_osc; struct lightbar_params_v2_brightness get_params_v2_bright; struct lightbar_params_v2_thresholds get_params_v2_thlds; struct lightbar_params_v2_colors get_params_v2_colors; struct __ec_todo_unpacked { uint32_t num; uint32_t flags; } version; struct __ec_todo_unpacked { uint8_t red, green, blue; } get_rgb; /* * The following commands have no response: * * off, on, init, set_brightness, seq, reg, set_rgb, demo, * set_params_v0, set_params_v1, set_program, * manual_suspend_ctrl, suspend, resume, set_v2par_timing, * set_v2par_tap, set_v2par_osc, set_v2par_bright, * set_v2par_thlds, set_v2par_colors */ }; } __ec_todo_packed; /* Lightbar commands */ enum lightbar_command { LIGHTBAR_CMD_DUMP = 0, LIGHTBAR_CMD_OFF = 1, LIGHTBAR_CMD_ON = 2, LIGHTBAR_CMD_INIT = 3, LIGHTBAR_CMD_SET_BRIGHTNESS = 4, LIGHTBAR_CMD_SEQ = 5, LIGHTBAR_CMD_REG = 6, LIGHTBAR_CMD_SET_RGB = 7, LIGHTBAR_CMD_GET_SEQ = 8, LIGHTBAR_CMD_DEMO = 9, LIGHTBAR_CMD_GET_PARAMS_V0 = 10, LIGHTBAR_CMD_SET_PARAMS_V0 = 11, LIGHTBAR_CMD_VERSION = 12, LIGHTBAR_CMD_GET_BRIGHTNESS = 13, LIGHTBAR_CMD_GET_RGB = 14, LIGHTBAR_CMD_GET_DEMO = 15, LIGHTBAR_CMD_GET_PARAMS_V1 = 16, LIGHTBAR_CMD_SET_PARAMS_V1 = 17, LIGHTBAR_CMD_SET_PROGRAM = 18, LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, LIGHTBAR_CMD_SUSPEND = 20, LIGHTBAR_CMD_RESUME = 21, LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22, LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23, LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24, LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25, LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26, LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27, LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28, LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29, LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30, LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31, LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32, LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33, LIGHTBAR_NUM_CMDS, }; /*****************************************************************************/ /* LED control commands */ #define EC_CMD_LED_CONTROL 0x0029 enum ec_led_id { /* LED to indicate battery state of charge */ EC_LED_ID_BATTERY_LED = 0, /* * LED to indicate system power state (on or in suspend). * May be on power button or on C-panel. */ EC_LED_ID_POWER_LED, /* LED on power adapter or its plug */ EC_LED_ID_ADAPTER_LED, /* LED to indicate left side */ EC_LED_ID_LEFT_LED, /* LED to indicate right side */ EC_LED_ID_RIGHT_LED, /* LED to indicate recovery mode with HW_REINIT */ EC_LED_ID_RECOVERY_HW_REINIT_LED, /* LED to indicate sysrq debug mode. */ EC_LED_ID_SYSRQ_DEBUG_LED, EC_LED_ID_COUNT, }; /* LED control flags */ #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */ #define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */ enum ec_led_colors { EC_LED_COLOR_INVALID = -1, EC_LED_COLOR_RED = 0, EC_LED_COLOR_GREEN, EC_LED_COLOR_BLUE, EC_LED_COLOR_YELLOW, EC_LED_COLOR_WHITE, EC_LED_COLOR_AMBER, EC_LED_COLOR_COUNT, }; struct ec_params_led_control { uint8_t led_id; /* Which LED to control */ uint8_t flags; /* Control flags */ uint8_t brightness[EC_LED_COLOR_COUNT]; } __ec_align1; struct ec_response_led_control { /* * Available brightness value range. * * Range 0 means color channel not present. * Range 1 means on/off control. * Other values means the LED is control by PWM. */ uint8_t brightness_range[EC_LED_COLOR_COUNT]; } __ec_align1; /*****************************************************************************/ /* Verified boot commands */ /* * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be * reused for other purposes with version > 0. */ /* Verified boot hash command */ #define EC_CMD_VBOOT_HASH 0x002A struct ec_params_vboot_hash { uint8_t cmd; /* enum ec_vboot_hash_cmd */ uint8_t hash_type; /* enum ec_vboot_hash_type */ uint8_t nonce_size; /* Nonce size; may be 0 */ uint8_t reserved0; /* Reserved; set 0 */ uint32_t offset; /* Offset in flash to hash */ uint32_t size; /* Number of bytes to hash */ uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ } __ec_align4; struct ec_response_vboot_hash { uint8_t status; /* enum ec_vboot_hash_status */ uint8_t hash_type; /* enum ec_vboot_hash_type */ uint8_t digest_size; /* Size of hash digest in bytes */ uint8_t reserved0; /* Ignore; will be 0 */ uint32_t offset; /* Offset in flash which was hashed */ uint32_t size; /* Number of bytes hashed */ uint8_t hash_digest[64]; /* Hash digest data */ } __ec_align4; enum ec_vboot_hash_cmd { EC_VBOOT_HASH_GET = 0, /* Get current hash status */ EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ }; enum ec_vboot_hash_type { EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ }; enum ec_vboot_hash_status { EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ }; /* * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. * If one of these is specified, the EC will automatically update offset and * size to the correct values for the specified image (RO or RW). */ #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe #define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd #define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc /* * 'RW' is vague if there are multiple RW images; we mean the active one, * so the old constant is deprecated. */ #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE /*****************************************************************************/ /* * Motion sense commands. We'll make separate structs for sub-commands with * different input args, so that we know how much to expect. */ #define EC_CMD_MOTION_SENSE_CMD 0x002B /* Motion sense commands */ enum motionsense_command { /* * Dump command returns all motion sensor data including motion sense * module flags and individual sensor flags. */ MOTIONSENSE_CMD_DUMP = 0, /* * Info command returns data describing the details of a given sensor, * including enum motionsensor_type, enum motionsensor_location, and * enum motionsensor_chip. */ MOTIONSENSE_CMD_INFO = 1, /* * EC Rate command is a setter/getter command for the EC sampling rate * in milliseconds. * It is per sensor, the EC run sample task at the minimum of all * sensors EC_RATE. * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR * to collect all the sensor samples. * For sensor with hardware FIFO, EC_RATE is used as the maximal delay * to process of all motion sensors in milliseconds. */ MOTIONSENSE_CMD_EC_RATE = 2, /* * Sensor ODR command is a setter/getter command for the output data * rate of a specific motion sensor in millihertz. */ MOTIONSENSE_CMD_SENSOR_ODR = 3, /* * Sensor range command is a setter/getter command for the range of * a specified motion sensor in +/-G's or +/- deg/s. */ MOTIONSENSE_CMD_SENSOR_RANGE = 4, /* * Setter/getter command for the keyboard wake angle. When the lid * angle is greater than this value, keyboard wake is disabled in S3, * and when the lid angle goes less than this value, keyboard wake is * enabled. Note, the lid angle measurement is an approximate, * un-calibrated value, hence the wake angle isn't exact. */ MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, /* * Returns a single sensor data. */ MOTIONSENSE_CMD_DATA = 6, /* * Return sensor fifo info. */ MOTIONSENSE_CMD_FIFO_INFO = 7, /* * Insert a flush element in the fifo and return sensor fifo info. * The host can use that element to synchronize its operation. */ MOTIONSENSE_CMD_FIFO_FLUSH = 8, /* * Return a portion of the fifo. */ MOTIONSENSE_CMD_FIFO_READ = 9, /* * Perform low level calibration. * On sensors that support it, ask to do offset calibration. */ MOTIONSENSE_CMD_PERFORM_CALIB = 10, /* * Sensor Offset command is a setter/getter command for the offset * used for factory calibration. * The offsets can be calculated by the host, or via * PERFORM_CALIB command. */ MOTIONSENSE_CMD_SENSOR_OFFSET = 11, /* * List available activities for a MOTION sensor. * Indicates if they are enabled or disabled. */ MOTIONSENSE_CMD_LIST_ACTIVITIES = 12, /* * Activity management * Enable/Disable activity recognition. */ MOTIONSENSE_CMD_SET_ACTIVITY = 13, /* * Lid Angle */ MOTIONSENSE_CMD_LID_ANGLE = 14, /* * Allow the FIFO to trigger interrupt via MKBP events. * By default the FIFO does not send interrupt to process the FIFO * until the AP is ready or it is coming from a wakeup sensor. */ MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15, /* * Spoof the readings of the sensors. The spoofed readings can be set * to arbitrary values, or will lock to the last read actual values. */ MOTIONSENSE_CMD_SPOOF = 16, /* Set lid angle for tablet mode detection. */ MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17, /* * Sensor Scale command is a setter/getter command for the calibration * scale. */ MOTIONSENSE_CMD_SENSOR_SCALE = 18, /* * Read the current online calibration values (if available). */ MOTIONSENSE_CMD_ONLINE_CALIB_READ = 19, /* * Activity management * Retrieve current status of given activity. */ MOTIONSENSE_CMD_GET_ACTIVITY = 20, /* Number of motionsense sub-commands. */ MOTIONSENSE_NUM_CMDS, }; /* List of motion sensor types. */ enum motionsensor_type { MOTIONSENSE_TYPE_ACCEL = 0, MOTIONSENSE_TYPE_GYRO = 1, MOTIONSENSE_TYPE_MAG = 2, MOTIONSENSE_TYPE_PROX = 3, MOTIONSENSE_TYPE_LIGHT = 4, MOTIONSENSE_TYPE_ACTIVITY = 5, MOTIONSENSE_TYPE_BARO = 6, MOTIONSENSE_TYPE_SYNC = 7, MOTIONSENSE_TYPE_LIGHT_RGB = 8, MOTIONSENSE_TYPE_MAX, }; /* List of motion sensor locations. */ enum motionsensor_location { MOTIONSENSE_LOC_BASE = 0, MOTIONSENSE_LOC_LID = 1, MOTIONSENSE_LOC_CAMERA = 2, MOTIONSENSE_LOC_MAX, }; /* List of motion sensor chips. */ enum motionsensor_chip { MOTIONSENSE_CHIP_KXCJ9 = 0, MOTIONSENSE_CHIP_LSM6DS0 = 1, MOTIONSENSE_CHIP_BMI160 = 2, MOTIONSENSE_CHIP_SI1141 = 3, MOTIONSENSE_CHIP_SI1142 = 4, MOTIONSENSE_CHIP_SI1143 = 5, MOTIONSENSE_CHIP_KX022 = 6, MOTIONSENSE_CHIP_L3GD20H = 7, MOTIONSENSE_CHIP_BMA255 = 8, MOTIONSENSE_CHIP_BMP280 = 9, MOTIONSENSE_CHIP_OPT3001 = 10, MOTIONSENSE_CHIP_BH1730 = 11, MOTIONSENSE_CHIP_GPIO = 12, MOTIONSENSE_CHIP_LIS2DH = 13, MOTIONSENSE_CHIP_LSM6DSM = 14, MOTIONSENSE_CHIP_LIS2DE = 15, MOTIONSENSE_CHIP_LIS2MDL = 16, MOTIONSENSE_CHIP_LSM6DS3 = 17, MOTIONSENSE_CHIP_LSM6DSO = 18, MOTIONSENSE_CHIP_LNG2DM = 19, MOTIONSENSE_CHIP_TCS3400 = 20, MOTIONSENSE_CHIP_LIS2DW12 = 21, MOTIONSENSE_CHIP_LIS2DWL = 22, MOTIONSENSE_CHIP_LIS2DS = 23, MOTIONSENSE_CHIP_BMI260 = 24, MOTIONSENSE_CHIP_ICM426XX = 25, MOTIONSENSE_CHIP_ICM42607 = 26, MOTIONSENSE_CHIP_BMA422 = 27, MOTIONSENSE_CHIP_BMI323 = 28, MOTIONSENSE_CHIP_BMI220 = 29, MOTIONSENSE_CHIP_CM32183 = 30, MOTIONSENSE_CHIP_VEML3328 = 31, MOTIONSENSE_CHIP_MAX, }; /* List of orientation positions */ enum motionsensor_orientation { MOTIONSENSE_ORIENTATION_LANDSCAPE = 0, MOTIONSENSE_ORIENTATION_PORTRAIT = 1, MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2, MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3, MOTIONSENSE_ORIENTATION_UNKNOWN = 4, }; struct ec_response_activity_data { uint8_t activity; /* motionsensor_activity */ uint8_t state; } __ec_todo_packed; struct ec_response_motion_sensor_data { /* Flags for each sensor. */ uint8_t flags; /* Sensor number the data comes from. */ uint8_t sensor_num; /* Each sensor is up to 3-axis. */ union { int16_t data[3]; /* for sensors using unsigned data */ uint16_t udata[3]; struct __ec_todo_packed { uint16_t reserved; uint32_t timestamp; }; struct __ec_todo_unpacked { struct ec_response_activity_data activity_data; int16_t add_info[2]; }; }; } __ec_todo_packed; /* Response to AP reporting calibration data for a given sensor. */ struct ec_response_online_calibration_data { /** The calibration values. */ int16_t data[3]; }; /* Note: used in ec_response_get_next_data */ struct ec_response_motion_sense_fifo_info { /* Size of the fifo */ uint16_t size; /* Amount of space used in the fifo */ uint16_t count; /* Timestamp recorded in us. * aka accurate timestamp when host event was triggered. */ uint32_t timestamp; /* Total amount of vector lost */ uint16_t total_lost; /* Lost events since the last fifo_info, per sensors */ uint16_t lost[0]; } __ec_todo_packed; struct ec_response_motion_sense_fifo_data { uint32_t number_data; struct ec_response_motion_sensor_data data[0]; } __ec_todo_packed; /* List supported activity recognition */ enum motionsensor_activity { MOTIONSENSE_ACTIVITY_RESERVED = 0, MOTIONSENSE_ACTIVITY_SIG_MOTION = 1, MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2, MOTIONSENSE_ACTIVITY_ORIENTATION = 3, MOTIONSENSE_ACTIVITY_BODY_DETECTION = 4, }; struct ec_motion_sense_activity { uint8_t sensor_num; uint8_t activity; /* one of enum motionsensor_activity */ uint8_t enable; /* 1: enable, 0: disable */ uint8_t reserved; uint16_t parameters[4]; /* activity dependent parameters */ } __ec_todo_packed; /* Module flag masks used for the dump sub-command. */ #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0) /* Sensor flag masks used for the dump sub-command. */ #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0) /* * Flush entry for synchronization. * data contains time stamp */ #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0) #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1) #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2) #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3) #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4) #define MOTIONSENSE_SENSOR_FLAG_BYPASS_FIFO BIT(7) /* * Send this value for the data element to only perform a read. If you * send any other value, the EC will interpret it as data to set and will * return the actual value set. */ #define EC_MOTION_SENSE_NO_VALUE -1 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP INT16_MIN /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */ /* Set Calibration information */ #define MOTION_SENSE_SET_OFFSET BIT(0) /* Default Scale value, factor 1. */ #define MOTION_SENSE_DEFAULT_SCALE BIT(15) #define LID_ANGLE_UNRELIABLE 500 enum motionsense_spoof_mode { /* Disable spoof mode. */ MOTIONSENSE_SPOOF_MODE_DISABLE = 0, /* Enable spoof mode, but use provided component values. */ MOTIONSENSE_SPOOF_MODE_CUSTOM, /* Enable spoof mode, but use the current sensor values. */ MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT, /* Query the current spoof mode status for the sensor. */ MOTIONSENSE_SPOOF_MODE_QUERY, }; struct ec_params_motion_sense { uint8_t cmd; union { /* Used for MOTIONSENSE_CMD_DUMP. */ struct __ec_todo_unpacked { /* * Maximal number of sensor the host is expecting. * 0 means the host is only interested in the number * of sensors controlled by the EC. */ uint8_t max_sensor_count; } dump; /* * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE. */ struct __ec_todo_unpacked { /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. * kb_wake_angle: angle to wakup AP. */ int16_t data; } kb_wake_angle; /* * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA */ struct __ec_todo_unpacked { uint8_t sensor_num; } info, info_3, info_4, data, fifo_flush, list_activities; /* * Used for MOTIONSENSE_CMD_PERFORM_CALIB: * Allow entering/exiting the calibration mode. */ struct __ec_todo_unpacked { uint8_t sensor_num; uint8_t enable; } perform_calib; /* * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR * and MOTIONSENSE_CMD_SENSOR_RANGE. */ struct __ec_todo_unpacked { uint8_t sensor_num; /* Rounding flag, true for round-up, false for down. */ uint8_t roundup; uint16_t reserved; /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ int32_t data; } ec_rate, sensor_odr, sensor_range; /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ struct __ec_todo_packed { uint8_t sensor_num; /* * bit 0: If set (MOTION_SENSE_SET_OFFSET), set * the calibration information in the EC. * If unset, just retrieve calibration information. */ uint16_t flags; /* * Temperature at calibration, in units of 0.01 C * 0x8000: invalid / unknown. * 0x0: 0C * 0x7fff: +327.67C */ int16_t temp; /* * Offset for calibration. * Unit: * Accelerometer: 1/1024 g * Gyro: 1/1024 deg/s * Compass: 1/16 uT */ int16_t offset[3]; } sensor_offset; /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ struct __ec_todo_packed { uint8_t sensor_num; /* * bit 0: If set (MOTION_SENSE_SET_OFFSET), set * the calibration information in the EC. * If unset, just retrieve calibration information. */ uint16_t flags; /* * Temperature at calibration, in units of 0.01 C * 0x8000: invalid / unknown. * 0x0: 0C * 0x7fff: +327.67C */ int16_t temp; /* * Scale for calibration: * By default scale is 1, it is encoded on 16bits: * 1 = BIT(15) * ~2 = 0xFFFF * ~0 = 0. */ uint16_t scale[3]; } sensor_scale; /* Used for MOTIONSENSE_CMD_FIFO_INFO */ /* (no params) */ /* Used for MOTIONSENSE_CMD_FIFO_READ */ struct __ec_todo_unpacked { /* * Number of expected vector to return. * EC may return less or 0 if none available. */ uint32_t max_data_vector; } fifo_read; /* Used for MOTIONSENSE_CMD_SET_ACTIVITY */ struct ec_motion_sense_activity set_activity; /* Used for MOTIONSENSE_CMD_LID_ANGLE */ /* (no params) */ /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */ struct __ec_todo_unpacked { /* * 1: enable, 0 disable fifo, * EC_MOTION_SENSE_NO_VALUE return value. */ int8_t enable; } fifo_int_enable; /* Used for MOTIONSENSE_CMD_SPOOF */ struct __ec_todo_packed { uint8_t sensor_id; /* See enum motionsense_spoof_mode. */ uint8_t spoof_enable; /* Ignored, used for alignment. */ uint8_t reserved; union { /* Individual component values to spoof. */ int16_t components[3]; /* Used when spoofing an activity */ struct { /* enum motionsensor_activity */ uint8_t activity_num; /* spoof activity state */ uint8_t activity_state; }; } __ec_todo_packed; } spoof; /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ struct __ec_todo_unpacked { /* * Lid angle threshold for switching between tablet and * clamshell mode. */ int16_t lid_angle; /* * Hysteresis degree to prevent fluctuations between * clamshell and tablet mode if lid angle keeps * changing around the threshold. Lid motion driver will * use lid_angle + hys_degree to trigger tablet mode and * lid_angle - hys_degree to trigger clamshell mode. */ int16_t hys_degree; } tablet_mode_threshold; /* * Used for MOTIONSENSE_CMD_ONLINE_CALIB_READ: * Allow reading a single sensor's online calibration value. */ struct __ec_todo_unpacked { uint8_t sensor_num; } online_calib_read; /* * Used for MOTIONSENSE_CMD_GET_ACTIVITY. */ struct __ec_todo_unpacked { uint8_t sensor_num; uint8_t activity; /* enum motionsensor_activity */ } get_activity; } __ec_todo_packed; } __ec_todo_packed; enum motion_sense_cmd_info_flags { /* The sensor supports online calibration */ MOTION_SENSE_CMD_INFO_FLAG_ONLINE_CALIB = BIT(0), }; struct ec_response_motion_sense { union { /* Used for MOTIONSENSE_CMD_DUMP */ struct __ec_todo_unpacked { /* Flags representing the motion sensor module. */ uint8_t module_flags; /* Number of sensors managed directly by the EC. */ uint8_t sensor_count; /* * Sensor data is truncated if response_max is too small * for holding all the data. */ struct ec_response_motion_sensor_data sensor[0]; } dump; /* Used for MOTIONSENSE_CMD_INFO. */ struct __ec_todo_unpacked { /* Should be element of enum motionsensor_type. */ uint8_t type; /* Should be element of enum motionsensor_location. */ uint8_t location; /* Should be element of enum motionsensor_chip. */ uint8_t chip; } info; /* Used for MOTIONSENSE_CMD_INFO version 3 */ struct __ec_todo_unpacked { /* Should be element of enum motionsensor_type. */ uint8_t type; /* Should be element of enum motionsensor_location. */ uint8_t location; /* Should be element of enum motionsensor_chip. */ uint8_t chip; /* Minimum sensor sampling frequency */ uint32_t min_frequency; /* Maximum sensor sampling frequency */ uint32_t max_frequency; /* Max number of sensor events that could be in fifo */ uint32_t fifo_max_event_count; } info_3; /* Used for MOTIONSENSE_CMD_INFO version 4 */ struct __ec_align4 { /* Should be element of enum motionsensor_type. */ uint8_t type; /* Should be element of enum motionsensor_location. */ uint8_t location; /* Should be element of enum motionsensor_chip. */ uint8_t chip; /* Minimum sensor sampling frequency */ uint32_t min_frequency; /* Maximum sensor sampling frequency */ uint32_t max_frequency; /* Max number of sensor events that could be in fifo */ uint32_t fifo_max_event_count; /* * Should be elements of * enum motion_sense_cmd_info_flags */ uint32_t flags; } info_4; /* Used for MOTIONSENSE_CMD_DATA */ struct ec_response_motion_sensor_data data; /* * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, * MOTIONSENSE_CMD_SENSOR_RANGE, * MOTIONSENSE_CMD_KB_WAKE_ANGLE, * MOTIONSENSE_CMD_FIFO_INT_ENABLE and * MOTIONSENSE_CMD_SPOOF. */ struct __ec_todo_unpacked { /* Current value of the parameter queried. */ int32_t ret; } ec_rate, sensor_odr, sensor_range, kb_wake_angle, fifo_int_enable, spoof; /* * Used for MOTIONSENSE_CMD_SENSOR_OFFSET, * PERFORM_CALIB. */ struct __ec_todo_unpacked { int16_t temp; int16_t offset[3]; } sensor_offset, perform_calib; /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ struct __ec_todo_unpacked { int16_t temp; uint16_t scale[3]; } sensor_scale; struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush; struct ec_response_motion_sense_fifo_data fifo_read; struct ec_response_online_calibration_data online_calib_read; struct __ec_todo_packed { uint16_t reserved; uint32_t enabled; uint32_t disabled; } list_activities; /* No params for set activity */ /* Used for MOTIONSENSE_CMD_LID_ANGLE */ struct __ec_todo_unpacked { /* * Angle between 0 and 360 degree if available, * LID_ANGLE_UNRELIABLE otherwise. */ uint16_t value; } lid_angle; /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ struct __ec_todo_unpacked { /* * Lid angle threshold for switching between tablet and * clamshell mode. */ uint16_t lid_angle; /* Hysteresis degree. */ uint16_t hys_degree; } tablet_mode_threshold; /* USED for MOTIONSENSE_CMD_GET_ACTIVITY. */ struct __ec_todo_unpacked { uint8_t state; } get_activity; }; } __ec_todo_packed; /*****************************************************************************/ /* Force lid open command */ /* Make lid event always open */ #define EC_CMD_FORCE_LID_OPEN 0x002C struct ec_params_force_lid_open { uint8_t enabled; } __ec_align1; /*****************************************************************************/ /* Configure the behavior of the power button */ #define EC_CMD_CONFIG_POWER_BUTTON 0x002D enum ec_config_power_button_flags { /* Enable/Disable power button pulses for x86 devices */ EC_POWER_BUTTON_ENABLE_PULSE = BIT(0), }; struct ec_params_config_power_button { /* See enum ec_config_power_button_flags */ uint8_t flags; } __ec_align1; /*****************************************************************************/ /* USB charging control commands */ /* Set USB port charging mode */ #define EC_CMD_USB_CHARGE_SET_MODE 0x0030 enum usb_charge_mode { /* Disable USB port. */ USB_CHARGE_MODE_DISABLED, /* Set USB port to Standard Downstream Port, USB 2.0 mode. */ USB_CHARGE_MODE_SDP2, /* Set USB port to Charging Downstream Port, BC 1.2. */ USB_CHARGE_MODE_CDP, /* Set USB port to Dedicated Charging Port, BC 1.2. */ USB_CHARGE_MODE_DCP_SHORT, /* Enable USB port (for dumb ports). */ USB_CHARGE_MODE_ENABLED, /* Set USB port to CONFIG_USB_PORT_POWER_SMART_DEFAULT_MODE. */ USB_CHARGE_MODE_DEFAULT, USB_CHARGE_MODE_COUNT, }; enum usb_suspend_charge { /* Enable charging in suspend */ USB_ALLOW_SUSPEND_CHARGE, /* Disable charging in suspend */ USB_DISALLOW_SUSPEND_CHARGE, }; struct ec_params_usb_charge_set_mode { uint8_t usb_port_id; uint8_t mode : 7; /* enum usb_charge_mode */ uint8_t inhibit_charge : 1; /* enum usb_suspend_charge */ } __ec_align1; /*****************************************************************************/ /* Tablet mode commands */ /* Set tablet mode */ #define EC_CMD_SET_TABLET_MODE 0x0031 enum tablet_mode_override { TABLET_MODE_DEFAULT, TABLET_MODE_FORCE_TABLET, TABLET_MODE_FORCE_CLAMSHELL, }; struct ec_params_set_tablet_mode { uint8_t tablet_mode; /* enum tablet_mode_override */ } __ec_align1; /*****************************************************************************/ /* Persistent storage for host */ /* Maximum bytes that can be read/written in a single command */ #define EC_PSTORE_SIZE_MAX 64 /* Get persistent storage info */ #define EC_CMD_PSTORE_INFO 0x0040 struct ec_response_pstore_info { /* Persistent storage size, in bytes */ uint32_t pstore_size; /* Access size; read/write offset and size must be a multiple of this */ uint32_t access_size; } __ec_align4; /* * Read persistent storage * * Response is params.size bytes of data. */ #define EC_CMD_PSTORE_READ 0x0041 struct ec_params_pstore_read { uint32_t offset; /* Byte offset to read */ uint32_t size; /* Size to read in bytes */ } __ec_align4; /* Write persistent storage */ #define EC_CMD_PSTORE_WRITE 0x0042 struct ec_params_pstore_write { uint32_t offset; /* Byte offset to write */ uint32_t size; /* Size to write in bytes */ uint8_t data[EC_PSTORE_SIZE_MAX]; } __ec_align4; /*****************************************************************************/ /* Real-time clock */ /* RTC params and response structures */ struct ec_params_rtc { uint32_t time; } __ec_align4; struct ec_response_rtc { uint32_t time; } __ec_align4; /* These use ec_response_rtc */ #define EC_CMD_RTC_GET_VALUE 0x0044 #define EC_CMD_RTC_GET_ALARM 0x0045 /* These all use ec_params_rtc */ #define EC_CMD_RTC_SET_VALUE 0x0046 #define EC_CMD_RTC_SET_ALARM 0x0047 /* Pass as time param to SET_ALARM to clear the current alarm */ #define EC_RTC_ALARM_CLEAR 0 /*****************************************************************************/ /* Port80 log access */ /* Maximum entries that can be read/written in a single command */ #define EC_PORT80_SIZE_MAX 32 /* Get last port80 code from previous boot */ #define EC_CMD_PORT80_LAST_BOOT 0x0048 #define EC_CMD_PORT80_READ 0x0048 enum ec_port80_subcmd { EC_PORT80_GET_INFO = 0, EC_PORT80_READ_BUFFER, }; struct ec_params_port80_read { uint16_t subcmd; union { struct __ec_todo_unpacked { uint32_t offset; uint32_t num_entries; } read_buffer; } __ec_todo_packed; } __ec_todo_packed; struct ec_response_port80_read { union { struct __ec_todo_unpacked { uint32_t writes; uint32_t history_size; uint32_t last_boot; } get_info; struct __ec_todo_unpacked { uint16_t codes[EC_PORT80_SIZE_MAX]; } data; }; } __ec_todo_packed; struct ec_response_port80_last_boot { uint16_t code; } __ec_align2; /*****************************************************************************/ /* Temporary secure storage for host verified boot use */ /* Number of bytes in a vstore slot */ #define EC_VSTORE_SLOT_SIZE 64 /* Maximum number of vstore slots */ #define EC_VSTORE_SLOT_MAX 32 /* Get persistent storage info */ #define EC_CMD_VSTORE_INFO 0x0049 struct ec_response_vstore_info { /* Indicates which slots are locked */ uint32_t slot_locked; /* Total number of slots available */ uint8_t slot_count; } __ec_align_size1; /* * Read temporary secure storage * * Response is EC_VSTORE_SLOT_SIZE bytes of data. */ #define EC_CMD_VSTORE_READ 0x004A struct ec_params_vstore_read { uint8_t slot; /* Slot to read from */ } __ec_align1; struct ec_response_vstore_read { uint8_t data[EC_VSTORE_SLOT_SIZE]; } __ec_align1; /* * Write temporary secure storage and lock it. */ #define EC_CMD_VSTORE_WRITE 0x004B struct ec_params_vstore_write { uint8_t slot; /* Slot to write to */ uint8_t data[EC_VSTORE_SLOT_SIZE]; } __ec_align1; /*****************************************************************************/ /* Thermal engine commands. Note that there are two implementations. We'll * reuse the command number, but the data and behavior is incompatible. * Version 0 is what originally shipped on Link. * Version 1 separates the CPU thermal limits from the fan control. */ #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051 /* The version 0 structs are opaque. You have to know what they are for * the get/set commands to make any sense. */ /* Version 0 - set */ struct ec_params_thermal_set_threshold { uint8_t sensor_type; uint8_t threshold_id; uint16_t value; } __ec_align2; /* Version 0 - get */ struct ec_params_thermal_get_threshold { uint8_t sensor_type; uint8_t threshold_id; } __ec_align1; struct ec_response_thermal_get_threshold { uint16_t value; } __ec_align2; /* The version 1 structs are visible. */ enum ec_temp_thresholds { EC_TEMP_THRESH_WARN = 0, EC_TEMP_THRESH_HIGH, EC_TEMP_THRESH_HALT, EC_TEMP_THRESH_COUNT, }; /* * Thermal configuration for one temperature sensor. Temps are in degrees K. * Zero values will be silently ignored by the thermal task. * * Set 'temp_host' value allows thermal task to trigger some event with 1 degree * hysteresis. * For example, * temp_host[EC_TEMP_THRESH_HIGH] = 300 K * temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K * EC will throttle ap when temperature >= 301 K, and release throttling when * temperature <= 299 K. * * Set 'temp_host_release' value allows thermal task has a custom hysteresis. * For example, * temp_host[EC_TEMP_THRESH_HIGH] = 300 K * temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K * EC will throttle ap when temperature >= 301 K, and release throttling when * temperature <= 294 K. * * Note that this structure is a sub-structure of * ec_params_thermal_set_threshold_v1, but maintains its alignment there. */ struct ec_thermal_config { uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */ uint32_t temp_fan_off; /* no active cooling needed */ uint32_t temp_fan_max; /* max active cooling needed */ } __ec_align4; /* Version 1 - get config for one sensor. */ struct ec_params_thermal_get_threshold_v1 { uint32_t sensor_num; } __ec_align4; /* This returns a struct ec_thermal_config */ /* * Version 1 - set config for one sensor. * Use read-modify-write for best results! */ struct ec_params_thermal_set_threshold_v1 { uint32_t sensor_num; struct ec_thermal_config cfg; } __ec_align4; /* This returns no data */ /****************************************************************************/ /* Toggle automatic fan control */ #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052 /* Version 1 of input params */ struct ec_params_auto_fan_ctrl_v1 { uint8_t fan_idx; } __ec_align1; /* Get/Set TMP006 calibration data */ #define EC_CMD_TMP006_GET_CALIBRATION 0x0053 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054 /* * The original TMP006 calibration only needed four params, but now we need * more. Since the algorithm is nothing but magic numbers anyway, we'll leave * the params opaque. The v1 "get" response will include the algorithm number * and how many params it requires. That way we can change the EC code without * needing to update this file. We can also use a different algorithm on each * sensor. */ /* This is the same struct for both v0 and v1. */ struct ec_params_tmp006_get_calibration { uint8_t index; } __ec_align1; /* Version 0 */ struct ec_response_tmp006_get_calibration_v0 { float s0; float b0; float b1; float b2; } __ec_align4; struct ec_params_tmp006_set_calibration_v0 { uint8_t index; uint8_t reserved[3]; float s0; float b0; float b1; float b2; } __ec_align4; /* Version 1 */ struct ec_response_tmp006_get_calibration_v1 { uint8_t algorithm; uint8_t num_params; uint8_t reserved[2]; float val[0]; } __ec_align4; struct ec_params_tmp006_set_calibration_v1 { uint8_t index; uint8_t algorithm; uint8_t num_params; uint8_t reserved; float val[0]; } __ec_align4; /* Read raw TMP006 data */ #define EC_CMD_TMP006_GET_RAW 0x0055 struct ec_params_tmp006_get_raw { uint8_t index; } __ec_align1; struct ec_response_tmp006_get_raw { int32_t t; /* In 1/100 K */ int32_t v; /* In nV */ } __ec_align4; /*****************************************************************************/ /* MKBP - Matrix KeyBoard Protocol */ /* * Read key state * * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for * expected response size. * * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. */ #define EC_CMD_MKBP_STATE 0x0060 /* * Provide information about various MKBP things. See enum ec_mkbp_info_type. */ #define EC_CMD_MKBP_INFO 0x0061 struct ec_response_mkbp_info { uint32_t rows; uint32_t cols; /* Formerly "switches", which was 0. */ uint8_t reserved; } __ec_align_size1; struct ec_params_mkbp_info { uint8_t info_type; uint8_t event_type; } __ec_align1; enum ec_mkbp_info_type { /* * Info about the keyboard matrix: number of rows and columns. * * Returns struct ec_response_mkbp_info. */ EC_MKBP_INFO_KBD = 0, /* * For buttons and switches, info about which specifically are * supported. event_type must be set to one of the values in enum * ec_mkbp_event. * * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte * bitmask indicating which buttons or switches are present. See the * bit inidices below. */ EC_MKBP_INFO_SUPPORTED = 1, /* * Instantaneous state of buttons and switches. * * event_type must be set to one of the values in enum ec_mkbp_event. * * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] * indicating the current state of the keyboard matrix. * * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw * event state. * * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the * state of supported buttons. * * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the * state of supported switches. */ EC_MKBP_INFO_CURRENT = 2, }; /* Simulate key press */ #define EC_CMD_MKBP_SIMULATE_KEY 0x0062 struct ec_params_mkbp_simulate_key { uint8_t col; uint8_t row; uint8_t pressed; } __ec_align1; /* Configure keyboard scanning */ #define EC_CMD_MKBP_SET_CONFIG 0x0064 #define EC_CMD_MKBP_GET_CONFIG 0x0065 /* flags */ enum mkbp_config_flags { EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ }; enum mkbp_config_valid { EC_MKBP_VALID_SCAN_PERIOD = BIT(0), EC_MKBP_VALID_POLL_TIMEOUT = BIT(1), EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3), EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4), EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5), EC_MKBP_VALID_DEBOUNCE_UP = BIT(6), EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7), }; /* * Configuration for our key scanning algorithm. * * Note that this is used as a sub-structure of * ec_{params/response}_mkbp_get_config. */ struct ec_mkbp_config { uint32_t valid_mask; /* valid fields */ uint8_t flags; /* some flags (enum mkbp_config_flags) */ uint8_t valid_flags; /* which flags are valid */ uint16_t scan_period_us; /* period between start of scans */ /* revert to interrupt mode after no activity for this long */ uint32_t poll_timeout_us; /* * minimum post-scan relax time. Once we finish a scan we check * the time until we are due to start the next one. If this time is * shorter this field, we use this instead. */ uint16_t min_post_scan_delay_us; /* delay between setting up output and waiting for it to settle */ uint16_t output_settle_us; uint16_t debounce_down_us; /* time for debounce on key down */ uint16_t debounce_up_us; /* time for debounce on key up */ /* maximum depth to allow for fifo (0 = no keyscan output) */ uint8_t fifo_max_depth; } __ec_align_size1; struct ec_params_mkbp_set_config { struct ec_mkbp_config config; } __ec_align_size1; struct ec_response_mkbp_get_config { struct ec_mkbp_config config; } __ec_align_size1; /* Run the key scan emulation */ #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066 enum ec_keyscan_seq_cmd { EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ }; enum ec_collect_flags { /* * Indicates this scan was processed by the EC. Due to timing, some * scans may be skipped. */ EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0), }; struct ec_collect_item { uint8_t flags; /* some flags (enum ec_collect_flags) */ } __ec_align1; struct ec_params_keyscan_seq_ctrl { uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ union { struct __ec_align1 { uint8_t active; /* still active */ uint8_t num_items; /* number of items */ /* Current item being presented */ uint8_t cur_item; } status; struct __ec_todo_unpacked { /* * Absolute time for this scan, measured from the * start of the sequence. */ uint32_t time_us; uint8_t scan[0]; /* keyscan data */ } add; struct __ec_align1 { uint8_t start_item; /* First item to return */ uint8_t num_items; /* Number of items to return */ } collect; }; } __ec_todo_packed; struct ec_result_keyscan_seq_ctrl { union { struct __ec_todo_unpacked { uint8_t num_items; /* Number of items */ /* Data for each item */ struct ec_collect_item item[0]; } collect; }; } __ec_todo_packed; /* * Get the next pending MKBP event. * * Returns EC_RES_UNAVAILABLE if there is no event pending. * * V0: ec_response_get_next_data * V1: ec_response_get_next_data_v1. Increased key_matrix size from 13 -> 16. * V2: Added EC_MKBP_HAS_MORE_EVENTS. * V3: ec_response_get_next_data_v3. Increased key_matrix size from 16 -> 18. */ #define EC_CMD_GET_NEXT_EVENT 0x0067 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7 /* * We use the most significant bit of the event type to indicate to the host * that the EC has more MKBP events available to provide. */ #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) /* The mask to apply to get the raw event type */ #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1) enum ec_mkbp_event { /* Keyboard matrix changed. The event data is the new matrix state. */ EC_MKBP_EVENT_KEY_MATRIX = 0, /* New host event. The event data is 4 bytes of host event flags. */ EC_MKBP_EVENT_HOST_EVENT = 1, /* New Sensor FIFO data. The event data is fifo_info structure. */ EC_MKBP_EVENT_SENSOR_FIFO = 2, /* The state of the non-matrixed buttons have changed. */ EC_MKBP_EVENT_BUTTON = 3, /* The state of the switches have changed. */ EC_MKBP_EVENT_SWITCH = 4, /* New Fingerprint sensor event, the event data is fp_events bitmap. */ EC_MKBP_EVENT_FINGERPRINT = 5, /* * Sysrq event: send emulated sysrq. The event data is sysrq, * corresponding to the key to be pressed. */ EC_MKBP_EVENT_SYSRQ = 6, /* * New 64-bit host event. * The event data is 8 bytes of host event flags. */ EC_MKBP_EVENT_HOST_EVENT64 = 7, /* Notify the AP that something happened on CEC */ EC_MKBP_EVENT_CEC_EVENT = 8, /* Send an incoming CEC message to the AP */ EC_MKBP_EVENT_CEC_MESSAGE = 9, /* We have entered DisplayPort Alternate Mode on a Type-C port. */ EC_MKBP_EVENT_DP_ALT_MODE_ENTERED = 10, /* New online calibration values are available. */ EC_MKBP_EVENT_ONLINE_CALIBRATION = 11, /* Peripheral device charger event */ EC_MKBP_EVENT_PCHG = 12, /* Number of MKBP events */ EC_MKBP_EVENT_COUNT, }; BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK); /* clang-format off */ #define EC_MKBP_EVENT_TEXT \ { \ [EC_MKBP_EVENT_KEY_MATRIX] = "KEY_MATRIX", \ [EC_MKBP_EVENT_HOST_EVENT] = "HOST_EVENT", \ [EC_MKBP_EVENT_SENSOR_FIFO] = "SENSOR_FIFO", \ [EC_MKBP_EVENT_BUTTON] = "BUTTON", \ [EC_MKBP_EVENT_SWITCH] = "SWITCH", \ [EC_MKBP_EVENT_FINGERPRINT] = "FINGERPRINT", \ [EC_MKBP_EVENT_SYSRQ] = "SYSRQ", \ [EC_MKBP_EVENT_HOST_EVENT64] = "HOST_EVENT64", \ [EC_MKBP_EVENT_CEC_EVENT] = "CEC_EVENT", \ [EC_MKBP_EVENT_CEC_MESSAGE] = "CEC_MESSAGE", \ [EC_MKBP_EVENT_DP_ALT_MODE_ENTERED] = "DP_ALT_MODE_ENTERED", \ [EC_MKBP_EVENT_ONLINE_CALIBRATION] = "ONLINE_CALIBRATION", \ [EC_MKBP_EVENT_PCHG] = "PCHG", \ } /* clang-format on */ union __ec_align_offset1 ec_response_get_next_data { uint8_t key_matrix[13]; /* Unaligned */ uint32_t host_event; uint64_t host_event64; struct __ec_todo_unpacked { /* For aligning the fifo_info */ uint8_t reserved[3]; struct ec_response_motion_sense_fifo_info info; } sensor_fifo; uint32_t buttons; uint32_t switches; uint32_t fp_events; uint32_t sysrq; /* CEC events from enum mkbp_cec_event */ uint32_t cec_events; }; union __ec_align_offset1 ec_response_get_next_data_v1 { uint8_t key_matrix[16]; /* Unaligned */ uint32_t host_event; uint64_t host_event64; struct __ec_todo_unpacked { /* For aligning the fifo_info */ uint8_t reserved[3]; struct ec_response_motion_sense_fifo_info info; } sensor_fifo; uint32_t buttons; uint32_t switches; uint32_t fp_events; uint32_t sysrq; /* CEC events from enum mkbp_cec_event */ uint32_t cec_events; uint8_t cec_message[16]; }; BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16); union __ec_align_offset1 ec_response_get_next_data_v3 { uint8_t key_matrix[18]; /* Unaligned */ uint32_t host_event; uint64_t host_event64; struct __ec_todo_unpacked { /* For aligning the fifo_info */ uint8_t reserved[3]; struct ec_response_motion_sense_fifo_info info; } sensor_fifo; uint32_t buttons; uint32_t switches; uint32_t fp_events; uint32_t sysrq; /* CEC events from enum mkbp_cec_event */ uint32_t cec_events; uint8_t cec_message[16]; }; BUILD_ASSERT(sizeof(union ec_response_get_next_data_v3) == 18); struct ec_response_get_next_event { uint8_t event_type; /* Followed by event data if any */ union ec_response_get_next_data data; } __ec_align1; struct ec_response_get_next_event_v1 { uint8_t event_type; /* Followed by event data if any */ union ec_response_get_next_data_v1 data; } __ec_align1; struct ec_response_get_next_event_v3 { uint8_t event_type; /* Followed by event data if any */ union ec_response_get_next_data_v3 data; } __ec_align1; /* Bit indices for buttons and switches.*/ /* Buttons */ #define EC_MKBP_POWER_BUTTON 0 #define EC_MKBP_VOL_UP 1 #define EC_MKBP_VOL_DOWN 2 #define EC_MKBP_RECOVERY 3 /* Switches */ #define EC_MKBP_LID_OPEN 0 #define EC_MKBP_TABLET_MODE 1 #define EC_MKBP_BASE_ATTACHED 2 #define EC_MKBP_FRONT_PROXIMITY 3 /* Run keyboard factory test scanning */ #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068 struct ec_response_keyboard_factory_test { uint16_t shorted; /* Keyboard pins are shorted */ } __ec_align2; /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */ #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF) #define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F) #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) \ (((fpe) & 0x00000FF0) >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET) #define EC_MKBP_FP_MATCH_IDX_OFFSET 12 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000 #define EC_MKBP_FP_MATCH_IDX(fpe) \ (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) >> EC_MKBP_FP_MATCH_IDX_OFFSET) #define EC_MKBP_FP_ENROLL BIT(27) #define EC_MKBP_FP_MATCH BIT(28) #define EC_MKBP_FP_FINGER_DOWN BIT(29) #define EC_MKBP_FP_FINGER_UP BIT(30) #define EC_MKBP_FP_IMAGE_READY BIT(31) /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */ #define EC_MKBP_FP_ERR_ENROLL_OK 0 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5 /* Can be used to detect if image was usable for enrollment or not. */ #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */ #define EC_MKBP_FP_ERR_MATCH_NO 0 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7 #define EC_MKBP_FP_ERR_MATCH_NO_AUTH_FAIL 8 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4 #define EC_MKBP_FP_ERR_MATCH_YES 1 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5 #define EC_CMD_MKBP_WAKE_MASK 0x0069 enum ec_mkbp_event_mask_action { /* Retrieve the value of a wake mask. */ GET_WAKE_MASK = 0, /* Set the value of a wake mask. */ SET_WAKE_MASK, }; enum ec_mkbp_mask_type { /* * These are host events sent via MKBP. * * Some examples are: * EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_OPEN) * EC_HOST_EVENT_MASK(EC_HOST_EVENT_KEY_PRESSED) * * The only things that should be in this mask are: * EC_HOST_EVENT_MASK(EC_HOST_EVENT_*) */ EC_MKBP_HOST_EVENT_WAKE_MASK = 0, /* * These are MKBP events. Some examples are: * * EC_MKBP_EVENT_KEY_MATRIX * EC_MKBP_EVENT_SWITCH * * The only things that should be in this mask are EC_MKBP_EVENT_*. */ EC_MKBP_EVENT_WAKE_MASK, }; struct ec_params_mkbp_event_wake_mask { /* One of enum ec_mkbp_event_mask_action */ uint8_t action; /* * Which MKBP mask are you interested in acting upon? This is one of * ec_mkbp_mask_type. */ uint8_t mask_type; /* If setting a new wake mask, this contains the mask to set. */ uint32_t new_wake_mask; }; struct ec_response_mkbp_event_wake_mask { uint32_t wake_mask; }; /*****************************************************************************/ /* Temperature sensor commands */ /* Read temperature sensor info */ #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070 struct ec_params_temp_sensor_get_info { uint8_t id; } __ec_align1; struct ec_response_temp_sensor_get_info { char sensor_name[32]; uint8_t sensor_type; } __ec_align1; /*****************************************************************************/ /* * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI * commands accidentally sent to the wrong interface. See the ACPI section * below. */ /*****************************************************************************/ /* Host event commands */ /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */ /* * Host event mask params and response structures, shared by all of the host * event commands below. */ struct ec_params_host_event_mask { uint32_t mask; } __ec_align4; struct ec_response_host_event_mask { uint32_t mask; } __ec_align4; /* These all use ec_response_host_event_mask */ #define EC_CMD_HOST_EVENT_GET_B 0x0087 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D /* These all use ec_params_host_event_mask */ #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B #define EC_CMD_HOST_EVENT_CLEAR 0x008C #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E #define EC_CMD_HOST_EVENT_CLEAR_B 0x008F /* * Unified host event programming interface - Should be used by newer versions * of BIOS/OS to program host events and masks * * EC returns: * - EC_RES_INVALID_PARAM: Action or mask type is unknown. * - EC_RES_ACCESS_DENIED: Action is prohibited for specified mask type. */ struct ec_params_host_event { /* Action requested by host - one of enum ec_host_event_action. */ uint8_t action; /* * Mask type that the host requested the action on - one of * enum ec_host_event_mask_type. */ uint8_t mask_type; /* Set to 0, ignore on read */ uint16_t reserved; /* Value to be used in case of set operations. */ uint64_t value; } __ec_align4; /* * Response structure returned by EC_CMD_HOST_EVENT. * Update the value on a GET request. Set to 0 on GET/CLEAR */ struct ec_response_host_event { /* Mask value in case of get operation */ uint64_t value; } __ec_align4; enum ec_host_event_action { /* * params.value is ignored. Value of mask_type populated * in response.value */ EC_HOST_EVENT_GET, /* Bits in params.value are set */ EC_HOST_EVENT_SET, /* Bits in params.value are cleared */ EC_HOST_EVENT_CLEAR, }; enum ec_host_event_mask_type { /* Main host event copy */ EC_HOST_EVENT_MAIN, /* Copy B of host events */ EC_HOST_EVENT_B, /* SCI Mask */ EC_HOST_EVENT_SCI_MASK, /* SMI Mask */ EC_HOST_EVENT_SMI_MASK, /* Mask of events that should be always reported in hostevents */ EC_HOST_EVENT_ALWAYS_REPORT_MASK, /* Active wake mask */ EC_HOST_EVENT_ACTIVE_WAKE_MASK, /* Lazy wake mask for S0ix */ EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX, /* Lazy wake mask for S3 */ EC_HOST_EVENT_LAZY_WAKE_MASK_S3, /* Lazy wake mask for S5 */ EC_HOST_EVENT_LAZY_WAKE_MASK_S5, }; #define EC_CMD_HOST_EVENT 0x00A4 /*****************************************************************************/ /* Switch commands */ /* Enable/disable LCD backlight */ #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090 struct ec_params_switch_enable_backlight { uint8_t enabled; } __ec_align1; /* Enable/disable WLAN/Bluetooth */ #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 /* Version 0 params; no response */ struct ec_params_switch_enable_wireless_v0 { uint8_t enabled; } __ec_align1; /* Version 1 params */ struct ec_params_switch_enable_wireless_v1 { /* Flags to enable now */ uint8_t now_flags; /* Which flags to copy from now_flags */ uint8_t now_mask; /* * Flags to leave enabled in S3, if they're on at the S0->S3 * transition. (Other flags will be disabled by the S0->S3 * transition.) */ uint8_t suspend_flags; /* Which flags to copy from suspend_flags */ uint8_t suspend_mask; } __ec_align1; /* Version 1 response */ struct ec_response_switch_enable_wireless_v1 { /* Flags to enable now */ uint8_t now_flags; /* Flags to leave enabled in S3 */ uint8_t suspend_flags; } __ec_align1; /*****************************************************************************/ /* GPIO commands. Only available on EC if write protect has been disabled. */ /* Set GPIO output value */ #define EC_CMD_GPIO_SET 0x0092 struct ec_params_gpio_set { char name[32]; uint8_t val; } __ec_align1; /* Get GPIO value */ #define EC_CMD_GPIO_GET 0x0093 /* Version 0 of input params and response */ struct ec_params_gpio_get { char name[32]; } __ec_align1; struct ec_response_gpio_get { uint8_t val; } __ec_align1; /* Version 1 of input params and response */ struct ec_params_gpio_get_v1 { uint8_t subcmd; union { struct __ec_align1 { char name[32]; } get_value_by_name; struct __ec_align1 { uint8_t index; } get_info; }; } __ec_align1; struct ec_response_gpio_get_v1 { union { struct __ec_align1 { uint8_t val; } get_value_by_name, get_count; struct __ec_todo_unpacked { uint8_t val; char name[32]; uint32_t flags; } get_info; }; } __ec_todo_packed; enum gpio_get_subcmd { EC_GPIO_GET_BY_NAME = 0, EC_GPIO_GET_COUNT = 1, EC_GPIO_GET_INFO = 2, }; /*****************************************************************************/ /* I2C commands. Only available when flash write protect is unlocked. */ /* * CAUTION: These commands are deprecated, and are not supported anymore in EC * builds >= 8398.0.0 (see crosbug.com/p/23570). * * Use EC_CMD_I2C_PASSTHRU instead. */ /* Read I2C bus */ #define EC_CMD_I2C_READ 0x0094 struct ec_params_i2c_read { uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ uint8_t read_size; /* Either 8 or 16. */ uint8_t port; uint8_t offset; } __ec_align_size1; struct ec_response_i2c_read { uint16_t data; } __ec_align2; /* Write I2C bus */ #define EC_CMD_I2C_WRITE 0x0095 struct ec_params_i2c_write { uint16_t data; uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ uint8_t write_size; /* Either 8 or 16. */ uint8_t port; uint8_t offset; } __ec_align_size1; /*****************************************************************************/ /* Charge state commands. Only available when flash write protect unlocked. */ /* Force charge state machine to stop charging the battery or force it to * discharge the battery. */ #define EC_CMD_CHARGE_CONTROL 0x0096 #define EC_VER_CHARGE_CONTROL 3 enum ec_charge_control_mode { CHARGE_CONTROL_NORMAL = 0, CHARGE_CONTROL_IDLE, CHARGE_CONTROL_DISCHARGE, /* Add no more entry below. */ CHARGE_CONTROL_COUNT, }; #define EC_CHARGE_MODE_TEXT \ { \ [CHARGE_CONTROL_NORMAL] = "NORMAL", \ [CHARGE_CONTROL_IDLE] = "IDLE", \ [CHARGE_CONTROL_DISCHARGE] = "DISCHARGE", \ } enum ec_charge_control_cmd { EC_CHARGE_CONTROL_CMD_SET = 0, EC_CHARGE_CONTROL_CMD_GET, }; enum ec_charge_control_flag { EC_CHARGE_CONTROL_FLAG_NO_IDLE = BIT(0), }; struct ec_params_charge_control { uint32_t mode; /* enum charge_control_mode */ /* Below are the fields added in V2. */ uint8_t cmd; /* enum ec_charge_control_cmd. */ uint8_t flags; /* enum ec_charge_control_flag (v3+) */ /* * Lower and upper thresholds for battery sustainer. This struct isn't * named to avoid tainting foreign projects' name spaces. * * If charge mode is explicitly set (e.g. DISCHARGE), battery sustainer * will be disabled. To disable battery sustainer, set mode=NORMAL, * lower=-1, upper=-1. */ struct { int8_t lower; /* Display SoC in percentage. */ int8_t upper; /* Display SoC in percentage. */ } sustain_soc; } __ec_align4; /* Added in v2 */ struct ec_response_charge_control { uint32_t mode; /* enum charge_control_mode */ struct { /* Battery sustainer thresholds */ int8_t lower; int8_t upper; } sustain_soc; uint8_t flags; /* enum ec_charge_control_flag (v3+) */ uint8_t reserved; } __ec_align4; /*****************************************************************************/ /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ #define EC_CMD_CONSOLE_SNAPSHOT 0x0097 /* * Read data from the saved snapshot. If the subcmd parameter is * CONSOLE_READ_NEXT, this will return data starting from the beginning of * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the * end of the previous snapshot. * * The params are only looked at in version >= 1 of this command. Prior * versions will just default to CONSOLE_READ_NEXT behavior. * * Response is null-terminated string. Empty string, if there is no more * remaining output. */ #define EC_CMD_CONSOLE_READ 0x0098 enum ec_console_read_subcmd { CONSOLE_READ_NEXT = 0, CONSOLE_READ_RECENT, }; struct ec_params_console_read_v1 { uint8_t subcmd; /* enum ec_console_read_subcmd */ } __ec_align1; /* Print directly to EC console from host. */ #define EC_CMD_CONSOLE_PRINT 0x00AC /*****************************************************************************/ /* * Cut off battery power immediately or after the host has shut down. * * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. * EC_RES_SUCCESS if the command was successful. * EC_RES_ERROR if the cut off command failed. */ #define EC_CMD_BATTERY_CUT_OFF 0x0099 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0) struct ec_params_battery_cutoff { uint8_t flags; } __ec_align1; /*****************************************************************************/ /* USB port mux control. */ /* * Switch USB mux or return to automatic switching. */ #define EC_CMD_USB_MUX 0x009A struct ec_params_usb_mux { uint8_t mux; } __ec_align1; /*****************************************************************************/ /* LDOs / FETs control. */ enum ec_ldo_state { EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ }; /* * Switch on/off a LDO. */ #define EC_CMD_LDO_SET 0x009B struct ec_params_ldo_set { uint8_t index; uint8_t state; } __ec_align1; /* * Get LDO state. */ #define EC_CMD_LDO_GET 0x009C struct ec_params_ldo_get { uint8_t index; } __ec_align1; struct ec_response_ldo_get { uint8_t state; } __ec_align1; /*****************************************************************************/ /* Power info. */ /* * Get power info. * * Note: v0 of this command is deprecated */ #define EC_CMD_POWER_INFO 0x009D /* * v1 of EC_CMD_POWER_INFO */ enum system_power_source { /* * Haven't established which power source is used yet, * or no presence signals are available */ POWER_SOURCE_UNKNOWN = 0, /* System is running on battery alone */ POWER_SOURCE_BATTERY = 1, /* System is running on A/C alone */ POWER_SOURCE_AC = 2, /* System is running on A/C and battery */ POWER_SOURCE_AC_BATTERY = 3, }; struct ec_response_power_info_v1 { /* enum system_power_source */ uint8_t system_power_source; /* Battery state-of-charge, 0-100, 0 if not present */ uint8_t battery_soc; /* AC Adapter 100% rating, Watts */ uint8_t ac_adapter_100pct; /* AC Adapter 10ms rating, Watts */ uint8_t ac_adapter_10ms; /* Battery 1C rating, derated */ uint8_t battery_1cd; /* Rest of Platform average, Watts */ uint8_t rop_avg; /* Rest of Platform peak, Watts */ uint8_t rop_peak; /* Nominal charger efficiency, % */ uint8_t nominal_charger_eff; /* Rest of Platform VR Average Efficiency, % */ uint8_t rop_avg_eff; /* Rest of Platform VR Peak Efficiency, % */ uint8_t rop_peak_eff; /* SoC VR Efficiency at Average level, % */ uint8_t soc_avg_eff; /* SoC VR Efficiency at Peak level, % */ uint8_t soc_peak_eff; /* Intel-specific items */ struct { /* Battery's level of DBPT support: 0, 2 */ uint8_t batt_dbpt_support_level; /* * Maximum peak power from battery (10ms), Watts * If DBPT is not supported, this is 0 */ uint8_t batt_dbpt_max_peak_power; /* * Sustained peak power from battery, Watts * If DBPT is not supported, this is 0 */ uint8_t batt_dbpt_sus_peak_power; } intel; } __ec_align1; /*****************************************************************************/ /* I2C passthru command */ #define EC_CMD_I2C_PASSTHRU 0x009E /* Read data; if not present, message is a write */ #define EC_I2C_FLAG_READ BIT(15) /* Mask for address */ #define EC_I2C_ADDR_MASK 0x3ff #define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */ #define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */ /* Any error */ #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) struct ec_params_i2c_passthru_msg { uint16_t addr_flags; /* I2C peripheral address and flags */ uint16_t len; /* Number of bytes to read or write */ } __ec_align2; struct ec_params_i2c_passthru { uint8_t port; /* I2C port number */ uint8_t num_msgs; /* Number of messages */ struct ec_params_i2c_passthru_msg msg[]; /* Data to write for all messages is concatenated here */ } __ec_align2; struct ec_response_i2c_passthru { uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ uint8_t num_msgs; /* Number of messages processed */ uint8_t data[]; /* Data read by messages concatenated here */ } __ec_align1; /*****************************************************************************/ /* AP hang detect */ #define EC_CMD_HANG_DETECT 0x009F #define EC_HANG_DETECT_MIN_TIMEOUT 5 /* EC hang detect commands */ enum ec_hang_detect_cmds { /* Reload AP hang detect timer. */ EC_HANG_DETECT_CMD_RELOAD = 0x0, /* Stop AP hang detect timer. */ EC_HANG_DETECT_CMD_CANCEL = 0x1, /* Configure watchdog with given reboot timeout and * cancel currently running AP hand detect timer. */ EC_HANG_DETECT_CMD_SET_TIMEOUT = 0x2, /* Get last hang status - whether the AP boot was clear or not */ EC_HANG_DETECT_CMD_GET_STATUS = 0x3, /* Clear last hang status. Called when AP is rebooting/shutting down * gracefully. */ EC_HANG_DETECT_CMD_CLEAR_STATUS = 0x4 }; struct ec_params_hang_detect { uint16_t command; /* enum ec_hang_detect_cmds */ /* Timeout in seconds before generating reboot */ uint16_t reboot_timeout_sec; } __ec_align2; /* Status codes that describe whether AP has boot normally or the hang has been * detected and EC has reset AP */ enum ec_hang_detect_status { EC_HANG_DETECT_AP_BOOT_NORMAL = 0x0, EC_HANG_DETECT_AP_BOOT_EC_WDT = 0x1, EC_HANG_DETECT_AP_BOOT_COUNT, }; struct ec_response_hang_detect { uint8_t status; /* enum ec_hang_detect_status */ } __ec_align1; /*****************************************************************************/ /* Commands for battery charging */ /* * This is the single catch-all host command to exchange data regarding the * charge state machine (v2 and up). */ #define EC_CMD_CHARGE_STATE 0x00A0 /* Subcommands for this host command */ enum charge_state_command { CHARGE_STATE_CMD_GET_STATE, CHARGE_STATE_CMD_GET_PARAM, CHARGE_STATE_CMD_SET_PARAM, CHARGE_STATE_NUM_CMDS, }; /* * Known param numbers are defined here. Ranges are reserved for board-specific * params, which are handled by the particular implementations. */ enum charge_state_params { /* charger voltage limit */ CS_PARAM_CHG_VOLTAGE, /* charger current limit */ CS_PARAM_CHG_CURRENT, /* charger input current limit */ CS_PARAM_CHG_INPUT_CURRENT, /* charger-specific status */ CS_PARAM_CHG_STATUS, /* charger-specific options */ CS_PARAM_CHG_OPTION, /* * Check if power is limited due to low battery and / or a * weak external charger. READ ONLY. */ CS_PARAM_LIMIT_POWER, /* How many so far? */ CS_NUM_BASE_PARAMS, /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, /* Range for CONFIG_CHARGE_STATE_DEBUG params */ CS_PARAM_DEBUG_MIN = 0x20000, CS_PARAM_DEBUG_CTL_MODE = 0x20000, CS_PARAM_DEBUG_MANUAL_MODE, CS_PARAM_DEBUG_SEEMS_DEAD, CS_PARAM_DEBUG_SEEMS_DISCONNECTED, CS_PARAM_DEBUG_BATT_REMOVED, /* Deprecated */ CS_PARAM_DEBUG_MANUAL_CURRENT, CS_PARAM_DEBUG_MANUAL_VOLTAGE, CS_PARAM_DEBUG_MAX = 0x2ffff, /* Other custom param ranges go here... */ }; struct ec_params_charge_state { uint8_t cmd; /* enum charge_state_command */ union { /* get_state has no args */ struct __ec_todo_unpacked { uint32_t param; /* enum charge_state_param */ } get_param; struct __ec_todo_unpacked { uint32_t param; /* param to set */ uint32_t value; /* value to set */ } set_param; } __ec_todo_packed; uint8_t chgnum; /* Version 1 supports chgnum */ } __ec_todo_packed; struct ec_response_charge_state { union { struct __ec_align4 { int ac; int chg_voltage; int chg_current; int chg_input_current; int batt_state_of_charge; } get_state; struct __ec_align4 { uint32_t value; } get_param; /* set_param returns no args */ }; } __ec_align4; /* * Set maximum battery charging current. */ #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1 #define EC_VER_CHARGE_CURRENT_LIMIT 1 struct ec_params_current_limit { uint32_t limit; /* in mA */ } __ec_align4; struct ec_params_current_limit_v1 { uint32_t limit; /* in mA */ /* * Battery state of charge is the minimum charge percentage at which * the battery charge current limit will apply. * When not set, the limit will apply regardless of state of charge. */ uint8_t battery_soc; /* battery state of charge, 0-100 */ } __ec_align4; /* * Set maximum external voltage / current. */ #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 /* Command v0 is used only on Spring and is obsolete + unsupported */ struct ec_params_external_power_limit_v1 { uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ } __ec_align2; #define EC_POWER_LIMIT_NONE 0xffff /* * Set maximum voltage & current of a dedicated charge port */ #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3 struct ec_params_dedicated_charger_limit { uint16_t current_lim; /* in mA */ uint16_t voltage_lim; /* in mV */ } __ec_align2; /* * Get and set charging splashscreen variables */ #define EC_CMD_CHARGESPLASH 0x00A5 enum ec_chargesplash_cmd { /* Get the current state variables */ EC_CHARGESPLASH_GET_STATE = 0, /* Indicate initialization of the display loop */ EC_CHARGESPLASH_DISPLAY_READY, /* Manually put the EC into the requested state */ EC_CHARGESPLASH_REQUEST, /* Reset all state variables */ EC_CHARGESPLASH_RESET, /* Manually trigger a lockout */ EC_CHARGESPLASH_LOCKOUT, }; struct __ec_align1 ec_params_chargesplash { /* enum ec_chargesplash_cmd */ uint8_t cmd; }; struct __ec_align1 ec_response_chargesplash { uint8_t requested; uint8_t display_initialized; uint8_t locked_out; }; /*****************************************************************************/ /* Hibernate/Deep Sleep Commands */ /* Set the delay before going into hibernation. */ #define EC_CMD_HIBERNATION_DELAY 0x00A8 struct ec_params_hibernation_delay { /* * Seconds to wait in G3 before hibernate. Pass in 0 to read the * current settings without changing them. */ uint32_t seconds; } __ec_align4; struct ec_response_hibernation_delay { /* * The current time in seconds in which the system has been in the G3 * state. This value is reset if the EC transitions out of G3. */ uint32_t time_g3; /* * The current time remaining in seconds until the EC should hibernate. * This value is also reset if the EC transitions out of G3. */ uint32_t time_remaining; /* * The current time in seconds that the EC should wait in G3 before * hibernating. */ uint32_t hibernate_delay; } __ec_align4; /* Inform the EC when entering a sleep state */ #define EC_CMD_HOST_SLEEP_EVENT 0x00A9 enum host_sleep_event { HOST_SLEEP_EVENT_S3_SUSPEND = 1, HOST_SLEEP_EVENT_S3_RESUME = 2, HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, HOST_SLEEP_EVENT_S0IX_RESUME = 4, /* S3 suspend with additional enabled wake sources */ HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5, }; struct ec_params_host_sleep_event { uint8_t sleep_event; } __ec_align1; /* * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep * transition failures */ #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0 /* Disable timeout detection for this sleep transition */ #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF struct ec_params_host_sleep_event_v1 { /* The type of sleep being entered or exited. */ uint8_t sleep_event; /* Padding */ uint8_t reserved; union { /* Parameters that apply for suspend messages. */ struct { /* * The timeout in milliseconds between when this message * is received and when the EC will declare sleep * transition failure if the sleep signal is not * asserted. */ uint16_t sleep_timeout_ms; } suspend_params; /* No parameters for non-suspend messages. */ }; } __ec_align2; /* A timeout occurred when this bit is set */ #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000 /* * The mask defining which bits correspond to the number of sleep transitions, * as well as the maximum number of suspend line transitions that will be * reported back to the host. */ #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF struct ec_response_host_sleep_event_v1 { union { /* Response fields that apply for resume messages. */ struct { /* * The number of sleep power signal transitions that * occurred since the suspend message. The high bit * indicates a timeout occurred. */ uint32_t sleep_transitions; } resume_response; /* No response fields for non-resume messages. */ }; } __ec_align4; /*****************************************************************************/ /* Device events */ #define EC_CMD_DEVICE_EVENT 0x00AA enum ec_device_event { EC_DEVICE_EVENT_TRACKPAD, EC_DEVICE_EVENT_DSP, EC_DEVICE_EVENT_WIFI, EC_DEVICE_EVENT_WLC, }; enum ec_device_event_param { /* Get and clear pending device events */ EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS, /* Get device event mask */ EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS, /* Set device event mask */ EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS, }; #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32) struct ec_params_device_event { uint32_t event_mask; uint8_t param; } __ec_align_size1; struct ec_response_device_event { uint32_t event_mask; } __ec_align4; /*****************************************************************************/ /* Get s0ix counter */ #define EC_CMD_GET_S0IX_COUNTER 0x00AB /* Flag use to reset the counter */ #define EC_S0IX_COUNTER_RESET 0x1 struct ec_params_s0ix_cnt { /* If EC_S0IX_COUNTER_RESET then reset otherwise get the counter */ uint32_t flags; } __ec_align4; struct ec_response_s0ix_cnt { /* Value of the s0ix_counter */ uint32_t s0ix_counter; } __ec_align4; /*****************************************************************************/ /* Smart battery pass-through */ /* Get / Set 16-bit smart battery registers - OBSOLETE */ #define EC_CMD_SB_READ_WORD 0x00B0 #define EC_CMD_SB_WRITE_WORD 0x00B1 /* Get / Set string smart battery parameters * formatted as SMBUS "block". - OBSOLETE */ #define EC_CMD_SB_READ_BLOCK 0x00B2 #define EC_CMD_SB_WRITE_BLOCK 0x00B3 /*****************************************************************************/ /* Battery vendor parameters * * Get or set vendor-specific parameters in the battery. Implementations may * differ between boards or batteries. On a set operation, the response * contains the actual value set, which may be rounded or clipped from the * requested value. */ #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4 enum ec_battery_vendor_param_mode { BATTERY_VENDOR_PARAM_MODE_GET = 0, BATTERY_VENDOR_PARAM_MODE_SET, }; struct ec_params_battery_vendor_param { uint32_t param; uint32_t value; uint8_t mode; } __ec_align_size1; struct ec_response_battery_vendor_param { uint32_t value; } __ec_align4; /*****************************************************************************/ /* * Smart Battery Firmware Update Command - OBSOLETE */ #define EC_CMD_SB_FW_UPDATE 0x00B5 /* * Entering Verified Boot Mode Command * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command. * Valid Modes are: normal, developer, and recovery. * * EC no longer needs to know what mode vboot has entered, * so this command is deprecated. (See chromium:1014379.) */ #define EC_CMD_ENTERING_MODE 0x00B6 struct ec_params_entering_mode { int vboot_mode; } __ec_align4; #define VBOOT_MODE_NORMAL 0 #define VBOOT_MODE_DEVELOPER 1 #define VBOOT_MODE_RECOVERY 2 /*****************************************************************************/ /* * I2C passthru protection command: Protects I2C tunnels against access on * certain addresses (board-specific). */ #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7 enum ec_i2c_passthru_protect_subcmd { EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0, EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 1, EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE_TCPCS = 2, }; struct ec_params_i2c_passthru_protect { uint8_t subcmd; uint8_t port; /* I2C port number */ } __ec_align1; struct ec_response_i2c_passthru_protect { uint8_t status; /* Status flags (0: unlocked, 1: locked) */ } __ec_align1; /*****************************************************************************/ /* * HDMI CEC commands * * These commands are for sending and receiving message via HDMI CEC */ #define EC_CEC_MAX_PORTS 16 #define MAX_CEC_MSG_LEN 16 /* * Helper macros for packing/unpacking cec_events. * bits[27:0] : bitmask of events from enum mkbp_cec_event * bits[31:28]: port number */ #define EC_MKBP_EVENT_CEC_PACK(events, port) \ (((events) & GENMASK(27, 0)) | (((port) & 0xf) << 28)) #define EC_MKBP_EVENT_CEC_GET_EVENTS(event) ((event) & GENMASK(27, 0)) #define EC_MKBP_EVENT_CEC_GET_PORT(event) (((event) >> 28) & 0xf) /* CEC message from the AP to be written on the CEC bus */ #define EC_CMD_CEC_WRITE_MSG 0x00B8 /** * struct ec_params_cec_write - Message to write to the CEC bus * @msg: message content to write to the CEC bus */ struct ec_params_cec_write { uint8_t msg[MAX_CEC_MSG_LEN]; } __ec_align1; /** * struct ec_params_cec_write_v1 - Message to write to the CEC bus * @port: CEC port to write the message on * @msg_len: length of msg in bytes * @msg: message content to write to the CEC bus */ struct ec_params_cec_write_v1 { uint8_t port; uint8_t msg_len; uint8_t msg[MAX_CEC_MSG_LEN]; } __ec_align1; /* CEC message read from a CEC bus reported back to the AP */ #define EC_CMD_CEC_READ_MSG 0x00B9 /** * struct ec_params_cec_read - Read a message from the CEC bus * @port: CEC port to read a message on */ struct ec_params_cec_read { uint8_t port; } __ec_align1; /** * struct ec_response_cec_read - Message read from the CEC bus * @msg_len: length of msg in bytes * @msg: message content read from the CEC bus */ struct ec_response_cec_read { uint8_t msg_len; uint8_t msg[MAX_CEC_MSG_LEN]; } __ec_align1; /* Set various CEC parameters */ #define EC_CMD_CEC_SET 0x00BA /** * struct ec_params_cec_set - CEC parameters set * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS * @port: CEC port to set the parameter on * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC * or 1 to enable CEC functionality, in case cmd is * CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical * address between 0 and 15 or 0xff to unregister */ struct ec_params_cec_set { uint8_t cmd : 4; /* enum cec_command */ uint8_t port : 4; uint8_t val; } __ec_align1; /* Read various CEC parameters */ #define EC_CMD_CEC_GET 0x00BB /** * struct ec_params_cec_get - CEC parameters get * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS * @port: CEC port to get the parameter on */ struct ec_params_cec_get { uint8_t cmd : 4; /* enum cec_command */ uint8_t port : 4; } __ec_align1; /** * struct ec_response_cec_get - CEC parameters get response * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is * disabled or 1 if CEC functionality is enabled, * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the * configured logical address between 0 and 15 or 0xff if unregistered */ struct ec_response_cec_get { uint8_t val; } __ec_align1; /* Get the number of CEC ports */ #define EC_CMD_CEC_PORT_COUNT 0x00C1 /** * struct ec_response_cec_port_count - CEC port count response * @port_count: number of CEC ports */ struct ec_response_cec_port_count { uint8_t port_count; } __ec_align1; /* CEC parameters command */ enum cec_command { /* CEC reading, writing and events enable */ CEC_CMD_ENABLE, /* CEC logical address */ CEC_CMD_LOGICAL_ADDRESS, }; /* Events from CEC to AP */ enum mkbp_cec_event { /* Outgoing message was acknowledged by a follower */ EC_MKBP_CEC_SEND_OK = BIT(0), /* Outgoing message was not acknowledged */ EC_MKBP_CEC_SEND_FAILED = BIT(1), /* Incoming message can be read out by AP */ EC_MKBP_CEC_HAVE_DATA = BIT(2), }; /*****************************************************************************/ /* Commands for audio codec. */ #define EC_CMD_EC_CODEC 0x00BC enum ec_codec_subcmd { EC_CODEC_GET_CAPABILITIES = 0x0, EC_CODEC_GET_SHM_ADDR = 0x1, EC_CODEC_SET_SHM_ADDR = 0x2, EC_CODEC_SUBCMD_COUNT, }; enum ec_codec_cap { EC_CODEC_CAP_WOV_AUDIO_SHM = 0, EC_CODEC_CAP_WOV_LANG_SHM = 1, EC_CODEC_CAP_LAST = 32, }; enum ec_codec_shm_id { EC_CODEC_SHM_ID_WOV_AUDIO = 0x0, EC_CODEC_SHM_ID_WOV_LANG = 0x1, EC_CODEC_SHM_ID_LAST, }; enum ec_codec_shm_type { EC_CODEC_SHM_TYPE_EC_RAM = 0x0, EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1, }; struct __ec_align1 ec_param_ec_codec_get_shm_addr { uint8_t shm_id; uint8_t reserved[3]; }; struct __ec_align4 ec_param_ec_codec_set_shm_addr { uint64_t phys_addr; uint32_t len; uint8_t shm_id; uint8_t reserved[3]; }; struct __ec_align4 ec_param_ec_codec { uint8_t cmd; /* enum ec_codec_subcmd */ uint8_t reserved[3]; union { struct ec_param_ec_codec_get_shm_addr get_shm_addr_param; struct ec_param_ec_codec_set_shm_addr set_shm_addr_param; }; }; struct __ec_align4 ec_response_ec_codec_get_capabilities { uint32_t capabilities; }; struct __ec_align4 ec_response_ec_codec_get_shm_addr { uint64_t phys_addr; uint32_t len; uint8_t type; uint8_t reserved[3]; }; /*****************************************************************************/ /* Commands for DMIC on audio codec. */ #define EC_CMD_EC_CODEC_DMIC 0x00BD enum ec_codec_dmic_subcmd { EC_CODEC_DMIC_GET_MAX_GAIN = 0x0, EC_CODEC_DMIC_SET_GAIN_IDX = 0x1, EC_CODEC_DMIC_GET_GAIN_IDX = 0x2, EC_CODEC_DMIC_SUBCMD_COUNT, }; enum ec_codec_dmic_channel { EC_CODEC_DMIC_CHANNEL_0 = 0x0, EC_CODEC_DMIC_CHANNEL_1 = 0x1, EC_CODEC_DMIC_CHANNEL_2 = 0x2, EC_CODEC_DMIC_CHANNEL_3 = 0x3, EC_CODEC_DMIC_CHANNEL_4 = 0x4, EC_CODEC_DMIC_CHANNEL_5 = 0x5, EC_CODEC_DMIC_CHANNEL_6 = 0x6, EC_CODEC_DMIC_CHANNEL_7 = 0x7, EC_CODEC_DMIC_CHANNEL_COUNT, }; struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx { uint8_t channel; /* enum ec_codec_dmic_channel */ uint8_t gain; uint8_t reserved[2]; }; struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx { uint8_t channel; /* enum ec_codec_dmic_channel */ uint8_t reserved[3]; }; struct __ec_align4 ec_param_ec_codec_dmic { uint8_t cmd; /* enum ec_codec_dmic_subcmd */ uint8_t reserved[3]; union { struct ec_param_ec_codec_dmic_set_gain_idx set_gain_idx_param; struct ec_param_ec_codec_dmic_get_gain_idx get_gain_idx_param; }; }; struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain { uint8_t max_gain; }; struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx { uint8_t gain; }; /*****************************************************************************/ /* Commands for I2S RX on audio codec. */ #define EC_CMD_EC_CODEC_I2S_RX 0x00BE enum ec_codec_i2s_rx_subcmd { EC_CODEC_I2S_RX_ENABLE = 0x0, EC_CODEC_I2S_RX_DISABLE = 0x1, EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2, EC_CODEC_I2S_RX_SET_DAIFMT = 0x3, EC_CODEC_I2S_RX_SET_BCLK = 0x4, EC_CODEC_I2S_RX_RESET = 0x5, EC_CODEC_I2S_RX_SUBCMD_COUNT, }; enum ec_codec_i2s_rx_sample_depth { EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0, EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1, EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT, }; enum ec_codec_i2s_rx_daifmt { EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0, EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1, EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2, EC_CODEC_I2S_RX_DAIFMT_COUNT, }; struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth { uint8_t depth; uint8_t reserved[3]; }; struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain { uint8_t left; uint8_t right; uint8_t reserved[2]; }; struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt { uint8_t daifmt; uint8_t reserved[3]; }; struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk { uint32_t bclk; }; struct __ec_align4 ec_param_ec_codec_i2s_rx { uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */ uint8_t reserved[3]; union { struct ec_param_ec_codec_i2s_rx_set_sample_depth set_sample_depth_param; struct ec_param_ec_codec_i2s_rx_set_daifmt set_daifmt_param; struct ec_param_ec_codec_i2s_rx_set_bclk set_bclk_param; }; }; /*****************************************************************************/ /* Commands for WoV on audio codec. */ #define EC_CMD_EC_CODEC_WOV 0x00BF enum ec_codec_wov_subcmd { EC_CODEC_WOV_SET_LANG = 0x0, EC_CODEC_WOV_SET_LANG_SHM = 0x1, EC_CODEC_WOV_GET_LANG = 0x2, EC_CODEC_WOV_ENABLE = 0x3, EC_CODEC_WOV_DISABLE = 0x4, EC_CODEC_WOV_READ_AUDIO = 0x5, EC_CODEC_WOV_READ_AUDIO_SHM = 0x6, EC_CODEC_WOV_SUBCMD_COUNT, }; /* * @hash is SHA256 of the whole language model. * @total_len indicates the length of whole language model. * @offset is the cursor from the beginning of the model. * @buf is the packet buffer. * @len denotes how many bytes in the buf. */ struct __ec_align4 ec_param_ec_codec_wov_set_lang { uint8_t hash[32]; uint32_t total_len; uint32_t offset; uint8_t buf[128]; uint32_t len; }; struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm { uint8_t hash[32]; uint32_t total_len; }; struct __ec_align4 ec_param_ec_codec_wov { uint8_t cmd; /* enum ec_codec_wov_subcmd */ uint8_t reserved[3]; union { struct ec_param_ec_codec_wov_set_lang set_lang_param; struct ec_param_ec_codec_wov_set_lang_shm set_lang_shm_param; }; }; struct __ec_align4 ec_response_ec_codec_wov_get_lang { uint8_t hash[32]; }; struct __ec_align4 ec_response_ec_codec_wov_read_audio { uint8_t buf[128]; uint32_t len; }; struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm { uint32_t offset; uint32_t len; }; /*****************************************************************************/ /* Commands for PoE PSE controller */ #define EC_CMD_PSE 0x00C0 enum ec_pse_subcmd { EC_PSE_STATUS = 0x0, EC_PSE_ENABLE = 0x1, EC_PSE_DISABLE = 0x2, EC_PSE_SUBCMD_COUNT, }; struct __ec_align1 ec_params_pse { uint8_t cmd; /* enum ec_pse_subcmd */ uint8_t port; /* PSE port */ }; enum ec_pse_status { EC_PSE_STATUS_DISABLED = 0x0, EC_PSE_STATUS_ENABLED = 0x1, EC_PSE_STATUS_POWERED = 0x2, }; struct __ec_align1 ec_response_pse_status { uint8_t status; /* enum ec_pse_status */ }; /*****************************************************************************/ /* System commands */ /* * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't * necessarily reboot the EC. Rename to "image" or something similar? */ #define EC_CMD_REBOOT_EC 0x00D2 /* Command */ enum ec_reboot_cmd { EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */ /* (command 3 was jump to RW-B) */ EC_REBOOT_COLD = 4, /* Cold-reboot */ EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */ /* * DEPRECATED: Hibernate EC and clears AP_IDLE flag. * Use EC_REBOOT_HIBERNATE and EC_REBOOT_FLAG_CLEAR_AP_IDLE, instead. */ EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, EC_REBOOT_COLD_AP_OFF = 8, /* Cold-reboot and don't boot AP */ EC_REBOOT_NO_OP = 9, /* Do nothing but apply the flags. */ }; /* Flags for ec_params_reboot_ec.reboot_flags */ #define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */ #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */ #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */ #define EC_REBOOT_FLAG_CLEAR_AP_IDLE BIT(3) /* Clear AP_IDLE flag */ struct ec_params_reboot_ec { uint8_t cmd; /* enum ec_reboot_cmd */ uint8_t flags; /* See EC_REBOOT_FLAG_* */ } __ec_align1; /* * Get information on last EC panic. * * Returns variable-length platform-dependent panic information. See panic.h * for details. */ #define EC_CMD_GET_PANIC_INFO 0x00D3 struct ec_params_get_panic_info_v1 { /* Do not modify PANIC_DATA_FLAG_OLD_HOSTCMD when reading panic info */ uint8_t preserve_old_hostcmd_flag; } __ec_align1; /*****************************************************************************/ /* * Special commands * * These do not follow the normal rules for commands. See each command for * details. */ /* * Reboot NOW * * This command will work even when the EC LPC interface is busy, because the * reboot command is processed at interrupt level. Note that when the EC * reboots, the host will reboot too, so there is no response to this command. * * Use EC_CMD_REBOOT_EC to reboot the EC more politely. */ #define EC_CMD_REBOOT 0x00D1 /* Think "die" */ /* * Resend last response (not supported on LPC). * * Returns EC_RES_UNAVAILABLE if there is no response available - for example, * there was no previous command, or the previous command's response was too * big to save. */ #define EC_CMD_RESEND_RESPONSE 0x00DB /* * This header byte on a command indicate version 0. Any header byte less * than this means that we are talking to an old EC which doesn't support * versioning. In that case, we assume version 0. * * Header bytes greater than this indicate a later version. For example, * EC_CMD_VERSION0 + 1 means we are using version 1. * * The old EC interface must not use commands 0xdc or higher. */ #define EC_CMD_VERSION0 0x00DC /* * Memory Dump Commands * * Since the HOSTCMD response size is limited, depending on the * protocol, retrieving a memory dump is split into 3 commands. * * 1. EC_CMD_MEMORY_DUMP_GET_METADATA returns the number of memory dump entries, * and the total dump size. * 2. EC_CMD_MEMORY_DUMP_GET_ENTRY_INFO returns the address and size for a given * memory dump entry index. * 3. EC_CMD_MEMORY_DUMP_READ_MEMORY returns the actual memory at a given * address. The address and size must be within the bounds of the given * memory dump entry index. Each response is limited to the max response size * of the host protocol, so this may need to be called repeatedly to retrieve * the entire memory dump entry. * * Memory entries may overlap and may be out of order. * The host should check for overlaps to optimize transfer rate. */ #define EC_CMD_MEMORY_DUMP_GET_METADATA 0x00DD struct ec_response_memory_dump_get_metadata { uint16_t memory_dump_entry_count; uint32_t memory_dump_total_size; } __ec_align4; #define EC_CMD_MEMORY_DUMP_GET_ENTRY_INFO 0x00DE struct ec_params_memory_dump_get_entry_info { uint16_t memory_dump_entry_index; } __ec_align4; struct ec_response_memory_dump_get_entry_info { uint32_t address; uint32_t size; } __ec_align4; #define EC_CMD_MEMORY_DUMP_READ_MEMORY 0x00DF struct ec_params_memory_dump_read_memory { uint16_t memory_dump_entry_index; uint32_t address; uint32_t size; } __ec_align4; /* * EC_CMD_MEMORY_DUMP_READ_MEMORY response buffer is written directly into * host_cmd_handler_args.response and host_cmd_handler_args.response_size. */ /*****************************************************************************/ /* * PD commands * * These commands are for PD MCU communication. */ /* EC to PD MCU exchange status command */ #define EC_CMD_PD_EXCHANGE_STATUS 0x0100 #define EC_VER_PD_EXCHANGE_STATUS 2 enum pd_charge_state { /* Don't change charge state */ PD_CHARGE_NO_CHANGE = 0, /* No charging allowed */ PD_CHARGE_NONE, /* 5V charging only */ PD_CHARGE_5V, /* Charge at max voltage */ PD_CHARGE_MAX, }; /* Status of EC being sent to PD */ #define EC_STATUS_HIBERNATING BIT(0) struct ec_params_pd_status { /* EC status */ uint8_t status; /* battery state of charge */ int8_t batt_soc; /* charging state (from enum pd_charge_state) */ uint8_t charge_state; } __ec_align1; /* Status of PD being sent back to EC */ #define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */ #define PD_STATUS_IN_RW BIT(1) /* Running RW image */ #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */ #define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */ #define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */ #define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */ #define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */ #define PD_STATUS_EC_INT_ACTIVE \ (PD_STATUS_TCPC_ALERT_0 | PD_STATUS_TCPC_ALERT_1 | PD_STATUS_HOST_EVENT) struct ec_response_pd_status { /* input current limit */ uint32_t curr_lim_ma; /* PD MCU status */ uint16_t status; /* active charging port */ int8_t active_charge_port; } __ec_align_size1; /* AP to PD MCU host event status command, cleared on read */ #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104 /* PD MCU host event status bits */ #define PD_EVENT_UPDATE_DEVICE BIT(0) #define PD_EVENT_POWER_CHANGE BIT(1) #define PD_EVENT_IDENTITY_RECEIVED BIT(2) #define PD_EVENT_DATA_SWAP BIT(3) #define PD_EVENT_TYPEC BIT(4) #define PD_EVENT_PPM BIT(5) struct ec_response_host_event_status { uint32_t status; /* PD MCU host event status */ } __ec_align4; /* * Set USB type-C port role and muxes * * Deprecated in favor of TYPEC_STATUS and TYPEC_CONTROL commands. * * TODO(b/169771803): TCPMv2: Remove EC_CMD_USB_PD_CONTROL */ #define EC_CMD_USB_PD_CONTROL 0x0101 enum usb_pd_control_role { USB_PD_CTRL_ROLE_NO_CHANGE = 0, USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, USB_PD_CTRL_ROLE_FORCE_SINK = 3, USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, USB_PD_CTRL_ROLE_FREEZE = 5, USB_PD_CTRL_ROLE_COUNT, }; enum usb_pd_control_mux { USB_PD_CTRL_MUX_NO_CHANGE = 0, USB_PD_CTRL_MUX_NONE = 1, USB_PD_CTRL_MUX_USB = 2, USB_PD_CTRL_MUX_DP = 3, USB_PD_CTRL_MUX_DOCK = 4, USB_PD_CTRL_MUX_AUTO = 5, USB_PD_CTRL_MUX_COUNT, }; enum usb_pd_control_swap { USB_PD_CTRL_SWAP_NONE = 0, USB_PD_CTRL_SWAP_DATA = 1, USB_PD_CTRL_SWAP_POWER = 2, USB_PD_CTRL_SWAP_VCONN = 3, USB_PD_CTRL_SWAP_COUNT, }; struct ec_params_usb_pd_control { uint8_t port; uint8_t role; uint8_t mux; uint8_t swap; } __ec_align1; #define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */ #define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */ #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */ #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ /* Partner unconstrained power */ #define PD_CTRL_RESP_ROLE_UNCONSTRAINED BIT(6) struct ec_response_usb_pd_control { uint8_t enabled; uint8_t role; uint8_t polarity; uint8_t state; } __ec_align1; struct ec_response_usb_pd_control_v1 { uint8_t enabled; uint8_t role; uint8_t polarity; char state[32]; } __ec_align1; /* Possible port partner connections based on CC line states */ enum pd_cc_states { PD_CC_NONE = 0, /* No port partner attached */ /* From DFP perspective */ PD_CC_UFP_NONE = 1, /* No UFP accessory connected */ PD_CC_UFP_AUDIO_ACC = 2, /* UFP Audio accessory connected */ PD_CC_UFP_DEBUG_ACC = 3, /* UFP Debug accessory connected */ PD_CC_UFP_ATTACHED = 4, /* Plain UFP attached */ /* From UFP perspective */ PD_CC_DFP_ATTACHED = 5, /* Plain DFP attached */ PD_CC_DFP_DEBUG_ACC = 6, /* DFP debug accessory connected */ }; /* Active/Passive Cable */ #define USB_PD_CTRL_ACTIVE_CABLE BIT(0) /* Optical/Non-optical cable */ #define USB_PD_CTRL_OPTICAL_CABLE BIT(1) /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */ #define USB_PD_CTRL_TBT_LEGACY_ADAPTER BIT(2) /* Active Link Uni-Direction */ #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR BIT(3) /* Retimer/Redriver cable */ #define USB_PD_CTRL_RETIMER_CABLE BIT(4) struct ec_response_usb_pd_control_v2 { uint8_t enabled; uint8_t role; uint8_t polarity; char state[32]; uint8_t cc_state; /* enum pd_cc_states representing cc state */ uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */ uint8_t reserved; /* Reserved for future use */ uint8_t control_flags; /* USB_PD_CTRL_*flags */ uint8_t cable_speed; /* TBT_SS_* cable speed */ uint8_t cable_gen; /* TBT_GEN3_* cable rounded support */ } __ec_align1; #define EC_CMD_USB_PD_PORTS 0x0102 /* Maximum number of PD ports on a device, num_ports will be <= this */ #define EC_USB_PD_MAX_PORTS 8 struct ec_response_usb_pd_ports { uint8_t num_ports; } __ec_align1; #define EC_CMD_USB_PD_POWER_INFO 0x0103 #define PD_POWER_CHARGING_PORT 0xff struct ec_params_usb_pd_power_info { uint8_t port; } __ec_align1; enum usb_chg_type { USB_CHG_TYPE_NONE, USB_CHG_TYPE_PD, USB_CHG_TYPE_C, USB_CHG_TYPE_PROPRIETARY, USB_CHG_TYPE_BC12_DCP, USB_CHG_TYPE_BC12_CDP, USB_CHG_TYPE_BC12_SDP, USB_CHG_TYPE_OTHER, USB_CHG_TYPE_VBUS, USB_CHG_TYPE_UNKNOWN, USB_CHG_TYPE_DEDICATED, }; enum usb_power_roles { USB_PD_PORT_POWER_DISCONNECTED, USB_PD_PORT_POWER_SOURCE, USB_PD_PORT_POWER_SINK, USB_PD_PORT_POWER_SINK_NOT_CHARGING, }; struct usb_chg_measures { uint16_t voltage_max; uint16_t voltage_now; uint16_t current_max; uint16_t current_lim; } __ec_align2; struct ec_response_usb_pd_power_info { uint8_t role; uint8_t type; uint8_t dualrole; uint8_t reserved1; struct usb_chg_measures meas; uint32_t max_power; } __ec_align4; /* * This command will return the number of USB PD charge port + the number * of dedicated port present. * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports */ #define EC_CMD_CHARGE_PORT_COUNT 0x0105 struct ec_response_charge_port_count { uint8_t port_count; } __ec_align1; /* * This command enable/disable dynamic PDO selection. */ #define EC_CMD_USB_PD_DPS_CONTROL 0x0106 struct ec_params_usb_pd_dps_control { uint8_t enable; } __ec_align1; /* Write USB-PD device FW */ #define EC_CMD_USB_PD_FW_UPDATE 0x0110 enum usb_pd_fw_update_cmds { USB_PD_FW_REBOOT, USB_PD_FW_FLASH_ERASE, USB_PD_FW_FLASH_WRITE, USB_PD_FW_ERASE_SIG, }; struct ec_params_usb_pd_fw_update { uint16_t dev_id; uint8_t cmd; uint8_t port; /* Size to write in bytes */ uint32_t size; /* Followed by data to write */ } __ec_align4; /* Write USB-PD Accessory RW_HASH table entry */ #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111 /* RW hash is first 20 bytes of SHA-256 of RW section */ #define PD_RW_HASH_SIZE 20 struct ec_params_usb_pd_rw_hash_entry { uint16_t dev_id; uint8_t dev_rw_hash[PD_RW_HASH_SIZE]; /* * Reserved for alignment of current_image * TODO(rspangler) but it's not aligned! * Should have been reserved[2]. */ uint8_t reserved; /* One of ec_image */ uint32_t current_image; } __ec_align1; /* Read USB-PD Accessory info */ #define EC_CMD_USB_PD_DEV_INFO 0x0112 struct ec_params_usb_pd_info_request { uint8_t port; } __ec_align1; /* Read USB-PD Device discovery info */ #define EC_CMD_USB_PD_DISCOVERY 0x0113 struct ec_params_usb_pd_discovery_entry { uint16_t vid; /* USB-IF VID */ uint16_t pid; /* USB-IF PID */ uint8_t ptype; /* product type (hub,periph,cable,ama) */ } __ec_align_size1; /* Override default charge behavior */ #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 /* Negative port parameters have special meaning */ enum usb_pd_override_ports { /* * DONT_CHARGE is for all ports. Thus it's persistent across plug-in * or plug-out. */ OVERRIDE_DONT_CHARGE = -2, OVERRIDE_OFF = -1, /* [0, CONFIG_USB_PD_PORT_MAX_COUNT): Port# */ }; struct ec_params_charge_port_override { int16_t override_port; /* Override port# */ } __ec_align2; /* * Read (and delete) one entry of PD event log. * TODO(crbug.com/751742): Make this host command more generic to accommodate * future non-PD logs that use the same internal EC event_log. */ #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 struct ec_response_pd_log { uint32_t timestamp; /* relative timestamp in milliseconds */ uint8_t type; /* event type : see PD_EVENT_xx below */ uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ uint16_t data; /* type-defined data payload */ uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ } __ec_align4; /* The timestamp is the microsecond counter shifted to get about a ms. */ #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ #define PD_LOG_SIZE_MASK 0x1f #define PD_LOG_PORT_MASK 0xe0 #define PD_LOG_PORT_SHIFT 5 #define PD_LOG_PORT_SIZE(port, size) \ (((port) << PD_LOG_PORT_SHIFT) | ((size) & PD_LOG_SIZE_MASK)) #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) /* PD event log : entry types */ /* PD MCU events */ #define PD_EVENT_MCU_BASE 0x00 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE + 0) #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE + 1) /* Reserved for custom board event */ #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE + 2) /* PD generic accessory events */ #define PD_EVENT_ACC_BASE 0x20 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE + 0) #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE + 1) /* PD power supply events */ #define PD_EVENT_PS_BASE 0x40 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE + 0) /* PD video dongles events */ #define PD_EVENT_VIDEO_BASE 0x60 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE + 0) #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE + 1) /* Returned in the "type" field, when there is no entry available */ #define PD_EVENT_NO_ENTRY 0xff /* * PD_EVENT_MCU_CHARGE event definition : * the payload is "struct usb_chg_measures" * the data field contains the port state flags as defined below : */ /* Port partner is a dual role device */ #define CHARGE_FLAGS_DUAL_ROLE BIT(15) /* Port is the pending override port */ #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) /* Port is the override port */ #define CHARGE_FLAGS_OVERRIDE BIT(13) /* Charger type */ #define CHARGE_FLAGS_TYPE_SHIFT 3 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) /* Power delivery role */ #define CHARGE_FLAGS_ROLE_MASK (7 << 0) /* * PD_EVENT_PS_FAULT data field flags definition : */ #define PS_FAULT_OCP 1 #define PS_FAULT_FAST_OCP 2 #define PS_FAULT_OVP 3 #define PS_FAULT_DISCH 4 /* * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". */ struct mcdp_version { uint8_t major; uint8_t minor; uint16_t build; } __ec_align4; struct mcdp_info { uint8_t family[2]; uint8_t chipid[2]; struct mcdp_version irom; struct mcdp_version fw; } __ec_align4; /* struct mcdp_info field decoding */ #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) /* Get/Set USB-PD Alternate mode info */ #define EC_CMD_USB_PD_GET_AMODE 0x0116 struct ec_params_usb_pd_get_mode_request { uint16_t svid_idx; /* SVID index to get */ uint8_t port; /* port */ } __ec_align_size1; #define VDO_MAX_SIZE 7 /* Max number of VDM data objects without VDM header */ #define VDO_MAX_OBJECTS (VDO_MAX_SIZE - 1) struct ec_params_usb_pd_get_mode_response { uint16_t svid; /* SVID */ uint16_t opos; /* Object Position */ uint32_t vdo[VDO_MAX_OBJECTS]; /* Mode VDOs */ } __ec_align4; #define EC_CMD_USB_PD_SET_AMODE 0x0117 enum pd_mode_cmd { PD_EXIT_MODE = 0, PD_ENTER_MODE = 1, /* Not a command. Do NOT remove. */ PD_MODE_CMD_COUNT, }; struct ec_params_usb_pd_set_mode_request { uint32_t cmd; /* enum pd_mode_cmd */ uint16_t svid; /* SVID to set */ uint8_t opos; /* Object Position */ uint8_t port; /* port */ } __ec_align4; /* Ask the PD MCU to record a log of a requested type */ #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118 struct ec_params_pd_write_log_entry { uint8_t type; /* event type : see PD_EVENT_xx above */ uint8_t port; /* port#, or 0 for events unrelated to a given port */ } __ec_align1; /* Control USB-PD chip */ #define EC_CMD_PD_CONTROL 0x0119 enum ec_pd_control_cmd { PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */ PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */ PD_RESET, /* Force reset the PD chip */ PD_CONTROL_DISABLE, /* Disable further calls to this command */ PD_CHIP_ON, /* Power on the PD chip */ }; struct ec_params_pd_control { uint8_t chip; /* chip id */ uint8_t subcmd; } __ec_align1; /* Get info about USB-C SS muxes */ #define EC_CMD_USB_PD_MUX_INFO 0x011A struct ec_params_usb_pd_mux_info { uint8_t port; /* USB-C port number */ } __ec_align1; /* Flags representing mux state */ #define USB_PD_MUX_NONE 0 /* Open switch */ #define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */ #define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */ #define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */ #define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */ #define USB_PD_MUX_HPD_IRQ_DEASSERTED 0 /* HPD IRQ is deasserted */ #define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */ #define USB_PD_MUX_HPD_LVL_DEASSERTED 0 /* HPD level is deasserted */ #define USB_PD_MUX_SAFE_MODE BIT(5) /* DP is in safe mode */ #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */ #define USB_PD_MUX_USB4_ENABLED BIT(7) /* USB4 enabled */ /* USB-C Dock connected */ #define USB_PD_MUX_DOCK (USB_PD_MUX_USB_ENABLED | USB_PD_MUX_DP_ENABLED) struct ec_response_usb_pd_mux_info { uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ } __ec_align1; #define EC_CMD_PD_CHIP_INFO 0x011B struct ec_params_pd_chip_info { uint8_t port; /* USB-C port number */ /* * Fetch the live chip info or hard-coded + cached chip info * 0: hardcoded value for VID/PID, cached value for FW version * 1: live chip value for VID/PID/FW Version */ uint8_t live; } __ec_align1; struct ec_response_pd_chip_info { uint16_t vendor_id; uint16_t product_id; uint16_t device_id; union { uint8_t fw_version_string[8]; uint64_t fw_version_number; } __ec_align2; } __ec_align2; struct ec_response_pd_chip_info_v1 { uint16_t vendor_id; uint16_t product_id; uint16_t device_id; union { uint8_t fw_version_string[8]; uint64_t fw_version_number; } __ec_align2; union { uint8_t min_req_fw_version_string[8]; uint64_t min_req_fw_version_number; } __ec_align2; } __ec_align2; /** Indicates the chip should NOT receive a firmware update, if set. This is * useful when multiple ports are serviced by a single chip, to avoid * performing redundant updates. The host command implementation shall ensure * only one port out of each physical chip has FW updates active. */ #define USB_PD_CHIP_INFO_FWUP_FLAG_NO_UPDATE BIT(0) /** Maximum length of a project name embedded in a PDC FW image. This length * does NOT include a NUL-terminator. */ #define USB_PD_CHIP_INFO_PROJECT_NAME_LEN 12 struct ec_response_pd_chip_info_v2 { uint16_t vendor_id; uint16_t product_id; uint16_t device_id; union { uint8_t fw_version_string[8]; uint64_t fw_version_number; } __ec_align2; union { uint8_t min_req_fw_version_string[8]; uint64_t min_req_fw_version_number; } __ec_align2; /** Flag to control the FW update process for this chip. */ uint16_t fw_update_flags; /** Project name string associated with the chip's FW. Add an extra * byte for a NUL-terminator. */ char fw_name_str[USB_PD_CHIP_INFO_PROJECT_NAME_LEN + 1]; } __ec_align2; /* Run RW signature verification and get status */ #define EC_CMD_RWSIG_CHECK_STATUS 0x011C struct ec_response_rwsig_check_status { uint32_t status; } __ec_align4; /* For controlling RWSIG task */ #define EC_CMD_RWSIG_ACTION 0x011D enum rwsig_action { RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */ RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */ }; struct ec_params_rwsig_action { uint32_t action; } __ec_align4; /* Run verification on a slot */ #define EC_CMD_EFS_VERIFY 0x011E struct ec_params_efs_verify { uint8_t region; /* enum ec_flash_region */ } __ec_align1; /* * Retrieve info from Cros Board Info store. Response is based on the data * type. Integers return a uint32. Strings return a string, using the response * size to determine how big it is. */ #define EC_CMD_GET_CROS_BOARD_INFO 0x011F /* * Write info into Cros Board Info on EEPROM. Write fails if the board has * hardware write-protect enabled. */ #define EC_CMD_SET_CROS_BOARD_INFO 0x0120 enum cbi_data_tag { CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */ CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */ CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */ CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */ CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */ CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */ CBI_TAG_FW_CONFIG = 6, /* uint32_t bit field */ CBI_TAG_PCB_SUPPLIER = 7, /* uint32_t or smaller */ /* Second Source Factory Cache */ CBI_TAG_SSFC = 8, /* uint32_t bit field */ CBI_TAG_REWORK_ID = 9, /* uint64_t or smaller */ CBI_TAG_FACTORY_CALIBRATION_DATA = 10, /* uint32_t bit field */ /* * A uint32_t field reserved for controlling common features at runtime. * It shouldn't be used at board-level. See union ec_common_control for * the bit definitions. */ CBI_TAG_COMMON_CONTROL = 11, /* struct board_batt_params */ CBI_TAG_BATTERY_CONFIG = 12, /* CBI_TAG_BATTERY_CONFIG_1 ~ 15 will use 13 ~ 27. */ CBI_TAG_BATTERY_CONFIG_15 = 27, /* Last entry */ CBI_TAG_COUNT, }; union ec_common_control { struct { uint32_t ucsi_enabled : 1; }; uint32_t raw_value; }; /* * Flags to control read operation * * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify * write was successful without reboot. */ #define CBI_GET_RELOAD BIT(0) struct ec_params_get_cbi { uint32_t tag; /* enum cbi_data_tag */ uint32_t flag; /* CBI_GET_* */ } __ec_align4; /* * Flags to control write behavior. * * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's * useful when writing multiple fields in a row. * INIT: Need to be set when creating a new CBI from scratch. All fields * will be initialized to zero first. */ #define CBI_SET_NO_SYNC BIT(0) #define CBI_SET_INIT BIT(1) struct ec_params_set_cbi { uint32_t tag; /* enum cbi_data_tag */ uint32_t flag; /* CBI_SET_* */ uint32_t size; /* Data size */ uint8_t data[]; /* For string and raw data */ } __ec_align1; /* * Retrieve binary from CrOS Board Info primary memory source. */ #define EC_CMD_CBI_BIN_READ 0x0504 /* * Write binary into CrOS Board Info temporary buffer and then commit it to * permanent storage once complete. Write fails if the board has hardware * write-protect enabled. */ #define EC_CMD_CBI_BIN_WRITE 0x0505 /* * CBI binary read/write flags * The default write behavior is to always append any data to the buffer. * If 'CLEAR' flag is set, buffer is cleared then data is appended. * If 'WRITE' flag is set, data is appended then buffer is written to memory. */ #define EC_CBI_BIN_BUFFER_CLEAR BIT(0) #define EC_CBI_BIN_BUFFER_WRITE BIT(1) struct ec_params_get_cbi_bin { uint32_t offset; /* Data offset */ uint32_t size; /* Data size */ } __ec_align4; struct ec_params_set_cbi_bin { uint32_t offset; /* Data offset */ uint32_t size; /* Data size */ uint8_t flags; /* bit field for EC_CBI_BIN_COMMIT_FLAG_* */ uint8_t data[]; /* For string and raw data */ } __ec_align1; /* * Information about resets of the AP by the EC and the EC's own uptime. */ #define EC_CMD_GET_UPTIME_INFO 0x0121 /* EC reset causes */ #define EC_RESET_FLAG_OTHER BIT(0) /* Other known reason */ #define EC_RESET_FLAG_RESET_PIN BIT(1) /* Reset pin asserted */ #define EC_RESET_FLAG_BROWNOUT BIT(2) /* Brownout */ #define EC_RESET_FLAG_POWER_ON BIT(3) /* Power-on reset */ #define EC_RESET_FLAG_WATCHDOG BIT(4) /* Watchdog timer reset */ #define EC_RESET_FLAG_SOFT BIT(5) /* Soft reset trigger by core */ #define EC_RESET_FLAG_HIBERNATE BIT(6) /* Wake from hibernate */ #define EC_RESET_FLAG_RTC_ALARM BIT(7) /* RTC alarm wake */ #define EC_RESET_FLAG_WAKE_PIN BIT(8) /* Wake pin triggered wake */ #define EC_RESET_FLAG_LOW_BATTERY BIT(9) /* Low battery triggered wake */ #define EC_RESET_FLAG_SYSJUMP BIT(10) /* Jumped directly to this image */ #define EC_RESET_FLAG_HARD BIT(11) /* Hard reset from software */ #define EC_RESET_FLAG_AP_OFF BIT(12) /* Do not power on AP */ /* Some reset flags preserved from previous boot */ #define EC_RESET_FLAG_PRESERVED BIT(13) #define EC_RESET_FLAG_USB_RESUME BIT(14) /* USB resume triggered wake */ #define EC_RESET_FLAG_RDD BIT(15) /* USB Type-C debug cable */ #define EC_RESET_FLAG_RBOX BIT(16) /* Fixed Reset Functionality */ #define EC_RESET_FLAG_SECURITY BIT(17) /* Security threat */ /* AP experienced a watchdog reset */ #define EC_RESET_FLAG_AP_WATCHDOG BIT(18) /* Do not select RW in EFS. This enables PD in RO for Chromebox. */ #define EC_RESET_FLAG_STAY_IN_RO BIT(19) #define EC_RESET_FLAG_EFS BIT(20) /* Jumped to this image by EFS */ #define EC_RESET_FLAG_AP_IDLE BIT(21) /* Leave alone AP */ #define EC_RESET_FLAG_INITIAL_PWR BIT(22) /* EC had power, then was reset */ /* * Reason codes used by the AP after a shutdown to figure out why it was reset * by the EC. These are sent in EC commands. Therefore, to maintain protocol * compatibility: * - New entries must be inserted prior to the _COUNT field * - If an existing entry is no longer in service, it must be replaced with a * RESERVED entry instead. * - The semantic meaning of an entry should not change. * - Do not exceed 2^15 - 1 for reset reasons or 2^16 - 1 for shutdown reasons. */ enum chipset_shutdown_reason { /* * Beginning of reset reasons. */ CHIPSET_RESET_BEGIN = 0, CHIPSET_RESET_UNKNOWN = CHIPSET_RESET_BEGIN, /* Custom reason defined by a board.c or baseboard.c file */ CHIPSET_RESET_BOARD_CUSTOM, /* Believe that the AP has hung */ CHIPSET_RESET_HANG_REBOOT, /* Reset by EC console command */ CHIPSET_RESET_CONSOLE_CMD, /* Reset by EC host command */ CHIPSET_RESET_HOST_CMD, /* Keyboard module reset key combination */ CHIPSET_RESET_KB_SYSRESET, /* Keyboard module warm reboot */ CHIPSET_RESET_KB_WARM_REBOOT, /* Debug module warm reboot */ CHIPSET_RESET_DBG_WARM_REBOOT, /* I cannot self-terminate. You must lower me into the steel. */ CHIPSET_RESET_AP_REQ, /* Reset as side-effect of startup sequence */ CHIPSET_RESET_INIT, /* EC detected an AP watchdog event. */ CHIPSET_RESET_AP_WATCHDOG, CHIPSET_RESET_COUNT, /* End of reset reasons. */ /* * Beginning of shutdown reasons. */ CHIPSET_SHUTDOWN_BEGIN = BIT(15), CHIPSET_SHUTDOWN_POWERFAIL = CHIPSET_SHUTDOWN_BEGIN, /* Forcing a shutdown as part of EC initialization */ CHIPSET_SHUTDOWN_INIT, /* Custom reason on a per-board basis. */ CHIPSET_SHUTDOWN_BOARD_CUSTOM, /* This is a reason to inhibit startup, not cause shut down. */ CHIPSET_SHUTDOWN_BATTERY_INHIBIT, /* A power_wait_signal is being asserted */ CHIPSET_SHUTDOWN_WAIT, /* Critical battery level. */ CHIPSET_SHUTDOWN_BATTERY_CRIT, /* Because you told me to. */ CHIPSET_SHUTDOWN_CONSOLE_CMD, /* Forcing a shutdown to effect entry to G3. */ CHIPSET_SHUTDOWN_G3, /* Force shutdown due to over-temperature. */ CHIPSET_SHUTDOWN_THERMAL, /* Force a chipset shutdown from the power button through EC */ CHIPSET_SHUTDOWN_BUTTON, CHIPSET_SHUTDOWN_COUNT, /* End of shutdown reasons. */ }; struct ec_response_uptime_info { /* * Number of milliseconds since the last EC boot. Sysjump resets * typically do not restart the EC's time_since_boot epoch. * * WARNING: The EC's sense of time is much less accurate than the AP's * sense of time, in both phase and frequency. This timebase is similar * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error. */ uint32_t time_since_ec_boot_ms; /* * Number of times the AP was reset by the EC since the last EC boot. * Note that the AP may be held in reset by the EC during the initial * boot sequence, such that the very first AP boot may count as more * than one here. */ uint32_t ap_resets_since_ec_boot; /* * The set of flags which describe the EC's most recent reset. * See EC_RESET_FLAG_* for details. */ uint32_t ec_reset_flags; /* Empty log entries have both the cause and timestamp set to zero. */ struct ap_reset_log_entry { /* See enum chipset_{reset,shutdown}_reason for details. */ uint16_t reset_cause; /* Reserved for protocol growth. */ uint16_t reserved; /* * The time of the reset's assertion, in milliseconds since the * last EC boot, in the same epoch as time_since_ec_boot_ms. * Set to zero if the log entry is empty. */ uint32_t reset_time_ms; } recent_ap_reset[4]; } __ec_align4; /* * Add entropy to the device secret (stored in the rollback region). * * Depending on the chip, the operation may take a long time (e.g. to erase * flash), so the commands are asynchronous. */ #define EC_CMD_ADD_ENTROPY 0x0122 enum add_entropy_action { /* Add entropy to the current secret. */ ADD_ENTROPY_ASYNC = 0, /* * Add entropy, and also make sure that the previous secret is erased. * (this can be implemented by adding entropy multiple times until * all rolback blocks have been overwritten). */ ADD_ENTROPY_RESET_ASYNC = 1, /* Read back result from the previous operation. */ ADD_ENTROPY_GET_RESULT = 2, }; struct ec_params_rollback_add_entropy { uint8_t action; } __ec_align1; /* * Perform a single read of a given ADC channel. */ #define EC_CMD_ADC_READ 0x0123 struct ec_params_adc_read { uint8_t adc_channel; } __ec_align1; struct ec_response_adc_read { int32_t adc_value; } __ec_align4; /* * Read back rollback info */ #define EC_CMD_ROLLBACK_INFO 0x0124 struct ec_response_rollback_info { int32_t id; /* Incrementing number to indicate which region to use. */ int32_t rollback_min_version; int32_t rw_rollback_version; } __ec_align4; /* Issue AP reset */ #define EC_CMD_AP_RESET 0x0125 /*****************************************************************************/ /* Locate peripheral chips * * Return values: * EC_RES_UNAVAILABLE: The chip type is supported but not found on system. * EC_RES_INVALID_PARAM: The chip type was unrecognized. * EC_RES_OVERFLOW: The index number exceeded the number of chip instances. */ #define EC_CMD_LOCATE_CHIP 0x0126 enum ec_chip_type { EC_CHIP_TYPE_CBI_EEPROM = 0, EC_CHIP_TYPE_TCPC = 1, EC_CHIP_TYPE_PDC = 2, EC_CHIP_TYPE_COUNT, EC_CHIP_TYPE_MAX = 0xFF, }; enum ec_bus_type { EC_BUS_TYPE_I2C = 0, EC_BUS_TYPE_EMBEDDED = 1, EC_BUS_TYPE_COUNT, EC_BUS_TYPE_MAX = 0xFF, }; struct ec_i2c_info { uint16_t port; /* Physical port for device */ uint16_t addr_flags; /* 7-bit (or 10-bit) address */ }; struct ec_params_locate_chip { uint8_t type; /* enum ec_chip_type */ uint8_t index; /* Specifies one instance of chip type */ /* Used for type specific parameters in future */ union { uint16_t reserved; }; } __ec_align2; struct ec_response_locate_chip { uint8_t bus_type; /* enum ec_bus_type */ uint8_t reserved; /* Aligning the following union to 2 bytes */ union { struct ec_i2c_info i2c_info; }; } __ec_align2; /* * Reboot AP on G3 * * This command is used for validation purpose, where the AP needs to be * returned back to S0 state from G3 state without using the servo to trigger * wake events. * - With command version 0: * AP reboots immediately from G3 * command usage: ectool reboot_ap_on_g3 && shutdown -h now * - With command version 1: * AP reboots after the user specified delay * command usage: ectool reboot_ap_on_g3 [] && shutdown -h now */ #define EC_CMD_REBOOT_AP_ON_G3 0x0127 struct ec_params_reboot_ap_on_g3_v1 { /* configurable delay in seconds in G3 state */ uint32_t reboot_ap_at_g3_delay; } __ec_align4; /*****************************************************************************/ /* Get PD port capabilities * * Returns the following static *capabilities* of the given port: * 1) Power role: source, sink, or dual. It is not anticipated that * future CrOS devices would ever be only a source, so the options are * sink or dual. * 2) Try-power role: source, sink, or none (practically speaking, I don't * believe any CrOS device would support Try.SNK, so this would be source * or none). * 3) Data role: dfp, ufp, or dual. This will probably only be DFP or dual * for CrOS devices. */ #define EC_CMD_GET_PD_PORT_CAPS 0x0128 enum ec_pd_power_role_caps { EC_PD_POWER_ROLE_SOURCE = 0, EC_PD_POWER_ROLE_SINK = 1, EC_PD_POWER_ROLE_DUAL = 2, }; enum ec_pd_try_power_role_caps { EC_PD_TRY_POWER_ROLE_NONE = 0, EC_PD_TRY_POWER_ROLE_SINK = 1, EC_PD_TRY_POWER_ROLE_SOURCE = 2, }; enum ec_pd_data_role_caps { EC_PD_DATA_ROLE_DFP = 0, EC_PD_DATA_ROLE_UFP = 1, EC_PD_DATA_ROLE_DUAL = 2, }; /* From: power_manager/power_supply_properties.proto */ enum ec_pd_port_location { /* The location of the port is unknown, or there's only one port. */ EC_PD_PORT_LOCATION_UNKNOWN = 0, /* * Various positions on the device. The first word describes the side of * the device where the port is located while the second clarifies the * position. For example, LEFT_BACK means the farthest-back port on the * left side, while BACK_LEFT means the leftmost port on the back of the * device. */ EC_PD_PORT_LOCATION_LEFT = 1, EC_PD_PORT_LOCATION_RIGHT = 2, EC_PD_PORT_LOCATION_BACK = 3, EC_PD_PORT_LOCATION_FRONT = 4, EC_PD_PORT_LOCATION_LEFT_FRONT = 5, EC_PD_PORT_LOCATION_LEFT_BACK = 6, EC_PD_PORT_LOCATION_RIGHT_FRONT = 7, EC_PD_PORT_LOCATION_RIGHT_BACK = 8, EC_PD_PORT_LOCATION_BACK_LEFT = 9, EC_PD_PORT_LOCATION_BACK_RIGHT = 10, }; struct ec_params_get_pd_port_caps { uint8_t port; /* Which port to interrogate */ } __ec_align1; struct ec_response_get_pd_port_caps { uint8_t pd_power_role_cap; /* enum ec_pd_power_role_caps */ uint8_t pd_try_power_role_cap; /* enum ec_pd_try_power_role_caps */ uint8_t pd_data_role_cap; /* enum ec_pd_data_role_caps */ uint8_t pd_port_location; /* enum ec_pd_port_location */ } __ec_align1; /*****************************************************************************/ /* * Button press simulation * * This command is used to simulate a button press. * Supported commands are vup(volume up) vdown(volume down) & rec(recovery) * Time duration for which button needs to be pressed is an optional parameter. * * NOTE: This is only available on unlocked devices for testing purposes only. */ #define EC_CMD_BUTTON 0x0129 struct ec_params_button { /* Button mask aligned to enum keyboard_button_type */ uint32_t btn_mask; /* Duration in milliseconds button needs to be pressed */ uint32_t press_ms; } __ec_align1; enum keyboard_button_type { KEYBOARD_BUTTON_POWER = 0, KEYBOARD_BUTTON_VOLUME_DOWN = 1, KEYBOARD_BUTTON_VOLUME_UP = 2, KEYBOARD_BUTTON_RECOVERY = 3, KEYBOARD_BUTTON_CAPSENSE_1 = 4, KEYBOARD_BUTTON_CAPSENSE_2 = 5, KEYBOARD_BUTTON_CAPSENSE_3 = 6, KEYBOARD_BUTTON_CAPSENSE_4 = 7, KEYBOARD_BUTTON_CAPSENSE_5 = 8, KEYBOARD_BUTTON_CAPSENSE_6 = 9, KEYBOARD_BUTTON_CAPSENSE_7 = 10, KEYBOARD_BUTTON_CAPSENSE_8 = 11, KEYBOARD_BUTTON_COUNT, }; /*****************************************************************************/ /* * "Get the Keyboard Config". An EC implementing this command is expected to be * vivaldi capable, i.e. can send action codes for the top row keys. * Additionally, capability to send function codes for the same keys is * optional and acceptable. * * Note: If the top row can generate both function and action codes by * using a dedicated Fn key, it does not matter whether the key sends * "function" or "action" codes by default. In both cases, the response * for this command will look the same. */ #define EC_CMD_GET_KEYBD_CONFIG 0x012A /* Possible values for the top row keys */ enum action_key { TK_ABSENT = 0, TK_BACK = 1, TK_FORWARD = 2, TK_REFRESH = 3, TK_FULLSCREEN = 4, TK_OVERVIEW = 5, TK_BRIGHTNESS_DOWN = 6, TK_BRIGHTNESS_UP = 7, TK_VOL_MUTE = 8, TK_VOL_DOWN = 9, TK_VOL_UP = 10, TK_SNAPSHOT = 11, TK_PRIVACY_SCRN_TOGGLE = 12, TK_KBD_BKLIGHT_DOWN = 13, TK_KBD_BKLIGHT_UP = 14, TK_PLAY_PAUSE = 15, TK_NEXT_TRACK = 16, TK_PREV_TRACK = 17, TK_KBD_BKLIGHT_TOGGLE = 18, TK_MICMUTE = 19, TK_MENU = 20, TK_DICTATE = 21, TK_ACCESSIBILITY = 22, TK_DONOTDISTURB = 23, TK_COUNT }; /* * Max & Min number of top row keys, excluding Esc and Screenlock keys. * If this needs to change, please create a new version of the command. */ #define MAX_TOP_ROW_KEYS 15 #define MIN_TOP_ROW_KEYS 10 /* * Is the keyboard capable of sending function keys *in addition to* * action keys. This is possible for e.g. if the keyboard has a * dedicated Fn key. */ #define KEYBD_CAP_FUNCTION_KEYS BIT(0) /* * Whether the keyboard has a dedicated numeric keyboard. */ #define KEYBD_CAP_NUMERIC_KEYPAD BIT(1) /* * Whether the keyboard has a screenlock key. */ #define KEYBD_CAP_SCRNLOCK_KEY BIT(2) /* * Whether the keyboard has an assistant key. */ #define KEYBD_CAP_ASSISTANT_KEY BIT(3) struct ec_response_keybd_config { /* * Number of top row keys, excluding Esc and Screenlock. * If this is 0, all Vivaldi keyboard code is disabled. * (i.e. does not expose any tables to the kernel). */ uint8_t num_top_row_keys; /* * The action keys in the top row, in order from left to right. * The values are filled from enum action_key. Esc and Screenlock * keys are not considered part of top row keys. */ uint8_t action_keys[MAX_TOP_ROW_KEYS]; /* Capability flags */ uint8_t capabilities; } __ec_align1; /* * Configure smart discharge */ #define EC_CMD_SMART_DISCHARGE 0x012B #define EC_SMART_DISCHARGE_FLAGS_SET BIT(0) /* Discharge rates when the system is in cutoff or hibernation. */ struct discharge_rate { uint16_t cutoff; /* Discharge rate (uA) in cutoff */ uint16_t hibern; /* Discharge rate (uA) in hibernation */ }; struct smart_discharge_zone { /* When the capacity (mAh) goes below this, EC cuts off the battery. */ int cutoff; /* When the capacity (mAh) is below this, EC stays up. */ int stayup; }; struct ec_params_smart_discharge { uint8_t flags; /* EC_SMART_DISCHARGE_FLAGS_* */ /* * Desired hours for the battery to survive before reaching 0%. Set to * zero to disable smart discharging. That is, the system hibernates as * soon as the G3 idle timer expires. */ uint16_t hours_to_zero; /* Set both to zero to keep the current rates. */ struct discharge_rate drate; }; struct ec_response_smart_discharge { uint16_t hours_to_zero; struct discharge_rate drate; struct smart_discharge_zone dzone; }; /*****************************************************************************/ /* Voltage regulator controls */ /* * Get basic info of voltage regulator for given index. * * Returns the regulator name and supported voltage list in mV. */ #define EC_CMD_REGULATOR_GET_INFO 0x012C /* Maximum length of regulator name */ #define EC_REGULATOR_NAME_MAX_LEN 16 /* Maximum length of the supported voltage list. */ #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16 struct ec_params_regulator_get_info { uint32_t index; } __ec_align4; struct ec_response_regulator_get_info { char name[EC_REGULATOR_NAME_MAX_LEN]; uint16_t num_voltages; uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT]; } __ec_align2; /* * Configure the regulator as enabled / disabled. */ #define EC_CMD_REGULATOR_ENABLE 0x012D struct ec_params_regulator_enable { uint32_t index; uint8_t enable; } __ec_align4; /* * Query if the regulator is enabled. * * Returns 1 if the regulator is enabled, 0 if not. */ #define EC_CMD_REGULATOR_IS_ENABLED 0x012E struct ec_params_regulator_is_enabled { uint32_t index; } __ec_align4; struct ec_response_regulator_is_enabled { uint8_t enabled; } __ec_align1; /* * Set voltage for the voltage regulator within the range specified. * * The driver should select the voltage in range closest to min_mv. * * Also note that this might be called before the regulator is enabled, and the * setting should be in effect after the regulator is enabled. */ #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F struct ec_params_regulator_set_voltage { uint32_t index; uint32_t min_mv; uint32_t max_mv; } __ec_align4; /* * Get the currently configured voltage for the voltage regulator. * * Note that this might be called before the regulator is enabled, and this * should return the configured output voltage if the regulator is enabled. */ #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130 struct ec_params_regulator_get_voltage { uint32_t index; } __ec_align4; struct ec_response_regulator_get_voltage { uint32_t voltage_mv; } __ec_align4; /* * Gather all discovery information for the given port and partner type. * * Note that if discovery has not yet completed, only the currently completed * responses will be filled in. If the discovery data structures are changed * in the process of the command running, BUSY will be returned. * * VDO field sizes are set to the maximum possible number of VDOs a VDM may * contain, while the number of SVIDs here is selected to fit within the PROTO2 * maximum parameter size. */ #define EC_CMD_TYPEC_DISCOVERY 0x0131 enum typec_partner_type { TYPEC_PARTNER_SOP = 0, TYPEC_PARTNER_SOP_PRIME = 1, TYPEC_PARTNER_SOP_PRIME_PRIME = 2, }; struct ec_params_typec_discovery { uint8_t port; uint8_t partner_type; /* enum typec_partner_type */ } __ec_align1; struct svid_mode_info { uint16_t svid; uint16_t mode_count; /* Number of modes partner sent */ uint32_t mode_vdo[VDO_MAX_OBJECTS]; }; struct ec_response_typec_discovery { uint8_t identity_count; /* Number of identity VDOs partner sent */ uint8_t svid_count; /* Number of SVIDs partner sent */ uint16_t reserved; uint32_t discovery_vdo[VDO_MAX_OBJECTS]; struct svid_mode_info svids[0]; } __ec_align1; /* USB Type-C commands for AP-controlled device policy. */ #define EC_CMD_TYPEC_CONTROL 0x0132 enum typec_control_command { TYPEC_CONTROL_COMMAND_EXIT_MODES, TYPEC_CONTROL_COMMAND_CLEAR_EVENTS, TYPEC_CONTROL_COMMAND_ENTER_MODE, TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY, TYPEC_CONTROL_COMMAND_USB_MUX_SET, TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE, TYPEC_CONTROL_COMMAND_SEND_VDM_REQ, }; /* Modes (USB or alternate) that a type-C port may enter. */ enum typec_mode { TYPEC_MODE_DP, TYPEC_MODE_TBT, TYPEC_MODE_USB4, }; /* Replies the AP may specify to the TBT EnterMode command as a UFP */ enum typec_tbt_ufp_reply { TYPEC_TBT_UFP_REPLY_NAK, TYPEC_TBT_UFP_REPLY_ACK, }; #define TYPEC_USB_MUX_SET_ALL_CHIPS 0xFF struct typec_usb_mux_set { /* Index of the mux to set in the chain */ uint8_t mux_index; /* USB_PD_MUX_*-encoded USB mux state to set */ uint8_t mux_flags; } __ec_align1; struct typec_vdm_req { /* VDM data, including VDM header */ uint32_t vdm_data[VDO_MAX_SIZE]; /* Number of 32-bit fields filled in */ uint8_t vdm_data_objects; /* Partner to address - see enum typec_partner_type */ uint8_t partner_type; } __ec_align1; struct ec_params_typec_control { uint8_t port; uint8_t command; /* enum typec_control_command */ uint16_t reserved; /* * This section will be interpreted based on |command|. Define a * placeholder structure to avoid having to increase the size and bump * the command version when adding new sub-commands. */ union { /* Used for CLEAR_EVENTS */ uint32_t clear_events_mask; /* Used for ENTER_MODE - enum typec_mode */ uint8_t mode_to_enter; /* Used for TBT_UFP_REPLY - enum typec_tbt_ufp_reply */ uint8_t tbt_ufp_reply; /* Used for USB_MUX_SET */ struct typec_usb_mux_set mux_params; /* Used for BIST_SHARE_MODE */ uint8_t bist_share_mode; /* Used for VMD_REQ */ struct typec_vdm_req vdm_req_params; uint8_t placeholder[128]; }; } __ec_align1; /* * Gather all status information for a port. * * Note: this covers many of the return fields from the deprecated * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the * discovery data. The "enum pd_cc_states" is defined with the deprecated * EC_CMD_USB_PD_CONTROL command. * * This also combines in the EC_CMD_USB_PD_MUX_INFO flags. */ #define EC_CMD_TYPEC_STATUS 0x0133 /* * Power role. * * Note this is also used for PD header creation, and values align to those in * the Power Delivery Specification Revision 3.0 (See * 6.2.1.1.4 Port Power Role). */ enum pd_power_role { PD_ROLE_SINK = 0, PD_ROLE_SOURCE = 1, }; /* * Data role. * * Note this is also used for PD header creation, and the first two values * align to those in the Power Delivery Specification Revision 3.0 (See * 6.2.1.1.6 Port Data Role). */ enum pd_data_role { PD_ROLE_UFP = 0, PD_ROLE_DFP = 1, PD_ROLE_DISCONNECTED = 2, }; enum pd_vconn_role { PD_ROLE_VCONN_OFF = 0, PD_ROLE_VCONN_SRC = 1, }; /* * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2, * regardless of whether a debug accessory is connected. */ enum tcpc_cc_polarity { /* * _CCx: is used to indicate the polarity while not connected to * a Debug Accessory. Only one CC line will assert a resistor and * the other will be open. */ POLARITY_CC1 = 0, POLARITY_CC2 = 1, /* * _CCx_DTS is used to indicate the polarity while connected to a * SRC Debug Accessory. Assert resistors on both lines. */ POLARITY_CC1_DTS = 2, POLARITY_CC2_DTS = 3, /* * The current TCPC code relies on these specific POLARITY values. * Adding in a check to verify if the list grows for any reason * that this will give a hint that other places need to be * adjusted. */ POLARITY_COUNT, }; #define MODE_DP_PIN_A BIT(0) #define MODE_DP_PIN_B BIT(1) #define MODE_DP_PIN_C BIT(2) #define MODE_DP_PIN_D BIT(3) #define MODE_DP_PIN_E BIT(4) #define MODE_DP_PIN_F BIT(5) #define MODE_DP_PIN_ALL GENMASK(5, 0) #define PD_STATUS_EVENT_SOP_DISC_DONE BIT(0) #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE BIT(1) #define PD_STATUS_EVENT_HARD_RESET BIT(2) #define PD_STATUS_EVENT_DISCONNECTED BIT(3) #define PD_STATUS_EVENT_MUX_0_SET_DONE BIT(4) #define PD_STATUS_EVENT_MUX_1_SET_DONE BIT(5) #define PD_STATUS_EVENT_VDM_REQ_REPLY BIT(6) #define PD_STATUS_EVENT_VDM_REQ_FAILED BIT(7) #define PD_STATUS_EVENT_VDM_ATTENTION BIT(8) #define PD_STATUS_EVENT_COUNT 9 /* * Encode and decode for BCD revision response * * Note: the major revision set is written assuming that the value given is the * Specification Revision from the PD header, which currently only maps to PD * 1.0-3.0 with the major revision being one greater than the binary value. */ #define PD_STATUS_REV_SET_MAJOR(r) ((r + 1) << 12) #define PD_STATUS_REV_GET_MAJOR(r) ((r >> 12) & 0xF) #define PD_STATUS_REV_GET_MINOR(r) ((r >> 8) & 0xF) /* * Encode revision from partner RMDO * * Unlike the specification revision given in the PD header, specification and * version information returned in the revision message data object (RMDO) is * not offset. */ #define PD_STATUS_RMDO_REV_SET_MAJOR(r) (r << 12) #define PD_STATUS_RMDO_REV_SET_MINOR(r) (r << 8) #define PD_STATUS_RMDO_VER_SET_MAJOR(r) (r << 4) #define PD_STATUS_RMDO_VER_SET_MINOR(r) (r) /* * Decode helpers for Source and Sink Capability PDOs * * Note: The Power Delivery Specification should be considered the ultimate * source of truth on the decoding of these PDOs */ #define PDO_TYPE_FIXED (0 << 30) #define PDO_TYPE_BATTERY (1 << 30) #define PDO_TYPE_VARIABLE (2 << 30) #define PDO_TYPE_AUGMENTED (3 << 30) #define PDO_TYPE_MASK (3 << 30) /* * From Table 6-9 and Table 6-14 PD Rev 3.0 Ver 2.0 * * <31:30> : Fixed Supply * <29> : Dual-Role Power * <28> : SNK/SRC dependent * <27> : Unconstrained Power * <26> : USB Communications Capable * <25> : Dual-Role Data * <24:20> : SNK/SRC dependent * <19:10> : Voltage in 50mV Units * <9:0> : Maximum Current in 10mA units */ #define PDO_FIXED_DUAL_ROLE BIT(29) #define PDO_FIXED_UNCONSTRAINED BIT(27) #define PDO_FIXED_COMM_CAP BIT(26) #define PDO_FIXED_DATA_SWAP BIT(25) #define PDO_FIXED_FRS_CURR_MASK GENMASK(24, 23) /* Sink Cap only */ #define PDO_FIXED_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50) #define PDO_FIXED_CURRENT(p) ((p & 0x3FF) * 10) /* * From Table 6-12 and Table 6-16 PD Rev 3.0 Ver 2.0 * * <31:30> : Battery * <29:20> : Maximum Voltage in 50mV units * <19:10> : Minimum Voltage in 50mV units * <9:0> : Maximum Allowable Power in 250mW units */ #define PDO_BATT_MAX_VOLTAGE(p) ((p >> 20 & 0x3FF) * 50) #define PDO_BATT_MIN_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50) #define PDO_BATT_MAX_POWER(p) ((p & 0x3FF) * 250) /* * From Table 6-11 and Table 6-15 PD Rev 3.0 Ver 2.0 * * <31:30> : Variable Supply (non-Battery) * <29:20> : Maximum Voltage in 50mV units * <19:10> : Minimum Voltage in 50mV units * <9:0> : Operational Current in 10mA units */ #define PDO_VAR_MAX_VOLTAGE(p) ((p >> 20 & 0x3FF) * 50) #define PDO_VAR_MIN_VOLTAGE(p) ((p >> 10 & 0x3FF) * 50) #define PDO_VAR_MAX_CURRENT(p) ((p & 0x3FF) * 10) /* * From Table 6-13 and Table 6-17 PD Rev 3.0 Ver 2.0 * * Note this type is reserved in PD 2.0, and only one type of APDO is * supported as of the cited version. * * <31:30> : Augmented Power Data Object * <29:28> : Programmable Power Supply * <27> : PPS Power Limited * <26:25> : Reserved * <24:17> : Maximum Voltage in 100mV increments * <16> : Reserved * <15:8> : Minimum Voltage in 100mV increments * <7> : Reserved * <6:0> : Maximum Current in 50mA increments */ #define PDO_AUG_MAX_VOLTAGE(p) ((p >> 17 & 0xFF) * 100) #define PDO_AUG_MIN_VOLTAGE(p) ((p >> 8 & 0xFF) * 100) #define PDO_AUG_MAX_CURRENT(p) ((p & 0x7F) * 50) struct ec_params_typec_status { uint8_t port; } __ec_align1; /* * ec_response_typec_status is deprecated. Use ec_response_typec_status_v1. * If you need to support old ECs who speak only v0, use * ec_response_typec_status_v0 instead. They're binary-compatible. */ struct ec_response_typec_status /* DEPRECATED */ { uint8_t pd_enabled; /* PD communication enabled - bool */ uint8_t dev_connected; /* Device connected - bool */ uint8_t sop_connected; /* Device is SOP PD capable - bool */ uint8_t source_cap_count; /* Number of Source Cap PDOs */ uint8_t power_role; /* enum pd_power_role */ uint8_t data_role; /* enum pd_data_role */ uint8_t vconn_role; /* enum pd_vconn_role */ uint8_t sink_cap_count; /* Number of Sink Cap PDOs */ uint8_t polarity; /* enum tcpc_cc_polarity */ uint8_t cc_state; /* enum pd_cc_states */ uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */ uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */ char tc_state[32]; /* TC state name */ uint32_t events; /* PD_STATUS_EVENT bitmask */ /* * BCD PD revisions for partners * * The format has the PD major revision in the upper nibble, and the PD * minor revision in the next nibble. The following two nibbles hold the * major and minor specification version. If a partner does not support * the Revision message, only the major revision will be given. * ex. PD Revision 3.2 Version 1.9 would map to 0x3219 * * PD revision/version will be 0 if no PD device is connected. */ uint16_t sop_revision; uint16_t sop_prime_revision; uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */ uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */ } __ec_align1; struct cros_ec_typec_status { uint8_t pd_enabled; /* PD communication enabled - bool */ uint8_t dev_connected; /* Device connected - bool */ uint8_t sop_connected; /* Device is SOP PD capable - bool */ uint8_t source_cap_count; /* Number of Source Cap PDOs */ uint8_t power_role; /* enum pd_power_role */ uint8_t data_role; /* enum pd_data_role */ uint8_t vconn_role; /* enum pd_vconn_role */ uint8_t sink_cap_count; /* Number of Sink Cap PDOs */ uint8_t polarity; /* enum tcpc_cc_polarity */ uint8_t cc_state; /* enum pd_cc_states */ uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */ uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */ char tc_state[32]; /* TC state name */ uint32_t events; /* PD_STATUS_EVENT bitmask */ /* * BCD PD revisions for partners * * The format has the PD major revision in the upper nibble, and the PD * minor revision in the next nibble. The following two nibbles hold the * major and minor specification version. If a partner does not support * the Revision message, only the major revision will be given. * ex. PD Revision 3.2 Version 1.9 would map to 0x3219 * * PD revision/version will be 0 if no PD device is connected. */ uint16_t sop_revision; uint16_t sop_prime_revision; } __ec_align1; struct ec_response_typec_status_v0 { struct cros_ec_typec_status typec_status; uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */ uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */ } __ec_align1; struct ec_response_typec_status_v1 { struct cros_ec_typec_status typec_status; uint32_t source_cap_pdos[11]; /* Max 11 PDOs can be present */ uint32_t sink_cap_pdos[11]; /* Max 11 PDOs can be present */ } __ec_align1; /** * Get the number of peripheral charge ports */ #define EC_CMD_PCHG_COUNT 0x0134 #define EC_PCHG_MAX_PORTS 8 struct ec_response_pchg_count { uint8_t port_count; } __ec_align1; /** * Get the status of a peripheral charge port */ #define EC_CMD_PCHG 0x0135 /* For v1 and v2 */ struct ec_params_pchg { uint8_t port; } __ec_align1; struct ec_params_pchg_v3 { uint8_t port; /* Below are new in v3. */ uint8_t reserved1; uint8_t reserved2; uint8_t reserved3; /* Errors acked by the host (thus to be cleared) */ uint32_t error; } __ec_align1; /* For v1 */ struct ec_response_pchg { uint32_t error; /* enum pchg_error */ uint8_t state; /* enum pchg_state state */ uint8_t battery_percentage; uint8_t unused0; uint8_t unused1; /* Fields added in version 1 */ uint32_t fw_version; uint32_t dropped_event_count; } __ec_align4; /* For v2 and v3 */ struct ec_response_pchg_v2 { uint32_t error; /* enum pchg_error */ uint8_t state; /* enum pchg_state state */ uint8_t battery_percentage; uint8_t unused0; uint8_t unused1; /* Fields added in version 1 */ uint32_t fw_version; uint32_t dropped_event_count; /* Fields added in version 2 */ uint32_t dropped_host_event_count; } __ec_align4; enum pchg_state { /* Charger is reset and not initialized. */ PCHG_STATE_RESET = 0, /* Charger is initialized or disabled. */ PCHG_STATE_INITIALIZED, /* Charger is enabled and ready to detect a device. */ PCHG_STATE_ENABLED, /* Device is in proximity. */ PCHG_STATE_DETECTED, /* Device is being charged. */ PCHG_STATE_CHARGING, /* Device is fully charged. It implies DETECTED (& not charging). */ PCHG_STATE_FULL, /* In download (a.k.a. firmware update) mode */ PCHG_STATE_DOWNLOAD, /* In download mode. Ready for receiving data. */ PCHG_STATE_DOWNLOADING, /* Device is ready for data communication. */ PCHG_STATE_CONNECTED, /* Charger is in Built-In Self Test mode. */ PCHG_STATE_BIST, /* Put no more entry below */ PCHG_STATE_COUNT, }; /* clang-format off */ #define EC_PCHG_STATE_TEXT \ { \ [PCHG_STATE_RESET] = "RESET", \ [PCHG_STATE_INITIALIZED] = "INITIALIZED", \ [PCHG_STATE_ENABLED] = "ENABLED", \ [PCHG_STATE_DETECTED] = "DETECTED", \ [PCHG_STATE_CHARGING] = "CHARGING", \ [PCHG_STATE_FULL] = "FULL", \ [PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \ [PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \ [PCHG_STATE_CONNECTED] = "CONNECTED", \ [PCHG_STATE_BIST] = "BIST", \ } /* clang-format on */ /** * Update firmware of peripheral chip */ #define EC_CMD_PCHG_UPDATE 0x0136 /* Port number is encoded in bit[28:31]. */ #define EC_MKBP_PCHG_PORT_SHIFT 28 /* Utility macros for converting MKBP event <-> port number. */ #define EC_MKBP_PCHG_EVENT_TO_PORT(e) (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf) #define EC_MKBP_PCHG_PORT_TO_EVENT(p) ((p) << EC_MKBP_PCHG_PORT_SHIFT) /* Utility macro for extracting event bits. */ #define EC_MKBP_PCHG_EVENT_MASK(e) \ ((e) & GENMASK(EC_MKBP_PCHG_PORT_SHIFT - 1, 0)) #define EC_MKBP_PCHG_UPDATE_OPENED BIT(0) #define EC_MKBP_PCHG_WRITE_COMPLETE BIT(1) #define EC_MKBP_PCHG_UPDATE_CLOSED BIT(2) #define EC_MKBP_PCHG_UPDATE_ERROR BIT(3) #define EC_MKBP_PCHG_DEVICE_EVENT BIT(4) enum ec_pchg_update_cmd { /* Reset chip to normal mode. */ EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0, /* Reset and put a chip in update (a.k.a. download) mode. */ EC_PCHG_UPDATE_CMD_OPEN, /* Write a block of data containing FW image. */ EC_PCHG_UPDATE_CMD_WRITE, /* Close update session. */ EC_PCHG_UPDATE_CMD_CLOSE, /* Reset chip (without mode change). */ EC_PCHG_UPDATE_CMD_RESET, /* Enable pass-through mode. */ EC_PCHG_UPDATE_CMD_ENABLE_PASSTHRU, /* End of commands */ EC_PCHG_UPDATE_CMD_COUNT, }; struct ec_params_pchg_update { /* PCHG port number */ uint8_t port; /* enum ec_pchg_update_cmd */ uint8_t cmd; /* Padding */ uint8_t reserved0; uint8_t reserved1; /* Version of new firmware */ uint32_t version; /* CRC32 of new firmware */ uint32_t crc32; /* Address in chip memory where is written to */ uint32_t addr; /* Size of */ uint32_t size; /* Partial data of new firmware */ uint8_t data[]; } __ec_align4; BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd) * 8)); struct ec_response_pchg_update { /* Block size */ uint32_t block_size; } __ec_align4; #define EC_CMD_DISPLAY_SOC 0x0137 struct ec_response_display_soc { /* Display charge in 10ths of a % (1000=100.0%) */ int16_t display_soc; /* Full factor in 10ths of a % (1000=100.0%) */ int16_t full_factor; /* Shutdown SoC in 10ths of a % (1000=100.0%) */ int16_t shutdown_soc; } __ec_align2; #define EC_CMD_SET_BASE_STATE 0x0138 struct ec_params_set_base_state { uint8_t cmd; /* enum ec_set_base_state_cmd */ } __ec_align1; enum ec_set_base_state_cmd { EC_SET_BASE_STATE_DETACH = 0, EC_SET_BASE_STATE_ATTACH, EC_SET_BASE_STATE_RESET, }; #define EC_CMD_I2C_CONTROL 0x0139 /* Subcommands for I2C control */ enum ec_i2c_control_command { EC_I2C_CONTROL_GET_SPEED, EC_I2C_CONTROL_SET_SPEED, }; #define EC_I2C_CONTROL_SPEED_UNKNOWN 0 struct ec_params_i2c_control { uint8_t port; /* I2C port number */ uint8_t cmd; /* enum ec_i2c_control_command */ union { uint16_t speed_khz; } cmd_params; } __ec_align_size1; struct ec_response_i2c_control { union { uint16_t speed_khz; } cmd_response; } __ec_align_size1; #define EC_CMD_RGBKBD_SET_COLOR 0x013A #define EC_CMD_RGBKBD 0x013B #define EC_RGBKBD_MAX_KEY_COUNT 128 #define EC_RGBKBD_MAX_RGB_COLOR 0xFFFFFF #define EC_RGBKBD_MAX_SCALE 0xFF enum rgbkbd_state { /* RGB keyboard is reset and not initialized. */ RGBKBD_STATE_RESET = 0, /* RGB keyboard is initialized but not enabled. */ RGBKBD_STATE_INITIALIZED, /* RGB keyboard is disabled. */ RGBKBD_STATE_DISABLED, /* RGB keyboard is enabled and ready to receive a command. */ RGBKBD_STATE_ENABLED, /* Put no more entry below */ RGBKBD_STATE_COUNT, }; enum ec_rgbkbd_subcmd { EC_RGBKBD_SUBCMD_CLEAR = 1, EC_RGBKBD_SUBCMD_DEMO = 2, EC_RGBKBD_SUBCMD_SET_SCALE = 3, EC_RGBKBD_SUBCMD_GET_CONFIG = 4, EC_RGBKBD_SUBCMD_COUNT }; enum ec_rgbkbd_demo { EC_RGBKBD_DEMO_OFF = 0, EC_RGBKBD_DEMO_FLOW = 1, EC_RGBKBD_DEMO_DOT = 2, EC_RGBKBD_DEMO_COUNT, }; BUILD_ASSERT(EC_RGBKBD_DEMO_COUNT <= 255); enum ec_rgbkbd_type { EC_RGBKBD_TYPE_UNKNOWN = 0, EC_RGBKBD_TYPE_PER_KEY = 1, /* e.g. Vell */ EC_RGBKBD_TYPE_FOUR_ZONES_40_LEDS = 2, /* e.g. Taniks */ EC_RGBKBD_TYPE_FOUR_ZONES_12_LEDS = 3, /* e.g. Osiris */ EC_RGBKBD_TYPE_FOUR_ZONES_4_LEDS = 4, /* e.g. Mithrax */ EC_RGBKBD_TYPE_COUNT, }; struct ec_rgbkbd_set_scale { uint8_t key; struct rgb_s scale; }; struct ec_params_rgbkbd { uint8_t subcmd; /* Sub-command (enum ec_rgbkbd_subcmd) */ union { struct rgb_s color; /* EC_RGBKBD_SUBCMD_CLEAR */ uint8_t demo; /* EC_RGBKBD_SUBCMD_DEMO */ struct ec_rgbkbd_set_scale set_scale; }; } __ec_align1; struct ec_response_rgbkbd { /* * RGBKBD type supported by the device. */ uint8_t rgbkbd_type; /* enum ec_rgbkbd_type */ } __ec_align1; struct ec_params_rgbkbd_set_color { /* Specifies the starting key ID whose color is being changed. */ uint8_t start_key; /* Specifies # of elements in . */ uint8_t length; /* RGB color data array of length up to MAX_KEY_COUNT. */ struct rgb_s color[]; } __ec_align1; /* * Gather the response to the most recent VDM REQ from the AP, as well * as popping the oldest VDM:Attention from the DPM queue */ #define EC_CMD_TYPEC_VDM_RESPONSE 0x013C struct ec_params_typec_vdm_response { uint8_t port; } __ec_align1; struct ec_response_typec_vdm_response { /* Number of 32-bit fields filled in */ uint8_t vdm_data_objects; /* Partner to address - see enum typec_partner_type */ uint8_t partner_type; /* enum ec_status describing VDM response */ uint16_t vdm_response_err; /* VDM data, including VDM header */ uint32_t vdm_response[VDO_MAX_SIZE]; /* Number of 32-bit Attention fields filled in */ uint8_t vdm_attention_objects; /* Number of remaining messages to consume */ uint8_t vdm_attention_left; /* Reserved */ uint16_t reserved1; /* VDM:Attention contents */ uint32_t vdm_attention[2]; } __ec_align1; /* * Get an active battery config from the EC. */ #define EC_CMD_BATTERY_CONFIG 0x013D /* Version of struct batt_conf_header and its internals. */ #define EC_BATTERY_CONFIG_STRUCT_VERSION 0x00 /* Number of writes needed to invoke battery cutoff command */ #define SHIP_MODE_WRITES 2 struct ship_mode_info { uint8_t reg_addr; uint8_t reserved; uint16_t reg_data[SHIP_MODE_WRITES]; } __packed __aligned(2); struct sleep_mode_info { uint8_t reg_addr; uint8_t reserved; uint16_t reg_data; } __packed __aligned(2); struct fet_info { uint8_t reg_addr; uint8_t reserved; uint16_t reg_mask; uint16_t disconnect_val; uint16_t cfet_mask; /* CHG FET status mask */ uint16_t cfet_off_val; } __packed __aligned(2); enum fuel_gauge_flags { /* * Write Block Support. If enabled, we use a i2c write block command * instead of a 16-bit write. The effective difference is the i2c * transaction will prefix the length (2). */ FUEL_GAUGE_FLAG_WRITE_BLOCK = BIT(0), /* Sleep command support. fuel_gauge_info.sleep_mode must be defined. */ FUEL_GAUGE_FLAG_SLEEP_MODE = BIT(1), /* * Manufacturer access command support. If enabled, FET status is read * from the OperationStatus (0x54) register using the * ManufacturerBlockAccess (0x44). */ FUEL_GAUGE_FLAG_MFGACC = BIT(2), /* * SMB block protocol support in manufacturer access command. If * enabled, FET status is read from the OperationStatus (0x54) register * using the ManufacturerBlockAccess (0x44). */ FUEL_GAUGE_FLAG_MFGACC_SMB_BLOCK = BIT(3), }; struct fuel_gauge_info { uint32_t flags; uint32_t board_flags; struct ship_mode_info ship_mode; struct sleep_mode_info sleep_mode; struct fet_info fet; } __packed __aligned(4); /* Battery constants */ struct battery_info { /* Operation voltage in mV */ uint16_t voltage_max; uint16_t voltage_normal; uint16_t voltage_min; /* (TODO(chromium:756700): add desired_charging_current */ /** * Pre-charge to fast charge threshold in mV, * default to voltage_min if not specified. * This option is only available on isl923x and rt946x. */ uint16_t precharge_voltage; /* Pre-charge current in mA */ uint16_t precharge_current; /* Working temperature ranges in degrees C */ int8_t start_charging_min_c; int8_t start_charging_max_c; int8_t charging_min_c; int8_t charging_max_c; int8_t discharging_min_c; int8_t discharging_max_c; /* Used only if CONFIG_BATTERY_VENDOR_PARAM is defined. */ uint8_t vendor_param_start; uint8_t reserved; } __packed __aligned(2); /* * The 'config' of a battery. */ struct board_batt_params { struct fuel_gauge_info fuel_gauge; struct battery_info batt_info; } __packed __aligned(4); /* * The SBS defines a string object as a block of chars, 32 byte maximum, where * the first byte indicates the number of chars in the block (excluding the * first byte). * * Thus, the actual string length (i.e. the value strlen returns) is limited to * 31 (=SBS_MAX_STR_SIZE). * * SBS_MAX_STR_OBJ_SIZE can be used as the size of a buffer for an SBS string * object but also as a buffer for a c-lang string because the null terminating * char also takes one byte. */ #define SBS_MAX_STR_SIZE 31 #define SBS_MAX_STR_OBJ_SIZE (SBS_MAX_STR_SIZE + 1) /* * Header describing a battery config stored in CBI. Only struct_version has * size and position independent of struct_version. The rest varies as * struct_version changes. * * Version 0 * Layout: * +-------------+ * | header | * +-------------+ * | | ^ * | manuf_name | | manuf_name_size * | | v * +-------------+ * | device_name | ^ * | | | device_name_size * | | v * +-------------+ * | config | ^ * | | | * | | | cbi data size * | | | - (header_size+manuf_name_size+device_name_size) * | | | * | | v * +-------------+ * Note: * - manuf_name and device_name are not null-terminated. * - The config isn't aligned. It should be copied to struct board_batt_params * before its contents are accessed. */ struct batt_conf_header { /* Version independent field. It's always here as a uint8_t. */ uint8_t struct_version; /* Version 0 members */ uint8_t manuf_name_size; uint8_t device_name_size; uint8_t reserved; /* manuf_name, device_name, board_batt_params follow after this. */ } __packed; #define BATT_CONF_MAX_SIZE \ (sizeof(struct batt_conf_header) + SBS_MAX_STR_OBJ_SIZE * 2 + \ sizeof(struct board_batt_params)) /* * Record the current AP firmware state. This is used to help testing, such as * with FAFT (Fully-Automated Firmware Test), which likes to know which firmware * screen is currently displayed. */ #define EC_CMD_AP_FW_STATE 0x013E struct ec_params_ap_fw_state { /* * Value which indicates the state. This is not decoded by the EC, so * its meaning is entirely outside this code base. */ uint32_t state; } __ec_align1; /* * UCSI OPM-PPM commands * * These commands are used for communication between OPM and PPM. * Only UCSI3.0 is tested. */ #define EC_CMD_UCSI_PPM_SET 0x0140 /* The data size is stored in the host command protocol header. */ struct ec_params_ucsi_ppm_set { uint16_t offset; uint8_t data[]; } __ec_align2; #define EC_CMD_UCSI_PPM_GET 0x0141 /* For 'GET' sub-commands, data will be returned as a raw payload. */ struct ec_params_ucsi_ppm_get { uint16_t offset; uint8_t size; } __ec_align2; #define EC_CMD_SET_ALARM_SLP_S0_DBG 0x0142 /* RTC params and response structures */ struct ec_params_set_alarm_slp_s0_dbg { uint32_t time; } __ec_align2; /*****************************************************************************/ /* The command range 0x200-0x2FF is reserved for Rotor. */ /*****************************************************************************/ /* * Reserve a range of host commands for the CR51 firmware. */ #define EC_CMD_CR51_BASE 0x0300 #define EC_CMD_CR51_LAST 0x03FF /*****************************************************************************/ /* Fingerprint MCU commands: range 0x0400-0x040x */ /* * Fingerprint SPI sensor passthru command * * This command was used for prototyping and it's now deprecated. */ #define EC_CMD_FP_PASSTHRU 0x0400 #define EC_FP_FLAG_NOT_COMPLETE 0x1 struct ec_params_fp_passthru { uint16_t len; /* Number of bytes to write then read */ uint16_t flags; /* EC_FP_FLAG_xxx */ uint8_t data[]; /* Data to send */ } __ec_align2; /* Configure the Fingerprint MCU behavior */ #define EC_CMD_FP_MODE 0x0402 /* Put the sensor in its lowest power mode */ #define FP_MODE_DEEPSLEEP BIT(0) /* Wait to see a finger on the sensor */ #define FP_MODE_FINGER_DOWN BIT(1) /* Poll until the finger has left the sensor */ #define FP_MODE_FINGER_UP BIT(2) /* Capture the current finger image */ #define FP_MODE_CAPTURE BIT(3) /* Finger enrollment session on-going */ #define FP_MODE_ENROLL_SESSION BIT(4) /* Enroll the current finger image */ #define FP_MODE_ENROLL_IMAGE BIT(5) /* Try to match the current finger image */ #define FP_MODE_MATCH BIT(6) /* Reset and re-initialize the sensor. */ #define FP_MODE_RESET_SENSOR BIT(7) /* Sensor maintenance for dead pixels. */ #define FP_MODE_SENSOR_MAINTENANCE BIT(8) /* special value: don't change anything just read back current mode */ #define FP_MODE_DONT_CHANGE BIT(31) #define FP_VALID_MODES \ (FP_MODE_DEEPSLEEP | FP_MODE_FINGER_DOWN | FP_MODE_FINGER_UP | \ FP_MODE_CAPTURE | FP_MODE_ENROLL_SESSION | FP_MODE_ENROLL_IMAGE | \ FP_MODE_MATCH | FP_MODE_RESET_SENSOR | FP_MODE_SENSOR_MAINTENANCE | \ FP_MODE_DONT_CHANGE) /* Capture types defined in bits [30..28] */ #define FP_MODE_CAPTURE_TYPE_SHIFT 28 #define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT) /** * enum fp_capture_type - Specifies the "mode" when capturing images. * * @FP_CAPTURE_VENDOR_FORMAT: Capture 1-3 images and choose the best quality * image (produces 'frame_size' bytes) * @FP_CAPTURE_SIMPLE_IMAGE: Simple raw image capture (produces width x height x * bpp bits) * @FP_CAPTURE_PATTERN0: Self test pattern (e.g. checkerboard) * @FP_CAPTURE_PATTERN1: Self test pattern (e.g. inverted checkerboard) * @FP_CAPTURE_QUALITY_TEST: Capture for Quality test with fixed contrast * @FP_CAPTURE_RESET_TEST: Capture for pixel reset value test * @FP_CAPTURE_TYPE_MAX: End of enum * * @note This enum must remain ordered, if you add new values you must ensure * that FP_CAPTURE_TYPE_MAX is still the last one. */ enum fp_capture_type { FP_CAPTURE_VENDOR_FORMAT = 0, FP_CAPTURE_SIMPLE_IMAGE = 1, FP_CAPTURE_PATTERN0 = 2, FP_CAPTURE_PATTERN1 = 3, FP_CAPTURE_QUALITY_TEST = 4, FP_CAPTURE_RESET_TEST = 5, FP_CAPTURE_TYPE_MAX, }; /* Extracts the capture type from the sensor 'mode' word */ #define FP_CAPTURE_TYPE(mode) \ (((mode) & FP_MODE_CAPTURE_TYPE_MASK) >> FP_MODE_CAPTURE_TYPE_SHIFT) struct ec_params_fp_mode { uint32_t mode; /* as defined by FP_MODE_ constants */ } __ec_align4; struct ec_response_fp_mode { uint32_t mode; /* as defined by FP_MODE_ constants */ } __ec_align4; /* Retrieve Fingerprint sensor information */ #define EC_CMD_FP_INFO 0x0403 /* Number of dead pixels detected on the last maintenance */ #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF) /* Unknown number of dead pixels detected on the last maintenance */ #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF) /* No interrupt from the sensor */ #define FP_ERROR_NO_IRQ BIT(12) /* SPI communication error */ #define FP_ERROR_SPI_COMM BIT(13) /* Invalid sensor Hardware ID */ #define FP_ERROR_BAD_HWID BIT(14) /* Sensor initialization failed */ #define FP_ERROR_INIT_FAIL BIT(15) struct ec_response_fp_info_v0 { /* Sensor identification */ uint32_t vendor_id; uint32_t product_id; uint32_t model_id; uint32_t version; /* Image frame characteristics */ uint32_t frame_size; uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ uint16_t width; uint16_t height; uint16_t bpp; uint16_t errors; /* see FP_ERROR_ flags above */ } __ec_align4; struct ec_response_fp_info { /* Sensor identification */ uint32_t vendor_id; uint32_t product_id; uint32_t model_id; uint32_t version; /* Image frame characteristics */ uint32_t frame_size; uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ uint16_t width; uint16_t height; uint16_t bpp; uint16_t errors; /* see FP_ERROR_ flags above */ /* Template/finger current information */ uint32_t template_size; /* max template size in bytes */ uint16_t template_max; /* maximum number of fingers/templates */ uint16_t template_valid; /* number of valid fingers/templates */ uint32_t template_dirty; /* bitmap of templates with MCU side changes */ uint32_t template_version; /* version of the template format */ } __ec_align4; /* Get the last captured finger frame or a template content */ #define EC_CMD_FP_FRAME 0x0404 /* constants defining the 'offset' field which also contains the frame index */ #define FP_FRAME_INDEX_SHIFT 28 /* Frame buffer where the captured image is stored */ #define FP_FRAME_INDEX_RAW_IMAGE 0 /* First frame buffer holding a template */ #define FP_FRAME_INDEX_TEMPLATE 1 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT) #define FP_FRAME_OFFSET_MASK 0x0FFFFFFF /* Version of the format of the encrypted templates. */ #define FP_TEMPLATE_FORMAT_VERSION 4 /* Constants for encryption parameters */ #define FP_CONTEXT_NONCE_BYTES 12 #define FP_CONTEXT_USERID_BYTES 32 #define FP_CONTEXT_USERID_WORDS (FP_CONTEXT_USERID_BYTES / sizeof(uint32_t)) #define FP_CONTEXT_TAG_BYTES 16 #define FP_CONTEXT_ENCRYPTION_SALT_BYTES 16 #define FP_CONTEXT_TPM_BYTES 32 /* Constants for positive match parameters. */ #define FP_POSITIVE_MATCH_SALT_BYTES 16 struct ec_fp_template_encryption_metadata { /* * Version of the structure format (N=3). */ uint16_t struct_version; /* Reserved bytes, set to 0. */ uint16_t reserved; /* * The salt is *only* ever used for key derivation. The nonce is unique, * a different one is used for every message. */ uint8_t nonce[FP_CONTEXT_NONCE_BYTES]; uint8_t encryption_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES]; uint8_t tag[FP_CONTEXT_TAG_BYTES]; }; struct ec_params_fp_frame { /* * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE * in the high nibble, and the real offset within the frame in * FP_FRAME_OFFSET_MASK. */ uint32_t offset; uint32_t size; } __ec_align4; /* Load a template into the MCU */ #define EC_CMD_FP_TEMPLATE 0x0405 /* Flag in the 'size' field indicating that the full template has been sent */ #define FP_TEMPLATE_COMMIT 0x80000000 struct ec_params_fp_template { uint32_t offset; uint32_t size; uint8_t data[]; } __ec_align4; /* Clear the current fingerprint user context and set a new one */ #define EC_CMD_FP_CONTEXT 0x0406 struct ec_params_fp_context { uint32_t userid[FP_CONTEXT_USERID_WORDS]; } __ec_align4; enum fp_context_action { FP_CONTEXT_ASYNC = 0, FP_CONTEXT_GET_RESULT = 1, }; /* Version 1 of the command is "asynchronous". */ struct ec_params_fp_context_v1 { uint8_t action; /**< enum fp_context_action */ uint8_t reserved[3]; /**< padding for alignment */ uint32_t userid[FP_CONTEXT_USERID_WORDS]; } __ec_align4; #define EC_CMD_FP_STATS 0x0407 #define FPSTATS_CAPTURE_INV BIT(0) #define FPSTATS_MATCHING_INV BIT(1) struct ec_response_fp_stats { uint32_t capture_time_us; uint32_t matching_time_us; uint32_t overall_time_us; struct { uint32_t lo; uint32_t hi; } overall_t0; uint8_t timestamps_invalid; int8_t template_matched; } __ec_align2; #define EC_CMD_FP_SEED 0x0408 struct ec_params_fp_seed { /* * Version of the structure format (N=3). */ uint16_t struct_version; /* Reserved bytes, set to 0. */ uint16_t reserved; /* Seed from the TPM. */ uint8_t seed[FP_CONTEXT_TPM_BYTES]; } __ec_align4; #define EC_CMD_FP_ENC_STATUS 0x0409 /* FP TPM seed has been set or not */ #define FP_ENC_STATUS_SEED_SET BIT(0) /* FP using nonce context or not */ #define FP_CONTEXT_STATUS_NONCE_CONTEXT_SET BIT(1) /* FP match had been processed or not */ #define FP_CONTEXT_STATUS_MATCH_PROCESSED_SET BIT(2) /* FP auth_nonce had been set or not*/ #define FP_CONTEXT_AUTH_NONCE_SET BIT(3) /* FP user_id had been set or not*/ #define FP_CONTEXT_USER_ID_SET BIT(4) /* FP templates are unlocked for nonce context or not */ #define FP_CONTEXT_TEMPLATE_UNLOCKED_SET BIT(5) struct ec_response_fp_encryption_status { /* Used bits in encryption engine status */ uint32_t valid_flags; /* Encryption engine status */ uint32_t status; } __ec_align4; #define EC_CMD_FP_READ_MATCH_SECRET 0x040A struct ec_params_fp_read_match_secret { uint16_t fgr; } __ec_align4; /* The positive match secret has the length of the SHA256 digest. */ #define FP_POSITIVE_MATCH_SECRET_BYTES 32 struct ec_response_fp_read_match_secret { uint8_t positive_match_secret[FP_POSITIVE_MATCH_SECRET_BYTES]; } __ec_align4; #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN 32 struct fp_elliptic_curve_public_key { uint8_t x[FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN]; uint8_t y[FP_ELLIPTIC_CURVE_PUBLIC_KEY_POINT_LEN]; } __ec_align4; #define FP_AES_KEY_ENC_METADATA_VERSION 1 #define FP_AES_KEY_NONCE_BYTES 12 #define FP_AES_KEY_ENCRYPTION_SALT_BYTES 16 #define FP_AES_KEY_TAG_BYTES 16 struct fp_auth_command_encryption_metadata { /* Version of the structure format */ uint16_t struct_version; /* Reserved bytes, set to 0. */ uint16_t reserved; /* * The salt is *only* ever used for key derivation. The nonce is unique, * a different one is used for every message. */ uint8_t nonce[FP_AES_KEY_NONCE_BYTES]; uint8_t encryption_salt[FP_AES_KEY_ENCRYPTION_SALT_BYTES]; uint8_t tag[FP_AES_KEY_TAG_BYTES]; } __ec_align4; #define FP_ELLIPTIC_CURVE_PRIVATE_KEY_LEN 32 #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN 16 struct fp_encrypted_private_key { struct fp_auth_command_encryption_metadata info; uint8_t data[FP_ELLIPTIC_CURVE_PRIVATE_KEY_LEN]; } __ec_align4; #define EC_CMD_FP_ESTABLISH_PAIRING_KEY_KEYGEN 0x0410 struct ec_response_fp_establish_pairing_key_keygen { struct fp_elliptic_curve_public_key pubkey; struct fp_encrypted_private_key encrypted_private_key; } __ec_align4; #define FP_PAIRING_KEY_LEN 32 struct ec_fp_encrypted_pairing_key { struct fp_auth_command_encryption_metadata info; uint8_t data[FP_PAIRING_KEY_LEN]; } __ec_align4; #define EC_CMD_FP_ESTABLISH_PAIRING_KEY_WRAP 0x0411 struct ec_params_fp_establish_pairing_key_wrap { struct fp_elliptic_curve_public_key peers_pubkey; struct fp_encrypted_private_key encrypted_private_key; } __ec_align4; struct ec_response_fp_establish_pairing_key_wrap { struct ec_fp_encrypted_pairing_key encrypted_pairing_key; } __ec_align4; #define EC_CMD_FP_LOAD_PAIRING_KEY 0x0412 typedef struct ec_response_fp_establish_pairing_key_wrap ec_params_fp_load_pairing_key; #define FP_CK_AUTH_NONCE_LEN 32 #define EC_CMD_FP_GENERATE_NONCE 0x0413 struct ec_response_fp_generate_nonce { uint8_t nonce[FP_CK_AUTH_NONCE_LEN]; } __ec_align4; #define FP_CONTEXT_USERID_LEN 32 #define FP_CONTEXT_USERID_IV_LEN 16 #define FP_CONTEXT_KEY_LEN 32 #define EC_CMD_FP_NONCE_CONTEXT 0x0414 struct ec_params_fp_nonce_context { uint8_t gsc_nonce[FP_CK_AUTH_NONCE_LEN]; uint8_t enc_user_id[FP_CONTEXT_USERID_LEN]; uint8_t enc_user_id_iv[FP_CONTEXT_USERID_IV_LEN]; } __ec_align4; #define FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN 16 #define EC_CMD_FP_READ_MATCH_SECRET_WITH_PUBKEY 0x0415 struct ec_params_fp_read_match_secret_with_pubkey { uint16_t fgr; uint16_t reserved; struct fp_elliptic_curve_public_key pubkey; } __ec_align4; struct ec_response_fp_read_match_secret_with_pubkey { struct fp_elliptic_curve_public_key pubkey; uint8_t iv[FP_ELLIPTIC_CURVE_PUBLIC_KEY_IV_LEN]; uint8_t enc_secret[FP_POSITIVE_MATCH_SECRET_BYTES]; } __ec_align4; /* Unlock the fpsensor template with the current nonce context */ #define EC_CMD_FP_UNLOCK_TEMPLATE 0x0417 struct ec_params_fp_unlock_template { uint16_t fgr_num; } __ec_align4; /* * Migrate a legacy FP template (here, legacy refers to being generated in a * raw user_id context instead of a nonce context) by wiping its match secret * salt and treating it as a newly-enrolled template. * The legacy FP template needs to be uploaded by FP_TEMPLATE command first * without committing, then this command will commit it. */ #define EC_CMD_FP_MIGRATE_TEMPLATE_TO_NONCE_CONTEXT 0x0418 struct ec_params_fp_migrate_template_to_nonce_context { /* The context userid used to encrypt this template when it was created. */ uint32_t userid[FP_CONTEXT_USERID_WORDS]; }; /*****************************************************************************/ /* Touchpad MCU commands: range 0x0500-0x05FF */ /* Perform touchpad self test */ #define EC_CMD_TP_SELF_TEST 0x0500 /* Get number of frame types, and the size of each type */ #define EC_CMD_TP_FRAME_INFO 0x0501 struct ec_response_tp_frame_info { uint32_t n_frames; uint32_t frame_sizes[0]; } __ec_align4; /* Create a snapshot of current frame readings */ #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502 /* Read the frame */ #define EC_CMD_TP_FRAME_GET 0x0503 struct ec_params_tp_frame_get { uint32_t frame_index; uint32_t offset; uint32_t size; } __ec_align4; /*****************************************************************************/ /* EC-EC communication commands: range 0x0600-0x06FF */ #define EC_COMM_TEXT_MAX 8 /* * Get battery static information, i.e. information that never changes, or * very infrequently. */ #define EC_CMD_BATTERY_GET_STATIC 0x0600 /** * struct ec_params_battery_static_info - Battery static info parameters * @index: Battery index. */ struct ec_params_battery_static_info { uint8_t index; } __ec_align_size1; /** * struct ec_response_battery_static_info - Battery static info response * @design_capacity: Battery Design Capacity (mAh) * @design_voltage: Battery Design Voltage (mV) * @manufacturer: Battery Manufacturer String * @model: Battery Model Number String * @serial: Battery Serial Number String * @type: Battery Type String * @cycle_count: Battery Cycle Count */ struct ec_response_battery_static_info { uint16_t design_capacity; uint16_t design_voltage; char manufacturer[EC_COMM_TEXT_MAX]; char model[EC_COMM_TEXT_MAX]; char serial[EC_COMM_TEXT_MAX]; char type[EC_COMM_TEXT_MAX]; /* TODO(crbug.com/795991): Consider moving to dynamic structure. */ uint32_t cycle_count; } __ec_align4; /** * struct ec_response_battery_static_info_v1 - hostcmd v1 battery static info * Equivalent to struct ec_response_battery_static_info, but with longer * strings. * @design_capacity: battery design capacity (in mAh) * @design_voltage: battery design voltage (in mV) * @cycle_count: battery cycle count * @manufacturer_ext: battery manufacturer string * @model_ext: battery model string * @serial_ext: battery serial number string * @type_ext: battery type string */ struct ec_response_battery_static_info_v1 { uint16_t design_capacity; uint16_t design_voltage; uint32_t cycle_count; char manufacturer_ext[12]; char model_ext[12]; char serial_ext[12]; char type_ext[12]; } __ec_align4; /** * struct ec_response_battery_static_info_v2 - hostcmd v2 battery static info * * Equivalent to struct ec_response_battery_static_info, but with strings * further lengthened (relative to v1) to accommodate the maximum string length * permitted by the Smart Battery Data Specification revision 1.1 and fields * renamed to better match that specification. * * @design_capacity: battery design capacity (in mAh) * @design_voltage: battery design voltage (in mV) * @cycle_count: battery cycle count * @manufacturer: battery manufacturer string * @device_name: battery model string * @serial: battery serial number string * @chemistry: battery type string */ struct ec_response_battery_static_info_v2 { uint16_t design_capacity; uint16_t design_voltage; uint32_t cycle_count; char manufacturer[SBS_MAX_STR_OBJ_SIZE]; char device_name[SBS_MAX_STR_OBJ_SIZE]; char serial[SBS_MAX_STR_OBJ_SIZE]; char chemistry[SBS_MAX_STR_OBJ_SIZE]; } __ec_align4; /* * Get battery dynamic information, i.e. information that is likely to change * every time it is read. */ #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601 /** * struct ec_params_battery_dynamic_info - Battery dynamic info parameters * @index: Battery index. */ struct ec_params_battery_dynamic_info { uint8_t index; } __ec_align_size1; /** * struct ec_response_battery_dynamic_info - Battery dynamic info response * @actual_voltage: Battery voltage (mV) * @actual_current: Battery current (mA); negative=discharging * @remaining_capacity: Remaining capacity (mAh) * @full_capacity: Capacity (mAh, might change occasionally) * @flags: Flags, see EC_BATT_FLAG_* * @desired_voltage: Charging voltage desired by battery (mV) * @desired_current: Charging current desired by battery (mA) */ struct ec_response_battery_dynamic_info { int16_t actual_voltage; int16_t actual_current; int16_t remaining_capacity; int16_t full_capacity; int16_t flags; int16_t desired_voltage; int16_t desired_current; } __ec_align2; /* * Control charger chip. Used to control charger chip on the peripheral. */ #define EC_CMD_CHARGER_CONTROL 0x0602 /** * struct ec_params_charger_control - Charger control parameters * @max_current: Charger current (mA). Positive to allow base to draw up to * max_current and (possibly) charge battery, negative to request current * from base (OTG). * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is * >= 0. * @allow_charging: Allow base battery charging (only makes sense if * max_current > 0). */ struct ec_params_charger_control { int16_t max_current; uint16_t otg_voltage; uint8_t allow_charging; } __ec_align_size1; /* Get ACK from the USB-C SS muxes */ #define EC_CMD_USB_PD_MUX_ACK 0x0603 struct ec_params_usb_pd_mux_ack { uint8_t port; /* USB-C port number */ } __ec_align1; /* Get boot time */ #define EC_CMD_GET_BOOT_TIME 0x0604 enum boot_time_param { ARAIL = 0, RSMRST, ESPIRST, PLTRST_LOW, PLTRST_HIGH, EC_CUR_TIME, RESET_CNT, }; struct ec_response_get_boot_time { uint64_t timestamp[RESET_CNT]; uint16_t cnt; } __ec_align4; /*****************************************************************************/ /* * Reserve a range of host commands for board-specific, experimental, or * special purpose features. These can be (re)used without updating this file. * * CAUTION: Don't go nuts with this. Shipping products should document ALL * their EC commands for easier development, testing, debugging, and support. * * All commands MUST be #defined to be 4-digit UPPER CASE hex values * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. * * In your experimental code, you may want to do something like this: * * #define EC_CMD_MAGIC_FOO 0x0000 * #define EC_CMD_MAGIC_BAR 0x0001 * #define EC_CMD_MAGIC_HEY 0x0002 * * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler, * EC_VER_MASK(0); * * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler, * EC_VER_MASK(0); * * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler, * EC_VER_MASK(0); */ #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF /* * Given the private host command offset, calculate the true private host * command value. */ #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \ (EC_CMD_BOARD_SPECIFIC_BASE + (command)) /*****************************************************************************/ /* * Passthru commands * * Some platforms have sub-processors chained to each other. For example. * * AP <--> EC <--> PD MCU * * The top 2 bits of the command number are used to indicate which device the * command is intended for. Device 0 is always the device receiving the * command; other device mapping is board-specific. * * When a device receives a command to be passed to a sub-processor, it passes * it on with the device number set back to 0. This allows the sub-processor * to remain blissfully unaware of whether the command originated on the next * device up the chain, or was passed through from the AP. * * In the above example, if the AP wants to send command 0x0002 to the PD MCU, * AP sends command 0x4002 to the EC * EC sends command 0x0002 to the PD MCU * EC forwards PD MCU response back to the AP */ /* Offset and max command number for sub-device n */ #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) /*****************************************************************************/ /* * Deprecated constants. These constants have been renamed for clarity. The * meaning and size has not changed. Programs that use the old names should * switch to the new names soon, as the old names may not be carried forward * forever. */ #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE #endif /* !__ACPI__ */ #ifdef __cplusplus } #endif #endif /* __CROS_EC_EC_COMMANDS_H */