/* * Copyright (C) 2011 Infineon Technologies * * Authors: * Peter Huewe <huewe.external@infineon.com> * * Description: * Device driver for TCG/TCPA TPM (trusted platform module). * Specifications at www.trustedcomputinggroup.org * * This device driver implements the TPM interface as defined in * the TCG TPM Interface Spec version 1.2, revision 1.0 and the * Infineon I2C Protocol Stack Specification v0.20. * * It is based on the Linux kernel driver tpm.c from Leendert van * Dorn, Dave Safford, Reiner Sailer, and Kyleen Hall. * * Version: 2.1.1 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2 of the * License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <arch/early_variables.h> #include <commonlib/endian.h> #include <stdint.h> #include <string.h> #include <types.h> #include <delay.h> #include <console/console.h> #include <device/i2c.h> #include <endian.h> #include <timer.h> #include "tpm.h" /* max. number of iterations after I2C NAK */ #define MAX_COUNT 3 #define SLEEP_DURATION 60 /* in usec */ #define SLEEP_DURATION_LONG 210 /* in usec */ #define SLEEP_DURATION_PROBE_MS 1000 /* in msec */ /* max. number of iterations after I2C NAK for 'long' commands * we need this especially for sending TPM_READY, since the cleanup after the * transtion to the ready state may take some time, but it is unpredictable * how long it will take. */ #define MAX_COUNT_LONG 50 /* expected value for DIDVID register */ #define TPM_TIS_I2C_DID_VID_9635 0x000b15d1L #define TPM_TIS_I2C_DID_VID_9645 0x001a15d1L enum i2c_chip_type { SLB9635, SLB9645, UNKNOWN, }; static const char * const chip_name[] = { [SLB9635] = "slb9635tt", [SLB9645] = "slb9645tt", [UNKNOWN] = "unknown/fallback to slb9635", }; /* Structure to store I2C TPM specific stuff */ struct tpm_inf_dev { int bus; unsigned int addr; unsigned int sleep_short; /* Short sleep duration in usec */ unsigned int sleep_long; /* Long sleep duration in usec */ uint8_t buf[TPM_BUFSIZE + sizeof(uint8_t)]; // max. buffer size + addr enum i2c_chip_type chip_type; }; static struct tpm_inf_dev g_tpm_dev CAR_GLOBAL; /* * iic_tpm_read() - read from TPM register * @addr: register address to read from * @buffer: provided by caller * @len: number of bytes to read * * Read len bytes from TPM register and put them into * buffer (little-endian format, i.e. first byte is put into buffer[0]). * * NOTE: TPM is big-endian for multi-byte values. Multi-byte * values have to be swapped. * * Return -1 on error, 0 on success. */ static int iic_tpm_read(uint8_t addr, uint8_t *buffer, size_t len) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); int rc; int count; if (tpm_dev->addr == 0) return -1; switch (tpm_dev->chip_type) { case SLB9635: case UNKNOWN: /* slb9635 protocol should work in both cases */ for (count = 0; count < MAX_COUNT; count++) { rc = i2c_write_raw(tpm_dev->bus, tpm_dev->addr, &addr, 1); if (rc == 0) break; /* success, break to skip sleep */ udelay(tpm_dev->sleep_short); } if (rc) return -1; /* After the TPM has successfully received the register address * it needs some time, thus we're sleeping here again, before * retrieving the data */ for (count = 0; count < MAX_COUNT; count++) { udelay(tpm_dev->sleep_short); rc = i2c_read_raw(tpm_dev->bus, tpm_dev->addr, buffer, len); if (rc == 0) break; /* success, break to skip sleep */ } break; default: { /* use a combined read for newer chips * unfortunately the smbus functions are not suitable due to * the 32 byte limit of the smbus. * retries should usually not be needed, but are kept just to * be safe on the safe side. */ struct i2c_seg aseg = { .read = 0, .chip = tpm_dev->addr, .buf = &addr, .len = 1 }; struct i2c_seg dseg = { .read = 1, .chip = tpm_dev->addr, .buf = buffer, .len = len }; for (count = 0; count < MAX_COUNT; count++) { rc = i2c_transfer(tpm_dev->bus, &aseg, 1) || i2c_transfer(tpm_dev->bus, &dseg, 1); if (rc == 0) break; /* break here to skip sleep */ udelay(tpm_dev->sleep_short); } } } /* take care of 'guard time' */ udelay(tpm_dev->sleep_short); if (rc) return -1; return 0; } static int iic_tpm_write_generic(uint8_t addr, uint8_t *buffer, size_t len, unsigned int sleep_time, uint8_t max_count) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); int rc = 0; int count; if (len > TPM_BUFSIZE) { printk(BIOS_DEBUG, "%s: Length %zd is too large\n", __func__, len); return -1; } /* prepare send buffer */ tpm_dev->buf[0] = addr; memcpy(&(tpm_dev->buf[1]), buffer, len); if (tpm_dev->addr == 0) return -1; for (count = 0; count < max_count; count++) { rc = i2c_write_raw(tpm_dev->bus, tpm_dev->addr, tpm_dev->buf, len + 1); if (rc == 0) break; /* success, break to skip sleep */ udelay(sleep_time); } /* take care of 'guard time' */ udelay(tpm_dev->sleep_short); if (rc) return -1; return 0; } /* * iic_tpm_write() - write to TPM register * @addr: register address to write to * @buffer: containing data to be written * @len: number of bytes to write * * Write len bytes from provided buffer to TPM register (little * endian format, i.e. buffer[0] is written as first byte). * * NOTE: TPM is big-endian for multi-byte values. Multi-byte * values have to be swapped. * * NOTE: use this function instead of the iic_tpm_write_generic function. * * Return -EIO on error, 0 on success */ static int iic_tpm_write(uint8_t addr, uint8_t *buffer, size_t len) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); return iic_tpm_write_generic(addr, buffer, len, tpm_dev->sleep_short, MAX_COUNT); } /* * This function is needed especially for the cleanup situation after * sending TPM_READY * */ static int iic_tpm_write_long(uint8_t addr, uint8_t *buffer, size_t len) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); return iic_tpm_write_generic(addr, buffer, len, tpm_dev->sleep_long, MAX_COUNT_LONG); } static int check_locality(struct tpm_chip *chip, int loc) { uint8_t buf; if (iic_tpm_read(TPM_ACCESS(loc), &buf, 1) < 0) return -1; if ((buf & (TPM_ACCESS_ACTIVE_LOCALITY | TPM_ACCESS_VALID)) == (TPM_ACCESS_ACTIVE_LOCALITY | TPM_ACCESS_VALID)) { chip->vendor.locality = loc; return loc; } return -1; } static void release_locality(struct tpm_chip *chip, int loc, int force) { uint8_t buf; if (iic_tpm_read(TPM_ACCESS(loc), &buf, 1) < 0) return; if (force || (buf & (TPM_ACCESS_REQUEST_PENDING | TPM_ACCESS_VALID)) == (TPM_ACCESS_REQUEST_PENDING | TPM_ACCESS_VALID)) { buf = TPM_ACCESS_ACTIVE_LOCALITY; iic_tpm_write(TPM_ACCESS(loc), &buf, 1); } } static int request_locality(struct tpm_chip *chip, int loc) { uint8_t buf = TPM_ACCESS_REQUEST_USE; if (check_locality(chip, loc) >= 0) return loc; /* we already have the locality */ iic_tpm_write(TPM_ACCESS(loc), &buf, 1); /* wait for burstcount */ int timeout = 2 * 1000; /* 2s timeout */ while (timeout) { if (check_locality(chip, loc) >= 0) return loc; mdelay(TPM_TIMEOUT); timeout--; } return -1; } static uint8_t tpm_tis_i2c_status(struct tpm_chip *chip) { /* NOTE: Since I2C read may fail, return 0 in this case --> time-out */ uint8_t buf; if (iic_tpm_read(TPM_STS(chip->vendor.locality), &buf, 1) < 0) return 0; else return buf; } static void tpm_tis_i2c_ready(struct tpm_chip *chip) { /* this causes the current command to be aborted */ uint8_t buf = TPM_STS_COMMAND_READY; iic_tpm_write_long(TPM_STS(chip->vendor.locality), &buf, 1); } static ssize_t get_burstcount(struct tpm_chip *chip) { ssize_t burstcnt; uint8_t buf[3]; /* wait for burstcount */ int timeout = 2 * 1000; /* 2s timeout */ while (timeout) { /* Note: STS is little endian */ if (iic_tpm_read(TPM_STS(chip->vendor.locality) + 1, buf, 3) < 0) burstcnt = 0; else burstcnt = (buf[2] << 16) + (buf[1] << 8) + buf[0]; if (burstcnt) return burstcnt; mdelay(TPM_TIMEOUT); timeout--; } return -1; } static int wait_for_stat(struct tpm_chip *chip, uint8_t mask, int *status) { unsigned long timeout = 2 * 1024; while (timeout) { *status = tpm_tis_i2c_status(chip); if ((*status & mask) == mask) return 0; mdelay(TPM_TIMEOUT); timeout--; } return -1; } static int recv_data(struct tpm_chip *chip, uint8_t *buf, size_t count) { size_t size = 0; while (size < count) { ssize_t burstcnt = get_burstcount(chip); int rc; /* burstcount < 0 = TPM is busy */ if (burstcnt < 0) return burstcnt; /* limit received data to max. left */ if (burstcnt > (count - size)) burstcnt = count - size; rc = iic_tpm_read(TPM_DATA_FIFO(chip->vendor.locality), &(buf[size]), burstcnt); if (rc == 0) size += burstcnt; } return size; } static int tpm_tis_i2c_recv(struct tpm_chip *chip, uint8_t *buf, size_t count) { int size = 0; uint32_t expected; int status; if (count < TPM_HEADER_SIZE) { size = -1; goto out; } /* read first 10 bytes, including tag, paramsize, and result */ size = recv_data(chip, buf, TPM_HEADER_SIZE); if (size < TPM_HEADER_SIZE) { printk(BIOS_DEBUG, "tpm_tis_i2c_recv: Unable to read header\n"); goto out; } memcpy(&expected, buf + TPM_RSP_SIZE_BYTE, sizeof(expected)); expected = be32_to_cpu(expected); if ((size_t)expected > count) { size = -1; goto out; } size += recv_data(chip, &buf[TPM_HEADER_SIZE], expected - TPM_HEADER_SIZE); if (size < expected) { printk(BIOS_DEBUG, "tpm_tis_i2c_recv: Unable to " "read remainder of result\n"); size = -1; goto out; } wait_for_stat(chip, TPM_STS_VALID, &status); if (status & TPM_STS_DATA_AVAIL) { /* retry? */ printk(BIOS_DEBUG, "tpm_tis_i2c_recv: Error left over data\n"); size = -1; goto out; } out: tpm_tis_i2c_ready(chip); return size; } static int tpm_tis_i2c_send(struct tpm_chip *chip, uint8_t *buf, size_t len) { int status; size_t count = 0; uint8_t sts = TPM_STS_GO; if (len > TPM_BUFSIZE) return -1; /* command is too long for our TPM, sorry */ status = tpm_tis_i2c_status(chip); if ((status & TPM_STS_COMMAND_READY) == 0) { tpm_tis_i2c_ready(chip); if (wait_for_stat(chip, TPM_STS_COMMAND_READY, &status) < 0) goto out_err; } while (count < len - 1) { ssize_t burstcnt = get_burstcount(chip); /* burstcount < 0 = TPM is busy */ if (burstcnt < 0) return burstcnt; if (burstcnt > (len-1-count)) burstcnt = len-1-count; #ifdef CONFIG_TPM_I2C_BURST_LIMITATION if (burstcnt > CONFIG_TPM_I2C_BURST_LIMITATION) burstcnt = CONFIG_TPM_I2C_BURST_LIMITATION; #endif /* CONFIG_TPM_I2C_BURST_LIMITATION */ if (iic_tpm_write(TPM_DATA_FIFO(chip->vendor.locality), &(buf[count]), burstcnt) == 0) count += burstcnt; wait_for_stat(chip, TPM_STS_VALID, &status); if ((status & TPM_STS_DATA_EXPECT) == 0) goto out_err; } /* write last byte */ iic_tpm_write(TPM_DATA_FIFO(chip->vendor.locality), &(buf[count]), 1); wait_for_stat(chip, TPM_STS_VALID, &status); if ((status & TPM_STS_DATA_EXPECT) != 0) goto out_err; /* go and do it */ iic_tpm_write(TPM_STS(chip->vendor.locality), &sts, 1); return len; out_err: tpm_tis_i2c_ready(chip); return -1; } /* Initialization of I2C TPM */ int tpm_vendor_probe(unsigned bus, uint32_t addr) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); struct stopwatch sw; uint8_t buf = 0; int ret; long sw_run_duration = SLEEP_DURATION_PROBE_MS; tpm_dev->chip_type = UNKNOWN; tpm_dev->bus = bus; tpm_dev->addr = addr; tpm_dev->sleep_short = SLEEP_DURATION; tpm_dev->sleep_long = SLEEP_DURATION_LONG; /* * Probe TPM. Check if the TPM_ACCESS register's ValidSts bit is set(1) * If the bit remains clear(0) then claim that init has failed. */ stopwatch_init_msecs_expire(&sw, sw_run_duration); do { ret = iic_tpm_read(TPM_ACCESS(0), &buf, 1); if (!ret && (buf & TPM_STS_VALID)) { sw_run_duration = stopwatch_duration_msecs(&sw); break; } udelay(SLEEP_DURATION); } while (!stopwatch_expired(&sw)); printk(BIOS_INFO, "%s: ValidSts bit %s(%d) in TPM_ACCESS register after %ld ms\n", __func__, (buf & TPM_STS_VALID) ? "set" : "clear", (buf & TPM_STS_VALID) >> 7, sw_run_duration); /* * Claim failure if the ValidSts (bit 7) is clear. */ if (!(buf & TPM_STS_VALID)) return -1; return 0; } int tpm_vendor_init(struct tpm_chip *chip, unsigned bus, uint32_t dev_addr) { struct tpm_inf_dev *tpm_dev = car_get_var_ptr(&g_tpm_dev); uint32_t vendor; if (dev_addr == 0) { printk(BIOS_ERR, "%s: missing device address\n", __func__); return -1; } tpm_dev->chip_type = UNKNOWN; tpm_dev->bus = bus; tpm_dev->addr = dev_addr; tpm_dev->sleep_short = SLEEP_DURATION; tpm_dev->sleep_long = SLEEP_DURATION_LONG; memset(&chip->vendor, 0, sizeof(struct tpm_vendor_specific)); chip->is_open = 1; chip->vendor.req_complete_mask = TPM_STS_DATA_AVAIL | TPM_STS_VALID; chip->vendor.req_complete_val = TPM_STS_DATA_AVAIL | TPM_STS_VALID; chip->vendor.req_canceled = TPM_STS_COMMAND_READY; chip->vendor.status = &tpm_tis_i2c_status; chip->vendor.recv = &tpm_tis_i2c_recv; chip->vendor.send = &tpm_tis_i2c_send; chip->vendor.cancel = &tpm_tis_i2c_ready; /* Disable interrupts (not supported) */ chip->vendor.irq = 0; if (request_locality(chip, 0) != 0) return -1; /* Read four bytes from DID_VID register */ if (iic_tpm_read(TPM_DID_VID(0), (uint8_t *)&vendor, 4) < 0) goto out_err; if (vendor == TPM_TIS_I2C_DID_VID_9645) { tpm_dev->chip_type = SLB9645; } else if (be32_to_cpu(vendor) == TPM_TIS_I2C_DID_VID_9635) { tpm_dev->chip_type = SLB9635; } else { printk(BIOS_DEBUG, "Vendor ID 0x%08x not recognized.\n", vendor); goto out_err; } printk(BIOS_DEBUG, "I2C TPM %u:%02x (chip type %s device-id 0x%X)\n", tpm_dev->bus, tpm_dev->addr, chip_name[tpm_dev->chip_type], vendor >> 16); /* * A timeout query to TPM can be placed here. * Standard timeout values are used so far */ return 0; out_err: release_locality(chip, 0, 1); return -1; } void tpm_vendor_cleanup(struct tpm_chip *chip) { release_locality(chip, chip->vendor.locality, 1); }