/* * SPI flash interface * * Copyright (C) 2008 Atmel Corporation * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik * * Licensed under the GPL-2 or later. */ #include <boot_device.h> #include <cbfs.h> #include <cpu/x86/smm.h> #include <delay.h> #include <stdlib.h> #include <string.h> #include <spi-generic.h> #include <spi_flash.h> #include "spi_flash_internal.h" #include <timer.h> static struct spi_flash *spi_flash_dev = NULL; static void spi_flash_addr(u32 addr, u8 *cmd) { /* cmd[0] is actual command */ cmd[1] = addr >> 16; cmd[2] = addr >> 8; cmd[3] = addr >> 0; } /* * If atomic sequencing is used, the cycle type is known to the SPI * controller so that it can perform consecutive transfers and arbitrate * automatically. Otherwise the SPI controller transfers whatever the * user requests immediately, without regard to sequence. Atomic * sequencing is commonly used on x86 platforms. * * SPI flash commands are simple two-step sequences. The command byte is * always written first and may be followed by an address. Then data is * either read or written. For atomic sequencing we'll pass everything into * spi_xfer() at once and let the controller handle the details. Otherwise * we will write all output bytes first and then read if necessary. * * FIXME: This really should be abstracted better, but that will * require overhauling the entire SPI infrastructure. */ static int do_spi_flash_cmd(struct spi_slave *spi, const void *dout, unsigned int bytes_out, void *din, unsigned int bytes_in) { int ret = 1; if (spi_claim_bus(spi)) return ret; #if CONFIG_SPI_ATOMIC_SEQUENCING == 1 if (spi_xfer(spi, dout, bytes_out, din, bytes_in) < 0) goto done; #else if (dout && bytes_out) { if (spi_xfer(spi, dout, bytes_out, NULL, 0) < 0) goto done; } if (din && bytes_in) { if (spi_xfer(spi, NULL, 0, din, bytes_in) < 0) goto done; } #endif ret = 0; done: spi_release_bus(spi); return ret; } int spi_flash_cmd(struct spi_slave *spi, u8 cmd, void *response, size_t len) { int ret = do_spi_flash_cmd(spi, &cmd, sizeof(cmd), response, len); if (ret) printk(BIOS_WARNING, "SF: Failed to send command %02x: %d\n", cmd, ret); return ret; } static int spi_flash_cmd_read(struct spi_slave *spi, const u8 *cmd, size_t cmd_len, void *data, size_t data_len) { int ret = do_spi_flash_cmd(spi, cmd, cmd_len, data, data_len); if (ret) { printk(BIOS_WARNING, "SF: Failed to send read command (%zu bytes): %d\n", data_len, ret); } return ret; } /* TODO: This code is quite possibly broken and overflowing stacks. Fix ASAP! */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstack-usage=" int spi_flash_cmd_write(struct spi_slave *spi, const u8 *cmd, size_t cmd_len, const void *data, size_t data_len) { int ret; u8 buff[cmd_len + data_len]; memcpy(buff, cmd, cmd_len); memcpy(buff + cmd_len, data, data_len); ret = do_spi_flash_cmd(spi, buff, cmd_len + data_len, NULL, 0); if (ret) { printk(BIOS_WARNING, "SF: Failed to send write command (%zu bytes): %d\n", data_len, ret); } return ret; } #pragma GCC diagnostic pop static int spi_flash_cmd_read_array(struct spi_slave *spi, u8 *cmd, size_t cmd_len, u32 offset, size_t len, void *data) { while (len) { size_t transfer_size; if (spi->max_transfer_size) transfer_size = min(len, spi->max_transfer_size); else transfer_size = len; spi_flash_addr(offset, cmd); if (spi_flash_cmd_read(spi, cmd, cmd_len, data, transfer_size)) break; offset += transfer_size; data = (void *)((uintptr_t)data + transfer_size); len -= transfer_size; } return len != 0; } int spi_flash_cmd_read_fast(struct spi_flash *flash, u32 offset, size_t len, void *data) { u8 cmd[5]; cmd[0] = CMD_READ_ARRAY_FAST; cmd[4] = 0x00; return spi_flash_cmd_read_array(flash->spi, cmd, sizeof(cmd), offset, len, data); } int spi_flash_cmd_read_slow(struct spi_flash *flash, u32 offset, size_t len, void *data) { u8 cmd[4]; cmd[0] = CMD_READ_ARRAY_SLOW; return spi_flash_cmd_read_array(flash->spi, cmd, sizeof(cmd), offset, len, data); } int spi_flash_cmd_poll_bit(struct spi_flash *flash, unsigned long timeout, u8 cmd, u8 poll_bit) { struct spi_slave *spi = flash->spi; int ret; u8 status; struct mono_time current, end; timer_monotonic_get(¤t); end = current; mono_time_add_msecs(&end, timeout); do { ret = spi_flash_cmd_read(spi, &cmd, 1, &status, 1); if (ret) return -1; if ((status & poll_bit) == 0) return 0; timer_monotonic_get(¤t); } while (!mono_time_after(¤t, &end)); printk(BIOS_DEBUG, "SF: timeout at %ld msec\n",timeout); return -1; } int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout) { return spi_flash_cmd_poll_bit(flash, timeout, CMD_READ_STATUS, STATUS_WIP); } int spi_flash_cmd_erase(struct spi_flash *flash, u32 offset, size_t len) { u32 start, end, erase_size; int ret; u8 cmd[4]; erase_size = flash->sector_size; if (offset % erase_size || len % erase_size) { printk(BIOS_WARNING, "SF: Erase offset/length not multiple of erase size\n"); return -1; } flash->spi->rw = SPI_WRITE_FLAG; cmd[0] = flash->erase_cmd; start = offset; end = start + len; while (offset < end) { spi_flash_addr(offset, cmd); offset += erase_size; #if CONFIG_DEBUG_SPI_FLASH printk(BIOS_SPEW, "SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1], cmd[2], cmd[3], offset); #endif ret = spi_flash_cmd(flash->spi, CMD_WRITE_ENABLE, NULL, 0); if (ret) goto out; ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), NULL, 0); if (ret) goto out; ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT); if (ret) goto out; } printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start); out: return ret; } int spi_flash_cmd_status(struct spi_flash *flash, u8 *reg) { return spi_flash_cmd(flash->spi, flash->status_cmd, reg, sizeof(*reg)); } /* * The following table holds all device probe functions * * shift: number of continuation bytes before the ID * idcode: the expected IDCODE or 0xff for non JEDEC devices * probe: the function to call * * Non JEDEC devices should be ordered in the table such that * the probe functions with best detection algorithms come first. * * Several matching entries are permitted, they will be tried * in sequence until a probe function returns non NULL. * * IDCODE_CONT_LEN may be redefined if a device needs to declare a * larger "shift" value. IDCODE_PART_LEN generally shouldn't be * changed. This is the max number of bytes probe functions may * examine when looking up part-specific identification info. * * Probe functions will be given the idcode buffer starting at their * manu id byte (the "idcode" in the table below). In other words, * all of the continuation bytes will be skipped (the "shift" below). */ #define IDCODE_CONT_LEN 0 #define IDCODE_PART_LEN 5 static struct { const u8 shift; const u8 idcode; struct spi_flash *(*probe) (struct spi_slave *spi, u8 *idcode); } flashes[] = { /* Keep it sorted by define name */ #if CONFIG_SPI_FLASH_AMIC { 0, 0x37, spi_flash_probe_amic, }, #endif #if CONFIG_SPI_FLASH_ATMEL { 0, 0x1f, spi_flash_probe_atmel, }, #endif #if CONFIG_SPI_FLASH_EON { 0, 0x1c, spi_flash_probe_eon, }, #endif #if CONFIG_SPI_FLASH_GIGADEVICE { 0, 0xc8, spi_flash_probe_gigadevice, }, #endif #if CONFIG_SPI_FLASH_MACRONIX { 0, 0xc2, spi_flash_probe_macronix, }, #endif #if CONFIG_SPI_FLASH_SPANSION { 0, 0x01, spi_flash_probe_spansion, }, #endif #if CONFIG_SPI_FLASH_SST { 0, 0xbf, spi_flash_probe_sst, }, #endif #if CONFIG_SPI_FLASH_STMICRO { 0, 0x20, spi_flash_probe_stmicro, }, #endif #if CONFIG_SPI_FLASH_WINBOND { 0, 0xef, spi_flash_probe_winbond, }, #endif /* Keep it sorted by best detection */ #if CONFIG_SPI_FLASH_STMICRO { 0, 0xff, spi_flash_probe_stmicro, }, #endif #if CONFIG_SPI_FLASH_ADESTO { 0, 0x1f, spi_flash_probe_adesto, }, #endif }; #define IDCODE_LEN (IDCODE_CONT_LEN + IDCODE_PART_LEN) struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs) { struct spi_slave *spi; struct spi_flash *flash = NULL; int ret, i, shift; u8 idcode[IDCODE_LEN], *idp; spi = spi_setup_slave(bus, cs); if (!spi) { printk(BIOS_WARNING, "SF: Failed to set up slave\n"); return NULL; } spi->rw = SPI_READ_FLAG; if (spi->force_programmer_specific && spi->programmer_specific_probe) { flash = spi->programmer_specific_probe (spi); if (!flash) goto err_read_id; goto flash_detected; } /* Read the ID codes */ ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode)); if (ret) goto err_read_id; #if CONFIG_DEBUG_SPI_FLASH printk(BIOS_SPEW, "SF: Got idcode: "); for (i = 0; i < sizeof(idcode); i++) printk(BIOS_SPEW, "%02x ", idcode[i]); printk(BIOS_SPEW, "\n"); #endif /* count the number of continuation bytes */ for (shift = 0, idp = idcode; shift < IDCODE_CONT_LEN && *idp == 0x7f; ++shift, ++idp) continue; /* search the table for matches in shift and id */ for (i = 0; i < ARRAY_SIZE(flashes); ++i) if (flashes[i].shift == shift && flashes[i].idcode == *idp) { /* we have a match, call probe */ flash = flashes[i].probe(spi, idp); if (flash) break; } if (!flash && spi->programmer_specific_probe) { flash = spi->programmer_specific_probe (spi); } if (!flash) { printk(BIOS_WARNING, "SF: Unsupported manufacturer %02x\n", *idp); goto err_manufacturer_probe; } flash_detected: printk(BIOS_INFO, "SF: Detected %s with sector size 0x%x, total 0x%x\n", flash->name, flash->sector_size, flash->size); spi_flash_dev = flash; return flash; err_manufacturer_probe: err_read_id: return NULL; } /* Only the RAM stage will build in the lb_new_record symbol * so only define this function if we are after that stage */ #ifdef __RAMSTAGE__ void lb_spi_flash(struct lb_header *header) { struct lb_spi_flash *flash; flash = (struct lb_spi_flash *)lb_new_record(header); flash->tag = LB_TAG_SPI_FLASH; flash->size = sizeof(*flash); /* Try to get the flash device if not loaded yet */ if (!spi_flash_dev) boot_device_init(); if (spi_flash_dev) { flash->flash_size = spi_flash_dev->size; flash->sector_size = spi_flash_dev->sector_size; flash->erase_cmd = spi_flash_dev->erase_cmd; } else { flash->flash_size = CONFIG_ROM_SIZE; /* Default 64k erase command should work on most flash. * Uniform 4k erase only works on certain devices. */ flash->sector_size = 64 * KiB; flash->erase_cmd = CMD_BLOCK_ERASE; } } #endif