/* * Copyright 2013 Google Inc. * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ /* This code was created by the coccinnelle filters in the i915tool, * with some final hand filtering. */ #include #include #include #include #include /** * is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @param intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return 1, and 0 otherwise. */ static int is_edp(struct intel_dp *intel_dp) { return intel_dp->type == INTEL_OUTPUT_EDP; } /** * is_pch_edp - is the port on the PCH and attached to an eDP panel? * @param intel_dp: DP struct * * Returns 1 if the given DP struct corresponds to a PCH DP port attached * to an eDP panel, 0 otherwise. Helpful for determining whether we * may need FDI resources for a given DP output or not. */ static int is_pch_edp(struct intel_dp *intel_dp) { return intel_dp->is_pch_edp; } /** * is_cpu_edp - is the port on the CPU and attached to an eDP panel? * @param intel_dp: DP struct * * Returns 1 if the given DP struct corresponds to a CPU eDP port. */ static int is_cpu_edp(struct intel_dp *intel_dp) { return is_edp(intel_dp) && !is_pch_edp(intel_dp); } static uint32_t pack_aux(uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } void unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } static int ironlake_edp_have_panel_power(struct intel_dp *intel_dp) { return (gtt_read(PCH_PP_STATUS) & PP_ON) != 0; } static int ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp) { return (gtt_read(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0; } int intel_dp_aux_ch(struct intel_dp *intel_dp, uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { uint32_t output_reg = intel_dp->output_reg; uint32_t ch_ctl = output_reg + 0x10; uint32_t ch_data = ch_ctl + 4; int i; int recv_bytes; uint32_t status; int try; /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = gtt_read(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; mdelay(1); } if (try == 3) { if (1) { status = gtt_read(ch_ctl); printk(BIOS_ERR, "dp_aux_ch not started status 0x%08x\n", status); } return -1; } /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4){ u32 val, addr; val = pack_aux(send + i, send_bytes - i); addr = ch_data + i; gtt_write(addr,val); } /* Send the command and wait for it to complete */ gtt_write(ch_ctl, DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_TIME_OUT_400us | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (intel_dp->precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (intel_dp->aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); for (;;) { status = gtt_read(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; udelay(100); } /* Clear done status and any errors */ gtt_write(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) continue; if (status & DP_AUX_CH_CTL_DONE) break; } if ((status & DP_AUX_CH_CTL_DONE) == 0) { printk(BIOS_ERR, "dp_aux_ch not done status 0x%08x\n", status); return -1; } /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { printk(BIOS_ERR, "dp_aux_ch receive error status 0x%08x\n", status); return -1; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { printk(BIOS_ERR, "dp_aux_ch timeout status 0x%08x\n", status); return -1; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) unpack_aux(gtt_read(ch_data + i), recv + i, recv_bytes - i); return recv_bytes; } /* Write data to the aux channel in native mode */ static int intel_dp_aux_native_write(struct intel_dp *intel_dp, uint16_t address, uint8_t *send, int send_bytes) { int ret; uint8_t msg[20]; int msg_bytes; uint8_t ack; if (send_bytes > 16) return -1; msg[0] = AUX_NATIVE_WRITE << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = send_bytes - 1; memcpy(&msg[4], send, send_bytes); msg_bytes = send_bytes + 4; for (;;) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1); if (ret < 0) return ret; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) break; else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -1; } return send_bytes; } /* Write a single byte to the aux channel in native mode */ static int intel_dp_aux_native_write_1(struct intel_dp *intel_dp, uint16_t address, uint8_t byte) { return intel_dp_aux_native_write(intel_dp, address, &byte, 1); } int intel_dp_set_bw(struct intel_dp *intel_dp) { printk(BIOS_SPEW, "DP_LINK_BW_SET"); return intel_dp_aux_native_write_1(intel_dp, DP_LINK_BW_SET, intel_dp->link_bw); } int intel_dp_set_lane_count(struct intel_dp *intel_dp) { printk(BIOS_SPEW, "DP_LANE_COUNT_SET %d ", intel_dp->lane_count); return intel_dp_aux_native_write_1(intel_dp, DP_LANE_COUNT_SET, intel_dp->lane_count); } int intel_dp_set_training_pattern(struct intel_dp *intel_dp, u8 pat) { printk(BIOS_SPEW, "DP_TRAINING_PATTERN_SET"); return intel_dp_aux_native_write_1(intel_dp, DP_TRAINING_PATTERN_SET, pat); } int intel_dp_set_training_lane0(struct intel_dp *intel_dp, u8 val) { printk(BIOS_SPEW, "DP_TRAINING_LANE0_SET"); return intel_dp_aux_native_write_1(intel_dp, DP_TRAINING_LANE0_SET, val); } /* read bytes from a native aux channel */ static int intel_dp_aux_native_read(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { uint8_t msg[4]; int msg_bytes; uint8_t reply[20]; int reply_bytes; uint8_t ack; int ret; msg[0] = AUX_NATIVE_READ << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = recv_bytes - 1; msg_bytes = 4; reply_bytes = recv_bytes + 1; for (;;) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret == 0) return -1; if (ret < 0) return ret; ack = reply[0]; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) { memcpy(recv, reply + 1, ret - 1); return ret - 1; } else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(100); else return -1; } } int intel_dp_i2c_aux_ch(struct intel_dp *intel_dp, int mode, uint8_t write_byte, uint8_t *read_byte) { uint8_t msg[5]; uint8_t reply[2]; unsigned retry; int msg_bytes; int reply_bytes; int ret; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[0] = AUX_I2C_READ << 4; else msg[0] = AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[0] |= AUX_I2C_MOT << 4; msg[1] = intel_dp->address >> 8; msg[2] = intel_dp->address; switch (mode) { case MODE_I2C_WRITE: msg[3] = 0; msg[4] = write_byte; msg_bytes = 5; reply_bytes = 1; break; case MODE_I2C_READ: msg[3] = 0; msg_bytes = 4; reply_bytes = 2; break; default: msg_bytes = 3; reply_bytes = 1; break; } for (retry = 0; retry < 5; retry++) { ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, reply, reply_bytes); if (ret < 0) { printk(BIOS_ERR, "aux_ch failed %d\n", ret); return ret; } switch (reply[0] & AUX_NATIVE_REPLY_MASK) { case AUX_NATIVE_REPLY_ACK: /* I2C-over-AUX Reply field is only valid * when paired with AUX ACK. */ break; case AUX_NATIVE_REPLY_NACK: printk(BIOS_ERR, "aux_ch native nack\n"); return -1; case AUX_NATIVE_REPLY_DEFER: udelay(100); continue; default: printk(BIOS_ERR, "aux_ch invalid native reply 0x%02x\n", reply[0]); return -1; } switch (reply[0] & AUX_I2C_REPLY_MASK) { case AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) { *read_byte = reply[1]; } return reply_bytes - 1; case AUX_I2C_REPLY_NACK: printk(BIOS_ERR, "aux_i2c nack\n"); return -1; case AUX_I2C_REPLY_DEFER: printk(BIOS_ERR, "aux_i2c defer\n"); udelay(100); break; default: printk(BIOS_ERR, "aux_i2c invalid reply 0x%02x\n", reply[0]); return -1; } } printk(BIOS_ERR, "too many retries, giving up\n"); return -1; } int intel_dp_i2c_write(struct intel_dp *intel_dp, u8 val) { return intel_dp_i2c_aux_ch(intel_dp, MODE_I2C_WRITE, val, NULL); } int intel_dp_i2c_read(struct intel_dp *intel_dp, u8 *val) { return intel_dp_i2c_aux_ch(intel_dp, MODE_I2C_READ, 0, val); } int intel_dp_i2c_init(struct intel_dp *intel_dp) { int ret = 0; /* not clear what we need to do here, if anything. * this function was more about setting up the kernel. * it's a handy placeholder, so we leave it in for now. */ return ret; } static void intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } unsigned int roundup_power_of_two(unsigned int n); unsigned int roundup_power_of_two(unsigned int n) { n--; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; n++; return n; } static void compute_m_n(unsigned int m, unsigned int n, unsigned int *ret_m, unsigned int *ret_n) { /* We noticed in the IO operations that * the VBIOS was setting N to DATA_LINK_N_MAX. * This makes sense, actually: the bigger N is, i.e. * the bigger the denominator is, the bigger * the numerator can be, and the more * bits of numerator you get, the better the result. * So, first pick the max of the two powers of two. * And, in the (unlikely) event that you end up with * something bigger than DATA_LINK_N_MAX, catch that * case with a MIN. Note the second case is unlikely, * but we are best off being careful. */ /* * This code is incorrect and will always set ret_n * to DATA_LINK_N_MAX. */ *ret_n = MAX(roundup_power_of_two(n), DATA_LINK_N_MAX); *ret_n = MIN(*ret_n, DATA_LINK_N_MAX); *ret_m = ( (unsigned long long)m * *ret_n) / n; intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_dp_compute_m_n(unsigned int bits_per_pixel, unsigned int nlanes, unsigned int pixel_clock, unsigned int link_clock, struct intel_dp_m_n *m_n) { m_n->tu = 64; compute_m_n(bits_per_pixel * pixel_clock, link_clock * nlanes * 8, &m_n->gmch_m, &m_n->gmch_n); compute_m_n(pixel_clock, link_clock, &m_n->link_m, &m_n->link_n); } static void ironlake_edp_pll_off(void); void intel_dp_mode_set(struct intel_dp *intel_dp) { /* Turn on the eDP PLL if needed */ if (is_edp(intel_dp)) { if (!is_pch_edp(intel_dp)) ironlake_edp_pll_on(); else ironlake_edp_pll_off(); } /* * There are four kinds of DP registers: * * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ironlake_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = gtt_read(intel_dp->output_reg) & DP_DETECTED; printk(BIOS_SPEW, "%s: initial value is %08lx\n", __func__, (unsigned long)intel_dp->DP); /* | 0 essentially */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; /* Handle DP bits in common between all three register formats */ switch (intel_dp->lane_count) { case 1: intel_dp->DP |= DP_PORT_WIDTH_1; break; case 2: intel_dp->DP |= DP_PORT_WIDTH_2; break; case 4: intel_dp->DP |= DP_PORT_WIDTH_4; break; } memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); intel_dp->link_configuration[0] = intel_dp->link_bw; intel_dp->link_configuration[1] = intel_dp->lane_count; intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B; /* * Check for DPCD version > 1.1 and enhanced framing support */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; } /* Split out the IBX/CPU vs CPT settings */ if (is_cpu_edp(intel_dp) && (intel_dp->gen == 7)) { /* what are these? We're not sure. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) */ intel_dp->DP |= DP_SYNC_VS_HIGH; /* */ intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= intel_dp->pipe << 29; /* don't miss out required setting for eDP */ intel_dp->DP |= DP_PLL_ENABLE; if (intel_dp->clock < 200000) intel_dp->DP |= DP_PLL_FREQ_160MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; } else if (!intel_dp->has_pch_cpt || is_cpu_edp(intel_dp)) { intel_dp->DP |= intel_dp->color_range; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN) intel_dp->DP |= DP_ENHANCED_FRAMING; if (intel_dp->pipe == 1) intel_dp->DP |= DP_PIPEB_SELECT; if (is_cpu_edp(intel_dp)) { /* don't miss out required setting for eDP */ intel_dp->DP |= DP_PLL_ENABLE; if (intel_dp->clock < 200000) intel_dp->DP |= DP_PLL_FREQ_160MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; } } else { intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; } } #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) static void ironlake_wait_panel_status(struct intel_dp *intel_dp, u32 mask, u32 value) { int i; u32 status; printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__); printk(BIOS_ERR, "mask %08lx value %08lx status %08lx control %08lx\n", (unsigned long) mask, (unsigned long) value, (unsigned long)gtt_read(PCH_PP_STATUS), (unsigned long)gtt_read(PCH_PP_CONTROL)); for(i = 0, status = gtt_read(PCH_PP_STATUS); ((status & mask) != value) && (i < 5000); status = gtt_read(PCH_PP_STATUS)){ udelay(10); } if (i > 5000){ printk(BIOS_ERR, "Panel status timeout: status %08lx control %08lx\n", (unsigned long)gtt_read(PCH_PP_STATUS), (unsigned long)gtt_read(PCH_PP_CONTROL)); } } static void ironlake_wait_panel_on(struct intel_dp *intel_dp) { printk(BIOS_ERR, "Wait for panel power on\n"); ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); } static void ironlake_wait_panel_off(struct intel_dp *intel_dp) { printk(BIOS_ERR, "Wait for panel power off time\n"); ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); } static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp) { printk(BIOS_ERR, "Wait for panel power cycle\n"); ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); } void intel_dp_wait_reg(unsigned long addr, unsigned long val) { unsigned long newval; int tries = 0; while ((newval = gtt_read(addr)) != val) { udelay(1); if (tries++ > 1000) { printk(BIOS_ERR, "%s: Waiting on %08lx to be %08lx, got %08lx\n", __func__, addr, val, newval); break; } } } void intel_dp_wait_panel_power_control(unsigned long val) { intel_dp_wait_reg(PCH_PP_CONTROL, val); } /* Read the current pp_control value, unlocking the register if it * is locked */ static u32 ironlake_get_pp_control(void) { u32 control = gtt_read(PCH_PP_CONTROL); control &= ~PANEL_UNLOCK_MASK; control |= PANEL_UNLOCK_REGS; return control; } void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp) { u32 pp; if (!is_edp(intel_dp)) return; printk(BIOS_ERR, "Turn eDP VDD on\n"); if (intel_dp->want_panel_vdd) { printk(BIOS_ERR, "eDP VDD already requested on\n"); } intel_dp->want_panel_vdd = 1; if (ironlake_edp_have_panel_vdd(intel_dp)) { printk(BIOS_ERR, "eDP VDD already on\n"); return; } if (!ironlake_edp_have_panel_power(intel_dp)) ironlake_wait_panel_power_cycle(intel_dp); pp = ironlake_get_pp_control(); pp |= EDP_FORCE_VDD; gtt_write(PCH_PP_CONTROL,pp); // remember this if we need it later. Not sure yet. ////POSTING_READ(PCH_PP_CONTROL); printk(BIOS_ERR, "PCH_PP_STATUS: 0x%08lx PCH_PP_CONTROL: 0x%08lx\n", (unsigned long) gtt_read(PCH_PP_STATUS), (unsigned long) gtt_read(PCH_PP_CONTROL)); /* * If the panel wasn't on, delay before accessing aux channel */ if (!ironlake_edp_have_panel_power(intel_dp)) { printk(BIOS_ERR, "eDP was not running\n"); mdelay(intel_dp->panel_power_up_delay); } } static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp) { u32 pp; if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) { pp = ironlake_get_pp_control(); pp &= ~EDP_FORCE_VDD; gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); /* Make sure sequencer is idle before allowing subsequent activity */ printk(BIOS_ERR, "PCH_PP_STATUS: 0x%08lx PCH_PP_CONTROL: 0x%08lx\n", (unsigned long) gtt_read(PCH_PP_STATUS), (unsigned long) gtt_read(PCH_PP_CONTROL)); mdelay(intel_dp->panel_power_down_delay); } } void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, int sync) { if (!is_edp(intel_dp)) return; printk(BIOS_ERR, "Turn eDP VDD off %d\n", intel_dp->want_panel_vdd); if (!intel_dp->want_panel_vdd) { printk(BIOS_ERR, "eDP VDD not forced on"); } intel_dp->want_panel_vdd = 0; if (sync) ironlake_panel_vdd_off_sync(intel_dp); } void ironlake_edp_panel_on(struct intel_dp *intel_dp) { u32 pp; if (!is_edp(intel_dp)) return; printk(BIOS_ERR, "Turn eDP power on\n"); if (ironlake_edp_have_panel_power(intel_dp)) { printk(BIOS_ERR, "eDP power already on\n"); return; } ironlake_wait_panel_power_cycle(intel_dp); pp = ironlake_get_pp_control(); if (intel_dp->gen == 5) { /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); } pp |= POWER_TARGET_ON; if (!(intel_dp->gen == 5)) pp |= PANEL_POWER_RESET; gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); ironlake_wait_panel_on(intel_dp); if (intel_dp->gen == 5) { pp |= PANEL_POWER_RESET; /* restore panel reset bit */ gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); } } void ironlake_edp_panel_off(struct intel_dp *intel_dp) { u32 pp; if (!is_edp(intel_dp)) return; printk(BIOS_ERR, "Turn eDP power off\n"); if (intel_dp->want_panel_vdd) { printk(BIOS_ERR, "Cannot turn power off while VDD is on\n"); } pp = ironlake_get_pp_control(); pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE); gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); ironlake_wait_panel_off(intel_dp); } void ironlake_edp_backlight_on(struct intel_dp *intel_dp) { u32 pp; if (!is_edp(intel_dp)) return; /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ mdelay(intel_dp->backlight_on_delay); pp = ironlake_get_pp_control(); pp |= EDP_BLC_ENABLE; gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); } void ironlake_edp_backlight_off(struct intel_dp *intel_dp) { u32 pp; if (!is_edp(intel_dp)) return; pp = ironlake_get_pp_control(); pp &= ~EDP_BLC_ENABLE; gtt_write(PCH_PP_CONTROL,pp); ////POSTING_READ(PCH_PP_CONTROL); mdelay(intel_dp->backlight_off_delay); } void ironlake_edp_pll_on(void) { u32 dpa_ctl; dpa_ctl = gtt_read(DP_A); dpa_ctl |= DP_PLL_ENABLE; gtt_write(DP_A,dpa_ctl); ////POSTING_READ(DP_A); udelay(200); } static void ironlake_edp_pll_off(void) { u32 dpa_ctl; dpa_ctl = gtt_read(DP_A); dpa_ctl &= ~DP_PLL_ENABLE; gtt_write(DP_A,dpa_ctl); ////POSTING_READ(DP_A); udelay(200); } /* If the sink supports it, try to set the power state appropriately */ void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; /* the convention, for whatever reason, is that mode > 0 means 'off' */ if (mode) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D3); if (ret != 1) { printk(BIOS_ERR, "failed to write sink power state\n"); } } else { /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; mdelay(1); } } } /* * Native read with retry for link status and receiver capability reads for * cases where the sink may still be asleep. */ static int intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address, uint8_t *recv, int recv_bytes) { int ret, i; /* * Sinks are *supposed* to come up within 1ms from an off state, * but we're also supposed to retry 3 times per the spec. */ for (i = 0; i < 3; i++) { ret = intel_dp_aux_native_read(intel_dp, address, recv, recv_bytes); if (ret == recv_bytes) return ret; mdelay(1); } return ret; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ int intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { int ret, i; ret = intel_dp_aux_native_read_retry(intel_dp, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); printk(BIOS_SPEW, "%s:", __func__); for(i = 0; i < /* !!sizeof(link_status) == 4*/ DP_LINK_STATUS_SIZE; i++) printk(BIOS_SPEW, " %02x", link_status[i]); printk(BIOS_SPEW, "\n"); return ret; } static uint8_t intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } const char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; const char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; const char *link_train_names[] = { "pattern 1", "pattern 2", "idle", "off" }; /* * These are source-specific values; current Intel hardware supports * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB */ static uint8_t intel_dp_voltage_max(struct intel_dp *intel_dp) { if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) return DP_TRAIN_VOLTAGE_SWING_800; else if (intel_dp->has_pch_cpt && !is_cpu_edp(intel_dp)) return DP_TRAIN_VOLTAGE_SWING_1200; else return DP_TRAIN_VOLTAGE_SWING_800; } static uint8_t intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) { if (intel_dp->is_haswell){ switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_9_5; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } else if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; default: return DP_TRAIN_PRE_EMPHASIS_0; } } else { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } } static void intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { uint8_t v = 0; uint8_t p = 0; int lane; uint8_t voltage_max; uint8_t preemph_max; for (lane = 0; lane < intel_dp->lane_count; lane++) { uint8_t this_v = drm_dp_get_adjust_request_voltage( link_status, lane); uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis( link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } voltage_max = intel_dp_voltage_max(intel_dp); if (v >= voltage_max) v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); if (p >= preemph_max) p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; printk(BIOS_SPEW, "%s: set to %s %s%s %s\n", __func__, voltage_names[v&3], pre_emph_names[p&3], v & DP_TRAIN_MAX_SWING_REACHED ? ",max volt swing reached":"", p & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? ", max pre emph reached" : ""); for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static uint32_t intel_dp_signal_levels(uint8_t train_set) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_600: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_800: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_1200: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPHASIS_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPHASIS_3_5: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPHASIS_6: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPHASIS_9_5: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } /* Gen6's DP voltage swing and pre-emphasis control */ static uint32_t intel_gen6_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__); printk(BIOS_ERR, "Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } /* Gen7's DP voltage swing and pre-emphasis control */ static uint32_t intel_gen7_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: printk(BIOS_ERR, "[000000.0] [drm:%s], ", __func__); printk(BIOS_ERR, "Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */ static uint32_t intel_dp_signal_levels_hsw(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_400MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_400MV_3_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_400MV_6DB_HSW; case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5: return DDI_BUF_EMP_400MV_9_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_600MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_600MV_3_5DB_HSW; case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: return DDI_BUF_EMP_600MV_6DB_HSW; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: return DDI_BUF_EMP_800MV_0DB_HSW; case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: return DDI_BUF_EMP_800MV_3_5DB_HSW; default: printk(BIOS_SPEW, "Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return DDI_BUF_EMP_400MV_0DB_HSW; } } static uint8_t intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int s = (lane & 1) * 4; uint8_t l = link_status[lane>>1]; return (l >> s) & 0xf; } /* Check for clock recovery is done on all channels */ static int intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; uint8_t lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = intel_get_lane_status(link_status, lane); printk(BIOS_SPEW, "%s: Lane %d, status %02x\n", __func__, lane, lane_status); if ((lane_status & DP_LANE_CR_DONE) == 0) return 0; } return 1; } /* Check to see if channel eq is done on all channels */ #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE| \ DP_LANE_CHANNEL_EQ_DONE| \ DP_LANE_SYMBOL_LOCKED) int intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { uint8_t lane_align; uint8_t lane_status; int lane; lane_align = intel_dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return 0; for (lane = 0; lane < intel_dp->lane_count; lane++) { lane_status = intel_get_lane_status(link_status, lane); if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) return 0; } return 1; } static int intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t dp_reg_value, uint8_t dp_train_pat) { int ret; u32 temp; int port = intel_dp->port; int i; printk(BIOS_SPEW, "%s: dp_reg_value %08lx dp_train_pat %02x\n", __func__, (unsigned long) dp_reg_value, dp_train_pat); if (intel_dp->is_haswell){ temp = gtt_read(DP_TP_CTL(port)); if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) temp |= DP_TP_CTL_SCRAMBLE_DISABLE; else temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: temp |= DP_TP_CTL_LINK_TRAIN_IDLE; gtt_write(DP_TP_CTL(port), temp); for(i = 0; i < 10; i++){ u32 status; status = gtt_read(DP_TP_STATUS(port)); if (status & DP_TP_STATUS_IDLE_DONE) break; } if (i == 10) printk(BIOS_ERR, "Timed out waiting for DP idle patterns\n"); temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; break; case DP_TRAINING_PATTERN_1: temp |= DP_TP_CTL_LINK_TRAIN_PAT1; break; case DP_TRAINING_PATTERN_2: temp |= DP_TP_CTL_LINK_TRAIN_PAT2; break; case DP_TRAINING_PATTERN_3: temp |= DP_TP_CTL_LINK_TRAIN_PAT3; break; } gtt_write(DP_TP_CTL(port), temp); } else if (intel_dp->has_pch_cpt && (intel_dp->gen != 7 || !is_cpu_edp(intel_dp))) { dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: dp_reg_value |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT; break; case DP_TRAINING_PATTERN_3: printk(BIOS_ERR, "DP training pattern 3 not supported\n"); dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT; break; } } else { dp_reg_value &= ~DP_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: dp_reg_value |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: dp_reg_value |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: dp_reg_value |= DP_LINK_TRAIN_PAT_2; break; case DP_TRAINING_PATTERN_3: printk(BIOS_ERR,"DP training pattern 3 not supported\n"); dp_reg_value |= DP_LINK_TRAIN_PAT_2; break; } } gtt_write(intel_dp->output_reg, dp_reg_value); //POSTING_READ(intel_dp->output_reg); intel_dp_aux_native_write_1(intel_dp, DP_TRAINING_PATTERN_SET, dp_train_pat); if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) != DP_TRAINING_PATTERN_DISABLE) { ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET, intel_dp->train_set, intel_dp->lane_count); if (ret != intel_dp->lane_count){ printk(BIOS_ERR, "%s: wanted %d, got %d\n", __func__, intel_dp->lane_count, ret); return 0; } } printk(BIOS_SPEW, "%s: success\n", __func__); return 1; } /* Enable corresponding port and start training pattern 1 */ void intel_dp_start_link_train(struct intel_dp *intel_dp) { int i; uint8_t voltage; int clock_recovery = 0; int voltage_tries, loop_tries; u32 reg; uint32_t DP = intel_dp->DP; if (intel_dp->is_haswell) intel_ddi_prepare_link_retrain(intel_dp, intel_dp->port); /* Write the link configuration data */ printk(BIOS_SPEW, "Write the link configuration data\n"); intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, intel_dp->link_configuration, DP_LINK_CONFIGURATION_SIZE); printk(BIOS_SPEW, "Written\n"); DP |= DP_PORT_EN; memset(intel_dp->train_set, 0, 4); voltage = 0xff; voltage_tries = 0; loop_tries = 0; clock_recovery = 0; for (;;) { /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ uint8_t link_status[DP_LINK_STATUS_SIZE]; uint32_t signal_levels; if (intel_dp->is_haswell){ signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]); DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels; printk(BIOS_SPEW, "Haswell: levels %08x DP %08x\n", signal_levels, DP); } else if ((intel_dp->gen == 7) && is_cpu_edp(intel_dp)) { signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]); DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels; } else if ((intel_dp->gen == 6) && is_cpu_edp(intel_dp)) { signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]); DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels; } else { signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]); DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels; } printk(BIOS_ERR, "training pattern 1 signal levels %08x\n", signal_levels); if (intel_dp->has_pch_cpt && ((intel_dp->gen == 7) || !is_cpu_edp(intel_dp))) reg = DP | DP_LINK_TRAIN_PAT_1_CPT; else reg = DP | DP_LINK_TRAIN_PAT_1; if (!intel_dp_set_link_train(intel_dp, reg, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) break; /* Set training pattern 1 */ udelay(100); if (!intel_dp_get_link_status(intel_dp, link_status)) { printk(BIOS_ERR, "failed to get link status\n"); break; } if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) { printk(BIOS_ERR, "clock recovery OK\n"); clock_recovery = 1; break; } /* Check to see if we've tried the max voltage */ for (i = 0; i < intel_dp->lane_count; i++) if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == intel_dp->lane_count) { ++loop_tries; if (loop_tries == 5) { printk(BIOS_ERR, "too many full retries, give up\n"); break; } printk(BIOS_SPEW, "%s: reset train set\n", __func__); memset(intel_dp->train_set, 0, 4); voltage_tries = 0; continue; } /* Check to see if we've tried the same voltage 5 times */ if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++voltage_tries; if (voltage_tries == 5) { printk(BIOS_ERR, "too many voltage retries, give up\n"); break; } } else voltage_tries = 0; voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; printk(BIOS_SPEW, "%s: voltage now %s\n", __func__, voltage_names[voltage]); /* Compute new intel_dp->train_set as requested by target */ intel_get_adjust_train(intel_dp, link_status); printk(BIOS_SPEW, "%s: new intel train set is " "%02x%02x%02x%02x", __func__, intel_dp->train_set[0], intel_dp->train_set[1], intel_dp->train_set[2], intel_dp->train_set[3]); } intel_dp->DP = DP; } int intel_dp_get_dpcd(struct intel_dp *intel_dp) { int got = 0, want = sizeof(intel_dp->dpcd), rev; got = intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd, want); if (got < want) { printk(BIOS_SPEW, "%s: got %d, wanted %d\n", __func__, got, want); return 0; } rev = intel_dp->dpcd[DP_DPCD_REV]; if (!rev){ printk(BIOS_SPEW, "%s: intel->dp[DP_DPCD_REV] is 0\n", __func__); return 0; } printk(BIOS_SPEW, "DPCD: %02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx\n", intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5], intel_dp->dpcd[6], intel_dp->dpcd[7]); return 1; } /* I have no idea how big max downspread is. 1 byte? Hard as hell to find. */ int intel_dp_get_max_downspread(struct intel_dp *intel_dp, u8 *max_downspread) { int got, want = 1; got = intel_dp_aux_native_read_retry(intel_dp, DP_MAX_DOWNSPREAD, max_downspread, want); if (got < want) { printk(BIOS_SPEW, "%s: got %d, wanted %d\n", __func__, got, want); return 0; } printk(BIOS_SPEW, "%s: max_downspread is %02x\n", __func__, *max_downspread); return 1; } void intel_dp_set_m_n_regs(struct intel_dp *dp) { gtt_write(PIPE_DATA_M1(dp->transcoder), TU_SIZE(dp->m_n.tu) | dp->m_n.gmch_m); gtt_write(PIPE_DATA_N1(dp->transcoder),dp->m_n.gmch_n); gtt_write(PIPE_LINK_M1(dp->transcoder),dp->m_n.link_m); gtt_write(PIPE_LINK_N1(dp->transcoder),dp->m_n.link_n); } int intel_dp_bw_code_to_link_rate(u8 link_bw) { switch (link_bw) { default: printk(BIOS_ERR, "ERROR: link_bw(%d) is bogus; must be one of 6, 0xa, or 0x14\n", link_bw); case DP_LINK_BW_1_62: return 162000; case DP_LINK_BW_2_7: return 270000; case DP_LINK_BW_5_4: return 540000; } } void intel_dp_set_resolution(struct intel_dp *intel_dp) { gtt_write(HTOTAL(intel_dp->transcoder),intel_dp->htotal); gtt_write(HBLANK(intel_dp->transcoder),intel_dp->hblank); gtt_write(HSYNC(intel_dp->transcoder),intel_dp->hsync); gtt_write(VTOTAL(intel_dp->transcoder),intel_dp->vtotal); gtt_write(VBLANK(intel_dp->transcoder),intel_dp->vblank); gtt_write(VSYNC(intel_dp->transcoder),intel_dp->vsync); } int intel_dp_get_training_pattern(struct intel_dp *intel_dp, u8 *recv) { return intel_dp_aux_native_read_retry(intel_dp, DP_TRAINING_PATTERN_SET, recv, 0); } int intel_dp_get_lane_count(struct intel_dp *intel_dp, u8 *recv) { int val = intel_dp_aux_native_read_retry(intel_dp, DP_LANE_COUNT_SET, recv, 0); *recv &= DP_LANE_COUNT_MASK; printk(BIOS_SPEW, "Lane count %s:%d\n", val < 0 ? "fail" : "ok", *recv); return val; } int intel_dp_get_lane_align_status(struct intel_dp *intel_dp, u8 *recv) { return intel_dp_aux_native_read_retry(intel_dp, DP_LANE_ALIGN_STATUS_UPDATED, recv, 0); }