/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include "chip.h" #include "wifi.h" #include "wifi_private.h" /* Domain type */ #define DOMAIN_TYPE_WIFI 0x7 #define DOMAIN_TYPE_BLUETOOTH 0x12 /* Maximum number DSM UUID bifurcations in _DSM */ #define MAX_DSM_FUNCS 2 /* * WIFI ACPI NAME = "WF" + hex value of last 8 bits of dev_path_encode + '\0' * The above representation returns unique and consistent name every time * generate_wifi_acpi_name is invoked. The last 8 bits of dev_path_encode is * chosen since it contains the bus address of the device. */ #define WIFI_ACPI_NAME_MAX_LEN 5 /* Unique ID for the WIFI _DSM */ #define ACPI_DSM_OEM_WIFI_UUID "F21202BF-8F78-4DC6-A5B3-1F738E285ADE" /* Unique ID for CnviDdrRfim entry in WIFI _DSM */ #define ACPI_DSM_RFIM_WIFI_UUID "7266172C-220B-4B29-814F-75E4DD26B5FD" __weak int get_wifi_sar_limits(union wifi_sar_limits *sar_limits) { return -1; } /* * Function 1: Allow PC OEMs to set ETSI 5.8GHz SRD in Passive/Disabled ESTI SRD * Channels: 149, 153, 157, 161, 165 * 0 - ETSI 5.8GHz SRD active scan * 1 - ETSI 5.8GHz SRD passive scan * 2 - ETSI 5.8GHz SRD disabled */ static void wifi_dsm_srd_active_channels(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->disable_active_sdr_channels); } /* * Function 2 : Supported Indonesia 5.15-5.35 GHz Band * 0 - Set 5.115-5.35GHz to Disable in Indonesia * 1 - Set 5.115-5.35GHz to Enable (Passive) in Indonesia * 2 - Reserved */ static void wifi_dsm_indonasia_5Ghz_band_enable(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->support_indonesia_5g_band); } /* * Function 3: Support Wi-Fi 6 11ax Rev 2 new channels on 6-7 GHz. * Bit 0: * 0 - No override; use device settings 0 * 1 - Force disable all countries that are not defined in the following bits * * Bit 1: * 0 No override; USA 6GHz disable 0 * 1 6GHz allowed in the USA (enabled only if the device is certified to the USA) */ static void wifi_dsm_supported_ultra_high_band(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->support_ultra_high_band); } /* * Function 4: Regulatory Special Configurations Enablements */ static void wifi_dsm_regulatory_configurations(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->regulatory_configurations); } /* * Function 5: M.2 UART Interface Configuration */ static void wifi_dsm_uart_configurations(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->uart_configurations); } /* * Function 6: Control Enablement 11ax on certificated modules * Bit 0 - Apply changes to country Ukraine. 11Ax Setting within module certification * 0 - None. Work with Wi-Fi FW/OTP definitions [Default] * 1 - Apply changes. * * Bit 1 - 11Ax Mode. Effective only if Bit 0 set to 1 * 0 - Disable 11Ax on country Ukraine [Default] * 1 - Enable 11Ax on country Ukraine * * Bit 2 - Apply changes to country Russia. 11Ax Setting within module certification * 0 - None. Work with Wi-Fi FW/OTP definitions [Default] * 1 - Apply changes. * * Bit 3 - 11Ax Mode. Effective only if Bit 2 set to 1 * 0 - Disable 11Ax on country Russia [Default] * 1 - Enable 11Ax on country Russia * * Bit 31:04 - Reserved * * Note: Assumed Russia Work with Wi-Fi FW/OTP definitions */ static void wifi_dsm_ukrane_russia_11ax_enable(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->enablement_11ax); } /* * Function 7: Control Enablement UNII-4 over certificate modules */ static void wifi_dsm_unii4_control_enable(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->unii_4); } /* * Function 10: Energy Detection Threshold (EDT) * Bits 0-3: EDT revision - Default 0 * * Bits 4-5: Reserved - Should be 0 * * Bit 6: HB EDT Level. 5 GHz ETSI - EDT Level change - Default 0 * 0 - Disable EDT optimization for ETSI HB * 1 - Enable EDT optimization for ETSI HB * * Bits 7-8: Reserved - Should be 0 * * Bit 9: UHB EDT Level. 6 GHz FCC - EDT Level change - Default 0 * 0 - Disable EDT optimization for FCC UHB * 1 - Enable EDT optimization for FCC UHB * * Bit 10-12: Reserved - Default 0 * * Bit 13: EDT_En_HB_5G2/3 - Default 0 * 0 - Disable EDT optimization for HB_5G2/3 * 1 - Enable EDT optimization for HB_5G2/3 * * Bit 14: EDT_En_HB_5G4 - Default 0 * 0 - Disable EDT optimization for HB_5G4 * 1 - Enable EDT optimization for HB_5G4 * * Bit 15: EDT_En_HB_5G6 - Default 0 * 0 - Disable EDT optimization for HB_5G6 * 1 - Enable EDT optimization for HB_5G6 * * Bit 16: EDT_En_HB_5G8/9 - Default 0 * 0 - Disable EDT optimization for HB_5G8/9 * 1 - Enable EDT optimization for HB_5G8/9 * * Bit 17: EDT_En_UHB_6G1 - Default 0 * 0 - Disable EDT optimization for UHB_6G1 * 1 - Enable EDT optimization for UHB_6G1 * * Bit 18: EDT_En_UHB_6G3 - Default 0 * 0 - Disable EDT optimization for UHB_6G3 * 1 - Enable EDT optimization for UHB_6G3 * * Bit 19: EDT_En_UHB_6G5 - Default 0 * 0 - Disable EDT optimization for UHB_6G5 * 1 - Enable EDT optimization for UHB_6G5 * * Bit 20: EDT_En_UHB_6G6 - Default 0 * 0 - Disable EDT optimization for UHB_6G6 * 1 - Enable EDT optimization for UHB_6G6 * * Bit 21: EDT_En_UHB_6G8 - Default 0 * 0 - Disable EDT optimization for UHB_6G8 * 1 - Enable EDT optimization for UHB_6G8 * * Bit 22: EDT_En_UHB_7G0 - Default 0 * 0 - Disable EDT optimization for UHB_7G0 * 1 - Enable EDT optimization for UHB_7G0 * * Bits 23-31: Reserved - Should be 0 */ static void wifi_dsm_energy_detection_threshold(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->energy_detection_threshold); } /* * Function 11: RFI mitigation * Bit 0: * 0 - DLVR RFIm enabled (default) * 1 - DLVR RFIm disabled * * Bit 1: * 0 - DDR RFIm enabled (default) * 1 - DDR RFIm disabled * * Bits 2-31: Reserved - Should be 0 */ static void wifi_dsm_rfi_mitigation(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->rfi_mitigation); } /* * Function 12: Control Enablement 802.11be on certificated modules * Bit 0 * 0 - 11BE disabled for China Mainland * 1 - 11BE enabled for China Mainland * * Bit 1 * 0 - 11BE disabled for South Korea * 1 - 11BE enabled for South Korea * * Bit 2:27 - Reserved (shall be set to zeroes) * * Bit 28:31 - 11BE enablement revision * */ static void wifi_dsm_11be_country_enablement(void *args) { struct dsm_profile *dsm_config = (struct dsm_profile *)args; acpigen_write_return_integer(dsm_config->enablement_11be); } static void wifi_dsm_ddrrfim_func3_cb(void *ptr) { const bool is_cnvi_ddr_rfim_enabled = *(bool *)ptr; acpigen_write_return_integer(is_cnvi_ddr_rfim_enabled ? 0 : 1); } static void (*wifi_dsm_callbacks[])(void *) = { NULL, /* Function 0 */ wifi_dsm_srd_active_channels, /* Function 1 */ wifi_dsm_indonasia_5Ghz_band_enable, /* Function 2 */ wifi_dsm_supported_ultra_high_band, /* Function 3 */ wifi_dsm_regulatory_configurations, /* Function 4 */ wifi_dsm_uart_configurations, /* Function 5 */ wifi_dsm_ukrane_russia_11ax_enable, /* Function 6 */ wifi_dsm_unii4_control_enable, /* Function 7 */ NULL, /* Function 8 */ NULL, /* Function 9 */ wifi_dsm_energy_detection_threshold, /* Function 10 */ wifi_dsm_rfi_mitigation, /* Function 11 */ wifi_dsm_11be_country_enablement, /* Function 12 */ }; /* * The current DSM2 table is only exporting one function (function 3), some more * functions are reserved so marking them NULL. */ static void (*wifi_dsm2_callbacks[])(void *) = { NULL, /* Function 0 */ NULL, /* Function 1 */ NULL, /* Function 2 */ wifi_dsm_ddrrfim_func3_cb, /* Function 3 */ }; static const uint8_t *sar_fetch_set(const struct sar_profile *sar, size_t set_num) { const uint8_t *sar_table = &sar->sar_table[0]; return sar_table + (sar->chains_count * sar->subbands_count * set_num); } static const uint8_t *wgds_fetch_set(struct geo_profile *wgds, size_t set_num) { const uint8_t *wgds_table = &wgds->wgds_table[0]; return wgds_table + (wgds->bands_count * set_num); } static const uint8_t *ppag_fetch_set(struct gain_profile *ppag, size_t set_num) { const uint8_t *ppag_table = &ppag->ppag_table[0]; return ppag_table + (ppag->bands_count * set_num); } static void sar_emit_wrds(const struct sar_profile *sar) { int i; size_t package_size, table_size; const uint8_t *set; if (sar == NULL) return; /* * Name ("WRDS", Package () { * Revision, * Package () { * Domain Type, // 0x7:WiFi * WiFi SAR BIOS, // BIOS SAR Enable/disable * SAR Table Set // Set#1 of SAR Table * } * }) */ if (sar->revision > MAX_SAR_REVISION) { printk(BIOS_ERR, "Invalid SAR table revision: %d\n", sar->revision); return; } acpigen_write_name("WRDS"); acpigen_write_package(2); acpigen_write_dword(sar->revision); table_size = sar->chains_count * sar->subbands_count; /* Emit 'Domain Type' + 'WiFi SAR Enable' + Set#1 */ package_size = 1 + 1 + table_size; acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_dword(1); set = sar_fetch_set(sar, 0); for (i = 0; i < table_size; i++) acpigen_write_byte(set[i]); acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_ewrd(const struct sar_profile *sar) { int i; size_t package_size, set_num, table_size; const uint8_t *set; if (sar == NULL) return; /* * Name ("EWRD", Package () { * Revision, * Package () { * Domain Type, // 0x7:WiFi * Dynamic SAR Enable, // Dynamic SAR Enable/disable * Extended SAR sets, // Number of optional SAR table sets * SAR Table Set, // Set#2 of SAR Table * SAR Table Set, // Set#3 of SAR Table * SAR Table Set // Set#4 of SAR Table * } * }) */ if (sar->revision > MAX_SAR_REVISION) { printk(BIOS_ERR, "Invalid SAR table revision: %d\n", sar->revision); return; } if (sar->dsar_set_count == 0) { printk(BIOS_WARNING, "DSAR set count is 0\n"); return; } acpigen_write_name("EWRD"); acpigen_write_package(2); acpigen_write_dword(sar->revision); table_size = sar->chains_count * sar->subbands_count; /* * Emit 'Domain Type' + 'Dynamic SAR Enable' + 'Extended SAR sets count' * + number of bytes for Set#2 & 3 & 4 */ package_size = 1 + 1 + 1 + table_size * MAX_DSAR_SET_COUNT; acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_dword(1); acpigen_write_dword(sar->dsar_set_count); for (set_num = 1; set_num <= sar->dsar_set_count; set_num++) { set = sar_fetch_set(sar, set_num); for (i = 0; i < table_size; i++) acpigen_write_byte(set[i]); } /* wifi driver always expects 3 DSAR sets */ for (i = 0; i < (table_size * (MAX_DSAR_SET_COUNT - sar->dsar_set_count)); i++) acpigen_write_byte(0); acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_wgds(struct geo_profile *wgds) { int i; size_t package_size, set_num; const uint8_t *set; if (wgds == NULL) return; /* * Name ("WGDS", Package() { * Revision, * Package() { * DomainType, // 0x7:WiFi * WgdsWiFiSarDeltaGroup1PowerMax1, // Group 1 FCC 2400 Max * WgdsWiFiSarDeltaGroup1PowerChainA1, // Group 1 FCC 2400 A Offset * WgdsWiFiSarDeltaGroup1PowerChainB1, // Group 1 FCC 2400 B Offset * WgdsWiFiSarDeltaGroup1PowerMax2, // Group 1 FCC 5200 Max * WgdsWiFiSarDeltaGroup1PowerChainA2, // Group 1 FCC 5200 A Offset * WgdsWiFiSarDeltaGroup1PowerChainB2, // Group 1 FCC 5200 B Offset * WgdsWiFiSarDeltaGroup1PowerMax3, // Group 1 FCC 6000-7000 Max * WgdsWiFiSarDeltaGroup1PowerChainA3, // Group 1 FCC 6000-7000 A Offset * WgdsWiFiSarDeltaGroup1PowerChainB3, // Group 1 FCC 6000-7000 B Offset * WgdsWiFiSarDeltaGroup2PowerMax1, // Group 2 EC Jap 2400 Max * WgdsWiFiSarDeltaGroup2PowerChainA1, // Group 2 EC Jap 2400 A Offset * WgdsWiFiSarDeltaGroup2PowerChainB1, // Group 2 EC Jap 2400 B Offset * WgdsWiFiSarDeltaGroup2PowerMax2, // Group 2 EC Jap 5200 Max * WgdsWiFiSarDeltaGroup2PowerChainA2, // Group 2 EC Jap 5200 A Offset * WgdsWiFiSarDeltaGroup2PowerChainB2, // Group 2 EC Jap 5200 B Offset * WgdsWiFiSarDeltaGroup2PowerMax3, // Group 2 EC Jap 6000-7000 Max * WgdsWiFiSarDeltaGroup2PowerChainA3, // Group 2 EC Jap 6000-7000 A Offset * WgdsWiFiSarDeltaGroup2PowerChainB3, // Group 2 EC Jap 6000-7000 B Offset * WgdsWiFiSarDeltaGroup3PowerMax1, // Group 3 ROW 2400 Max * WgdsWiFiSarDeltaGroup3PowerChainA1, // Group 3 ROW 2400 A Offset * WgdsWiFiSarDeltaGroup3PowerChainB1, // Group 3 ROW 2400 B Offset * WgdsWiFiSarDeltaGroup3PowerMax2, // Group 3 ROW 5200 Max * WgdsWiFiSarDeltaGroup3PowerChainA2, // Group 3 ROW 5200 A Offset * WgdsWiFiSarDeltaGroup3PowerChainB2, // Group 3 ROW 5200 B Offset * WgdsWiFiSarDeltaGroup3PowerMax3, // Group 3 ROW 6000-7000 Max * WgdsWiFiSarDeltaGroup3PowerChainA3, // Group 3 ROW 6000-7000 A Offset * WgdsWiFiSarDeltaGroup3PowerChainB3, // Group 3 ROW 6000-7000 B Offset * } * }) */ if (wgds->revision > MAX_GEO_OFFSET_REVISION) { printk(BIOS_ERR, "Invalid WGDS revision: %d\n", wgds->revision); return; } package_size = 1 + wgds->chains_count * wgds->bands_count; acpigen_write_name("WGDS"); acpigen_write_package(2); acpigen_write_dword(wgds->revision); /* Emit 'Domain Type' + * Group specific delta of power (6 bytes * NUM_WGDS_SAR_GROUPS) */ acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_WIFI); for (set_num = 0; set_num < wgds->chains_count; set_num++) { set = wgds_fetch_set(wgds, set_num); for (i = 0; i < wgds->bands_count; i++) acpigen_write_byte(set[i]); } acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_ppag(struct gain_profile *ppag) { int i; size_t package_size, set_num; const uint8_t *set; if (ppag == NULL) return; /* * Name ("PPAG", Package () { * Revision, * Package () { * Domain Type, // 0x7:WiFi * PPAG Mode, // Defines the mode of ANT_gain control to be used * ANT_gain Table Chain A // Defines the ANT_gain in dBi for chain A * ANT_gain Table Chain B // Defines the ANT_gain in dBi for chain B * } * }) */ if (ppag->revision > MAX_ANT_GAINS_REVISION) { printk(BIOS_ERR, "Invalid PPAG revision: %d\n", ppag->revision); return; } package_size = 1 + 1 + ppag->chains_count * ppag->bands_count; acpigen_write_name("PPAG"); acpigen_write_package(2); acpigen_write_dword(ppag->revision); acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_dword(ppag->mode); for (set_num = 0; set_num < ppag->chains_count; set_num++) { set = ppag_fetch_set(ppag, set_num); for (i = 0; i < ppag->bands_count; i++) acpigen_write_byte(set[i]); } acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_wtas(struct avg_profile *wtas) { int i; size_t package_size; if (wtas == NULL) return; /* * Name (WTAS, Package() { * { * Revision, * Package() * { * DomainType, // 0x7:WiFi * WifiTASSelection, // Enable/Disable the TAS feature * WifiTASListEntries, // No. of blocked countries not approved by OEM to * BlockedListEntry1, support this feature * BlockedListEntry2, * BlockedListEntry3, * BlockedListEntry4, * BlockedListEntry5, * BlockedListEntry6, * BlockedListEntry7, * BlockedListEntry8, * BlockedListEntry9, * BlockedListEntry10, * BlockedListEntry11, * BlockedListEntry12, * BlockedListEntry13, * BlockedListEntry14, * BlockedListEntry15, * BlockedListEntry16, * } * }) */ package_size = 1 + 1 + 1 + MAX_DENYLIST_ENTRY; acpigen_write_name("WTAS"); acpigen_write_package(2); acpigen_write_dword(wtas->revision); acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_byte(wtas->tas_selection); acpigen_write_byte(wtas->tas_list_size); for (i = 0; i < MAX_DENYLIST_ENTRY; i++) acpigen_write_word(wtas->deny_list_entry[i]); acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_brds(const struct bsar_profile *bsar) { size_t package_size, table_size; const uint8_t *set; if (bsar == NULL) return; /* * Name ("BRDS", Package () { * Revision, * Package () { * Domain Type, // 0x12:Bluetooth * Bluetooth SAR BIOS, // BIOS SAR Enable/disable * Bluetooth Increase Power Mode // SAR Limitation Enable/disable * Bluetooth SAR Power Restriction, // 00000000 - 0dBm * // 11111111 - 31.875dBm * // (Step 0.125dBm) * Bluetooth SAR Table // SAR Tx power limit table * } * }) */ if (bsar->revision != BSAR_REVISION) { printk(BIOS_ERR, "Unsupported BSAR table revision: %d\n", bsar->revision); return; } acpigen_write_name("BRDS"); acpigen_write_package(2); acpigen_write_dword(bsar->revision); table_size = sizeof(*bsar) - offsetof(struct bsar_profile, sar_lb_power_restriction); /* * Emit 'Domain Type' + 'Dynamic SAR Enable' + 'Increase Power Mode' * + ('SAR Power Restriction' + SAR table). */ package_size = 1 + 1 + 1 + table_size; acpigen_write_package(package_size); acpigen_write_dword(DOMAIN_TYPE_BLUETOOTH); acpigen_write_dword(1); acpigen_write_dword(bsar->increased_power_mode_limitation); set = (const uint8_t *)&bsar->sar_lb_power_restriction; for (int i = 0; i < table_size; i++) acpigen_write_byte(set[i]); acpigen_write_package_end(); acpigen_write_package_end(); } static void sar_emit_wbem(const struct wbem_profile *wbem) { if (wbem == NULL) return; /* * Name ("WBEM", Package() { * { * Revision, * Package() * { * DomainType, // 0x7:WiFi * bandwidth_320mhz_country_enablement // 0 Disabled * // 1 Japan Enabled * // 2 South Korea Enabled * // 3 Japan + South Korea Enabled * } } }) */ if (wbem->revision != WBEM_REVISION) { printk(BIOS_ERR, "Unsupported WBEM table revision: %d\n", wbem->revision); return; } acpigen_write_name("WBEM"); acpigen_write_package(2); acpigen_write_dword(wbem->revision); acpigen_write_package(2); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_dword(wbem->bandwidth_320mhz_country_enablement); acpigen_write_package_end(); acpigen_write_package_end(); } static void emit_wifi_sar_acpi_structures(const struct device *dev, union wifi_sar_limits *sar_limits) { /* * If device type is PCI, ensure that the device has Intel vendor ID. CBFS SAR and SAR * ACPI tables are currently used only by Intel WiFi devices. */ if (dev->path.type == DEVICE_PATH_PCI && dev->vendor != PCI_VID_INTEL) return; sar_emit_wrds(sar_limits->sar); sar_emit_ewrd(sar_limits->sar); sar_emit_wgds(sar_limits->wgds); sar_emit_ppag(sar_limits->ppag); sar_emit_wtas(sar_limits->wtas); sar_emit_wbem(sar_limits->wbem); } static void wifi_ssdt_write_device(const struct device *dev, const char *path) { /* Device */ acpigen_write_device(path); acpi_device_write_uid(dev); if (dev->chip_ops) acpigen_write_name_string("_DDN", dev->chip_ops->name); /* Address */ acpigen_write_ADR_pci_device(dev); acpigen_pop_len(); /* Device */ } static void wifi_ssdt_write_properties(const struct device *dev, const char *scope) { const struct drivers_wifi_generic_config *config = dev->chip_info; bool is_cnvi_ddr_rfim_enabled = config && config->enable_cnvi_ddr_rfim; /* Scope */ acpigen_write_scope(scope); if (config) { /* Wake capabilities */ acpigen_write_PRW(config->wake, ACPI_S3); /* Add _DSD for DmaProperty property. */ if (config->add_acpi_dma_property) acpi_device_add_dma_property(NULL); } /* Fill regulatory domain structure */ if (CONFIG(HAVE_REGULATORY_DOMAIN)) { /* * Name ("WRDD", Package () { * WRDD_REVISION, // Revision * Package () { * DOMAIN_TYPE_WIFI, // Domain Type, 7:WiFi * wifi_regulatory_domain() // Country Identifier * } * }) */ acpigen_write_name("WRDD"); acpigen_write_package(2); acpigen_write_integer(WRDD_REVISION); acpigen_write_package(2); acpigen_write_dword(DOMAIN_TYPE_WIFI); acpigen_write_dword(wifi_regulatory_domain()); acpigen_pop_len(); acpigen_pop_len(); } struct dsm_uuid dsm_ids[MAX_DSM_FUNCS]; /* Retrieve the SAR limits data */ union wifi_sar_limits sar_limits = {0}; bool sar_loaded = false; if (CONFIG(USE_SAR)) { if (get_wifi_sar_limits(&sar_limits) < 0) printk(BIOS_ERR, "failed getting SAR limits!\n"); else sar_loaded = true; } /* Fill Wifi SAR related ACPI structures */ uint8_t dsm_count = 0; if (sar_loaded) { emit_wifi_sar_acpi_structures(dev, &sar_limits); struct dsm_profile *dsm = sar_limits.dsm; if (dsm && dsm->supported_functions != 0) { for (int i = 1; i < ARRAY_SIZE(wifi_dsm_callbacks); i++) if (!(dsm->supported_functions & (1 << i))) wifi_dsm_callbacks[i] = NULL; dsm_ids[dsm_count].uuid = ACPI_DSM_OEM_WIFI_UUID; dsm_ids[dsm_count].callbacks = &wifi_dsm_callbacks[0]; dsm_ids[dsm_count].count = ARRAY_SIZE(wifi_dsm_callbacks); dsm_ids[dsm_count].arg = dsm; dsm_count++; } } if (is_cnvi_ddr_rfim_enabled) { dsm_ids[dsm_count].uuid = ACPI_DSM_RFIM_WIFI_UUID; dsm_ids[dsm_count].callbacks = &wifi_dsm2_callbacks[0]; dsm_ids[dsm_count].count = ARRAY_SIZE(wifi_dsm2_callbacks); dsm_ids[dsm_count].arg = &is_cnvi_ddr_rfim_enabled; dsm_count++; } acpigen_write_dsm_uuid_arr(dsm_ids, dsm_count); /* * Fill MediaTek MTCL related ACPI structure iff the device type is PCI, * the device has the MediaTek vendor ID, and the MTCL feature is * configured. */ if (CONFIG(USE_MTCL)) { if (dev->path.type == DEVICE_PATH_PCI && dev->vendor == PCI_VID_MEDIATEK) write_mtcl_function(); } acpigen_write_scope_end(); /* Scope */ /* Fill Bluetooth companion SAR related ACPI structures */ if (sar_loaded && is_dev_enabled(config->bluetooth_companion)) { const char *path = acpi_device_path(config->bluetooth_companion); if (path) { /* Bluetooth device under USB Hub scope or PCIe root port */ acpigen_write_scope(path); sar_emit_brds(sar_limits.bsar); acpigen_write_scope_end(); } else { printk(BIOS_ERR, "Failed to get %s Bluetooth companion ACPI path\n", dev_path(dev)); } } if (sar_loaded) free(sar_limits.sar); printk(BIOS_INFO, "%s: %s %s\n", scope, dev->chip_ops ? dev->chip_ops->name : "", dev_path(dev)); } void wifi_pcie_fill_ssdt(const struct device *dev) { const char *path; path = acpi_device_path(dev); if (!path) return; wifi_ssdt_write_device(dev, path); wifi_ssdt_write_properties(dev, path); } const char *wifi_pcie_acpi_name(const struct device *dev) { static char wifi_acpi_name[WIFI_ACPI_NAME_MAX_LEN]; /* ACPI 6.3, ASL 20.2.2: (Name Objects Encoding). */ snprintf(wifi_acpi_name, sizeof(wifi_acpi_name), "WF%02X", (dev_path_encode(dev) & 0xff)); return wifi_acpi_name; } void wifi_cnvi_fill_ssdt(const struct device *dev) { const char *path; if (!dev) return; path = acpi_device_path(dev->upstream->dev); if (!path) return; wifi_ssdt_write_properties(dev, path); }