/* SPDX-License-Identifier: GPL-2.0-only */ /* Based on Linux Kernel TPM driver */ /* * cr50 is a TPM 2.0 capable device that requires special * handling for the I2C interface. * * - Use an interrupt for transaction status instead of hardcoded delays * - Must use write+wait+read read protocol * - All 4 bytes of status register must be read/written at once * - Burst count max is 63 bytes, and burst count behaves * slightly differently than other I2C TPMs * - When reading from FIFO the full burstcnt must be read * instead of just reading header and determining the remainder */ #include #include #include #include #include #include #include #include #include #include #include "tpm.h" #define CR50_MAX_BUFSIZE 63 #define CR50_TIMEOUT_INIT_MS 30000 /* Very long timeout for TPM init */ #define CR50_TIMEOUT_LONG_MS 2000 /* Long timeout while waiting for TPM */ #define CR50_TIMEOUT_SHORT_MS 2 /* Short timeout during transactions */ #define CR50_TIMEOUT_NOIRQ_MS 20 /* Timeout for TPM ready without IRQ */ #define CR50_TIMEOUT_IRQ_MS 100 /* Timeout for TPM ready with IRQ */ #define CR50_DID_VID 0x00281ae0L struct tpm_inf_dev { int bus; unsigned int addr; uint8_t buf[CR50_MAX_BUFSIZE + sizeof(uint8_t)]; }; static struct tpm_inf_dev tpm_dev; __weak int tis_plat_irq_status(void) { static int warning_displayed; if (!warning_displayed) { printk(BIOS_WARNING, "WARNING: %s() not implemented, wasting 20ms to wait on" " Cr50!\n", __func__); warning_displayed = 1; } mdelay(CR50_TIMEOUT_NOIRQ_MS); return 1; } /* Wait for interrupt to indicate the TPM is ready */ static int cr50_i2c_wait_tpm_ready(struct tpm_chip *chip) { struct stopwatch sw; stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_IRQ_MS); while (!tis_plat_irq_status()) if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "Cr50 i2c TPM IRQ timeout!\n"); return -1; } return 0; } /* * cr50_i2c_read() - read from TPM register * * @chip: TPM chip information * @addr: register address to read from * @buffer: provided by caller * @len: number of bytes to read * * 1) send register address byte 'addr' to the TPM * 2) wait for TPM to indicate it is ready * 3) read 'len' bytes of TPM response into the provided 'buffer' * * Return -1 on error, 0 on success. */ static int cr50_i2c_read(struct tpm_chip *chip, uint8_t addr, uint8_t *buffer, size_t len) { if (tpm_dev.addr == 0) return -1; /* Clear interrupt before starting transaction */ tis_plat_irq_status(); /* Send the register address byte to the TPM */ if (i2c_write_raw(tpm_dev.bus, tpm_dev.addr, &addr, 1)) { printk(BIOS_ERR, "%s: Address write failed\n", __func__); return -1; } /* Wait for TPM to be ready with response data */ if (cr50_i2c_wait_tpm_ready(chip) < 0) return -1; /* Read response data from the TPM */ if (i2c_read_raw(tpm_dev.bus, tpm_dev.addr, buffer, len)) { printk(BIOS_ERR, "%s: Read response failed\n", __func__); return -1; } return 0; } /* * cr50_i2c_write() - write to TPM register * * @chip: TPM chip information * @addr: register address to write to * @buffer: data to write * @len: number of bytes to write * * 1) prepend the provided address to the provided data * 2) send the address+data to the TPM * 3) wait for TPM to indicate it is done writing * * Returns -1 on error, 0 on success. */ static int cr50_i2c_write(struct tpm_chip *chip, uint8_t addr, uint8_t *buffer, size_t len) { if (tpm_dev.addr == 0) return -1; if (len > CR50_MAX_BUFSIZE) return -1; /* Prepend the 'register address' to the buffer */ tpm_dev.buf[0] = addr; memcpy(tpm_dev.buf + 1, buffer, len); /* Clear interrupt before starting transaction */ tis_plat_irq_status(); /* Send write request buffer with address */ if (i2c_write_raw(tpm_dev.bus, tpm_dev.addr, tpm_dev.buf, len + 1)) { printk(BIOS_ERR, "%s: Error writing to TPM\n", __func__); return -1; } /* Wait for TPM to be ready */ return cr50_i2c_wait_tpm_ready(chip); } /* * Cr50 processes reset requests asynchronously and consceivably could be busy * executing a long command and not reacting to the reset pulse for a while. * * This function will make sure that the AP does not proceed with boot until * TPM finished reset processing. */ static int process_reset(struct tpm_chip *chip) { struct stopwatch sw; int rv = 0; uint8_t access; /* * Locality is released by TPM reset. * * If locality is taken at this point, this could be due to the fact * that the TPM is performing a long operation and has not processed * reset request yet. We'll wait up to CR50_TIMEOUT_INIT_MS and see if * it releases locality when reset is processed. */ stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_INIT_MS); do { const uint8_t mask = TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY; rv = cr50_i2c_read(chip, TPM_ACCESS(0), &access, sizeof(access)); if (rv || ((access & mask) == mask)) { /* * Don't bombard the chip with traffic, let it keep * processing the command. */ mdelay(2); continue; } printk(BIOS_INFO, "TPM ready after %ld ms\n", stopwatch_duration_msecs(&sw)); return 0; } while (!stopwatch_expired(&sw)); if (rv) printk(BIOS_ERR, "Failed to read TPM\n"); else printk(BIOS_ERR, "TPM failed to reset after %ld ms, status: %#x\n", stopwatch_duration_msecs(&sw), access); return -1; } /* * Locality could be already claimed (if this is a later coreboot stage and * the RO did not release it), or not yet claimed, if this is verstage or the * older RO did release it. */ static int claim_locality(struct tpm_chip *chip) { uint8_t access; const uint8_t mask = TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY; if (cr50_i2c_read(chip, TPM_ACCESS(0), &access, sizeof(access))) return -1; if ((access & mask) == mask) { printk(BIOS_INFO, "Locality already claimed\n"); return 0; } access = TPM_ACCESS_REQUEST_USE; if (cr50_i2c_write(chip, TPM_ACCESS(0), &access, sizeof(access))) return -1; if (cr50_i2c_read(chip, TPM_ACCESS(0), &access, sizeof(access))) return -1; if ((access & mask) != mask) { printk(BIOS_INFO, "Failed to claim locality.\n"); return -1; } return 0; } /* cr50 requires all 4 bytes of status register to be read */ static uint8_t cr50_i2c_tis_status(struct tpm_chip *chip) { uint8_t buf[4]; if (cr50_i2c_read(chip, TPM_STS(chip->vendor.locality), buf, sizeof(buf)) < 0) { printk(BIOS_ERR, "%s: Failed to read status\n", __func__); return 0; } return buf[0]; } /* cr50 requires all 4 bytes of status register to be written */ static void cr50_i2c_tis_ready(struct tpm_chip *chip) { uint8_t buf[4] = { TPM_STS_COMMAND_READY }; cr50_i2c_write(chip, TPM_STS(chip->vendor.locality), buf, sizeof(buf)); mdelay(CR50_TIMEOUT_SHORT_MS); } /* cr50 uses bytes 3:2 of status register for burst count and * all 4 bytes must be read */ static int cr50_i2c_wait_burststs(struct tpm_chip *chip, uint8_t mask, size_t *burst, int *status) { uint8_t buf[4]; struct stopwatch sw; stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_LONG_MS); while (!stopwatch_expired(&sw)) { if (cr50_i2c_read(chip, TPM_STS(chip->vendor.locality), buf, sizeof(buf)) != 0) { mdelay(CR50_TIMEOUT_SHORT_MS); continue; } *status = buf[0]; *burst = read_le16(&buf[1]); /* Check if mask matches and burst is valid */ if ((*status & mask) == mask && *burst > 0 && *burst <= CR50_MAX_BUFSIZE) return 0; mdelay(CR50_TIMEOUT_SHORT_MS); } printk(BIOS_ERR, "%s: Timeout reading burst and status\n", __func__); return -1; } static int cr50_i2c_tis_recv(struct tpm_chip *chip, uint8_t *buf, size_t buf_len) { size_t burstcnt, current, len, expected; uint8_t addr = TPM_DATA_FIFO(chip->vendor.locality); uint8_t mask = TPM_STS_VALID | TPM_STS_DATA_AVAIL; int status; if (buf_len < TPM_HEADER_SIZE) goto out_err; if (cr50_i2c_wait_burststs(chip, mask, &burstcnt, &status) < 0) { printk(BIOS_ERR, "%s: First chunk not available\n", __func__); goto out_err; } /* Read first chunk of burstcnt bytes */ if (cr50_i2c_read(chip, addr, buf, burstcnt) != 0) { printk(BIOS_ERR, "%s: Read failed\n", __func__); goto out_err; } /* Determine expected data in the return buffer */ expected = read_be32(buf + TPM_RSP_SIZE_BYTE); if (expected > buf_len) { printk(BIOS_ERR, "%s: Too much data: %zu > %zu\n", __func__, expected, buf_len); goto out_err; } /* Now read the rest of the data */ current = burstcnt; while (current < expected) { /* Read updated burst count and check status */ if (cr50_i2c_wait_burststs(chip, mask, &burstcnt, &status) < 0) goto out_err; len = MIN(burstcnt, expected - current); if (cr50_i2c_read(chip, addr, buf + current, len) != 0) { printk(BIOS_ERR, "%s: Read failed\n", __func__); goto out_err; } current += len; } /* Ensure TPM is done reading data */ if (cr50_i2c_wait_burststs(chip, TPM_STS_VALID, &burstcnt, &status) < 0) goto out_err; if (status & TPM_STS_DATA_AVAIL) { printk(BIOS_ERR, "%s: Data still available\n", __func__); goto out_err; } return current; out_err: /* Abort current transaction if still pending */ if (cr50_i2c_tis_status(chip) & TPM_STS_COMMAND_READY) cr50_i2c_tis_ready(chip); return -1; } static int cr50_i2c_tis_send(struct tpm_chip *chip, uint8_t *buf, size_t len) { int status; size_t burstcnt, limit, sent = 0; uint8_t tpm_go[4] = { TPM_STS_GO }; struct stopwatch sw; stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_LONG_MS); /* Wait until TPM is ready for a command */ while (!(cr50_i2c_tis_status(chip) & TPM_STS_COMMAND_READY)) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "%s: Command ready timeout\n", __func__); return -1; } cr50_i2c_tis_ready(chip); } while (len > 0) { uint8_t mask = TPM_STS_VALID; /* Wait for data if this is not the first chunk */ if (sent > 0) mask |= TPM_STS_DATA_EXPECT; /* Read burst count and check status */ if (cr50_i2c_wait_burststs(chip, mask, &burstcnt, &status) < 0) goto out_err; /* Use burstcnt - 1 to account for the address byte * that is inserted by cr50_i2c_write() */ limit = MIN(burstcnt - 1, len); if (cr50_i2c_write(chip, TPM_DATA_FIFO(chip->vendor.locality), &buf[sent], limit) != 0) { printk(BIOS_ERR, "%s: Write failed\n", __func__); goto out_err; } sent += limit; len -= limit; } /* Ensure TPM is not expecting more data */ if (cr50_i2c_wait_burststs(chip, TPM_STS_VALID, &burstcnt, &status) < 0) goto out_err; if (status & TPM_STS_DATA_EXPECT) { printk(BIOS_ERR, "%s: Data still expected\n", __func__); goto out_err; } /* Start the TPM command */ if (cr50_i2c_write(chip, TPM_STS(chip->vendor.locality), tpm_go, sizeof(tpm_go)) < 0) { printk(BIOS_ERR, "%s: Start command failed\n", __func__); goto out_err; } return sent; out_err: /* Abort current transaction if still pending */ if (cr50_i2c_tis_status(chip) & TPM_STS_COMMAND_READY) cr50_i2c_tis_ready(chip); return -1; } static void cr50_vendor_init(struct tpm_chip *chip) { memset(&chip->vendor, 0, sizeof(struct tpm_vendor_specific)); chip->vendor.req_complete_mask = TPM_STS_DATA_AVAIL | TPM_STS_VALID; chip->vendor.req_complete_val = TPM_STS_DATA_AVAIL | TPM_STS_VALID; chip->vendor.req_canceled = TPM_STS_COMMAND_READY; chip->vendor.status = &cr50_i2c_tis_status; chip->vendor.recv = &cr50_i2c_tis_recv; chip->vendor.send = &cr50_i2c_tis_send; chip->vendor.cancel = &cr50_i2c_tis_ready; } int tpm_vendor_probe(unsigned int bus, uint32_t addr) { return 0; } static int cr50_i2c_probe(struct tpm_chip *chip, uint32_t *did_vid) { int retries; /* * 150 ms should be enough to synchronize with the TPM even under the * worst nested reset request conditions. In vast majority of cases * there would be no wait at all. */ printk(BIOS_INFO, "Probing TPM I2C: "); for (retries = 15; retries > 0; retries--) { int rc; rc = cr50_i2c_read(chip, TPM_DID_VID(0), (uint8_t *)did_vid, 4); /* Exit once DID and VID verified */ if (!rc && (*did_vid == CR50_DID_VID)) { printk(BIOS_INFO, "done! DID_VID 0x%08x\n", *did_vid); return 0; } /* TPM might be resetting, let's retry in a bit. */ mdelay(10); printk(BIOS_INFO, "."); } /* * I2C reads failed, or the DID and VID didn't match */ printk(BIOS_ERR, "DID_VID 0x%08x not recognized\n", *did_vid); return -1; } int tpm_vendor_init(struct tpm_chip *chip, unsigned int bus, uint32_t dev_addr) { uint32_t did_vid = 0; if (dev_addr == 0) { printk(BIOS_ERR, "%s: missing device address\n", __func__); return -1; } tpm_dev.bus = bus; tpm_dev.addr = dev_addr; cr50_vendor_init(chip); if (cr50_i2c_probe(chip, &did_vid)) return -1; if (ENV_SEPARATE_VERSTAGE || ENV_BOOTBLOCK) if (process_reset(chip)) return -1; if (claim_locality(chip)) return -1; printk(BIOS_DEBUG, "cr50 TPM 2.0 (i2c %u:0x%02x id 0x%x)\n", bus, dev_addr, did_vid >> 16); chip->is_open = 1; return 0; } void tpm_vendor_cleanup(struct tpm_chip *chip) { }