/* * This file is part of the coreboot project. * * Copyright 2009 Vipin Kumar, ST Microelectronics * Copyright 2017 Google Inc. * Copyright 2017 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include "dw_i2c.h" /* Use a ~10ms timeout for various operations */ #define DW_I2C_TIMEOUT_US 10000 /* High and low times in different speed modes (in ns) */ enum { /* SDA Hold Time */ DEFAULT_SDA_HOLD_TIME = 300, /* Standard Speed */ MIN_SS_SCL_HIGHTIME = 4000, MIN_SS_SCL_LOWTIME = 4700, /* Fast Speed */ MIN_FS_SCL_HIGHTIME = 600, MIN_FS_SCL_LOWTIME = 1300, /* Fast Plus Speed */ MIN_FP_SCL_HIGHTIME = 260, MIN_FP_SCL_LOWTIME = 500, /* High Speed */ MIN_HS_SCL_HIGHTIME = 60, MIN_HS_SCL_LOWTIME = 160, }; /* Frequency represented as ticks per ns. Can also be used to calculate * the number of ticks to meet a time target or the period. */ struct freq { uint32_t ticks; uint32_t ns; }; /* Control register definitions */ enum { CONTROL_MASTER_MODE = (1 << 0), CONTROL_SPEED_SS = (1 << 1), CONTROL_SPEED_FS = (1 << 2), CONTROL_SPEED_HS = (3 << 1), CONTROL_SPEED_MASK = (3 << 1), CONTROL_10BIT_SLAVE = (1 << 3), CONTROL_10BIT_MASTER = (1 << 4), CONTROL_RESTART_ENABLE = (1 << 5), CONTROL_SLAVE_DISABLE = (1 << 6), }; /* Command/Data register definitions */ enum { CMD_DATA_CMD = (1 << 8), CMD_DATA_STOP = (1 << 9), }; /* Status register definitions */ enum { STATUS_ACTIVITY = (1 << 0), STATUS_TX_FIFO_NOT_FULL = (1 << 1), STATUS_TX_FIFO_EMPTY = (1 << 2), STATUS_RX_FIFO_NOT_EMPTY = (1 << 3), STATUS_RX_FIFO_FULL = (1 << 4), STATUS_MASTER_ACTIVITY = (1 << 5), STATUS_SLAVE_ACTIVITY = (1 << 6), }; /* Enable register definitions */ enum { ENABLE_CONTROLLER = (1 << 0), }; /* Interrupt status register definitions */ enum { INTR_STAT_RX_UNDER = (1 << 0), INTR_STAT_RX_OVER = (1 << 1), INTR_STAT_RX_FULL = (1 << 2), INTR_STAT_TX_OVER = (1 << 3), INTR_STAT_TX_EMPTY = (1 << 4), INTR_STAT_RD_REQ = (1 << 5), INTR_STAT_TX_ABORT = (1 << 6), INTR_STAT_RX_DONE = (1 << 7), INTR_STAT_ACTIVITY = (1 << 8), INTR_STAT_STOP_DET = (1 << 9), INTR_STAT_START_DET = (1 << 10), INTR_STAT_GEN_CALL = (1 << 11), }; /* I2C Controller MMIO register space */ struct dw_i2c_regs { uint32_t control; uint32_t target_addr; uint32_t slave_addr; uint32_t master_addr; uint32_t cmd_data; uint32_t ss_scl_hcnt; uint32_t ss_scl_lcnt; uint32_t fs_scl_hcnt; uint32_t fs_scl_lcnt; uint32_t hs_scl_hcnt; uint32_t hs_scl_lcnt; uint32_t intr_stat; uint32_t intr_mask; uint32_t raw_intr_stat; uint32_t rx_thresh; uint32_t tx_thresh; uint32_t clear_intr; uint32_t clear_rx_under_intr; uint32_t clear_rx_over_intr; uint32_t clear_tx_over_intr; uint32_t clear_rd_req_intr; uint32_t clear_tx_abrt_intr; uint32_t clear_rx_done_intr; uint32_t clear_activity_intr; uint32_t clear_stop_det_intr; uint32_t clear_start_det_intr; uint32_t clear_gen_call_intr; uint32_t enable; uint32_t status; uint32_t tx_level; uint32_t rx_level; uint32_t sda_hold; uint32_t tx_abort_source; uint32_t slv_data_nak_only; uint32_t dma_cr; uint32_t dma_tdlr; uint32_t dma_rdlr; uint32_t sda_setup; uint32_t ack_general_call; uint32_t enable_status; uint32_t fs_spklen; uint32_t hs_spklen; uint32_t clr_restart_det; uint32_t comp_param1; uint32_t comp_version; uint32_t comp_type; } __packed; static const struct i2c_descriptor { enum i2c_speed speed; struct freq freq; int min_thigh_ns; int min_tlow_ns; } speed_descriptors[] = { { .speed = I2C_SPEED_STANDARD, .freq = { .ticks = 100, .ns = 1000*1000, }, .min_thigh_ns = MIN_SS_SCL_HIGHTIME, .min_tlow_ns = MIN_SS_SCL_LOWTIME, }, { .speed = I2C_SPEED_FAST, .freq = { .ticks = 400, .ns = 1000*1000, }, .min_thigh_ns = MIN_FS_SCL_HIGHTIME, .min_tlow_ns = MIN_FS_SCL_LOWTIME, }, { .speed = I2C_SPEED_FAST_PLUS, .freq = { .ticks = 1, .ns = 1000, }, .min_thigh_ns = MIN_FP_SCL_HIGHTIME, .min_tlow_ns = MIN_FP_SCL_LOWTIME, }, { /* 100pF max capacitance */ .speed = I2C_SPEED_HIGH, .freq = { .ticks = 3400, .ns = 1000*1000, }, .min_thigh_ns = MIN_HS_SCL_HIGHTIME, .min_tlow_ns = MIN_HS_SCL_LOWTIME, }, }; static const struct soc_clock { int clk_speed_mhz; struct freq freq; } soc_clocks[] = { { .clk_speed_mhz = 120, .freq = { .ticks = 120, .ns = 1000, }, }, { .clk_speed_mhz = 133, .freq = { .ticks = 400, .ns = 3000, }, }, }; static const struct i2c_descriptor *get_bus_descriptor(enum i2c_speed speed) { size_t i; for (i = 0; i < ARRAY_SIZE(speed_descriptors); i++) if (speed == speed_descriptors[i].speed) return &speed_descriptors[i]; return NULL; } static const struct soc_clock *get_soc_descriptor(int ic_clk) { size_t i; for (i = 0; i < ARRAY_SIZE(soc_clocks); i++) if (ic_clk == soc_clocks[i].clk_speed_mhz) return &soc_clocks[i]; return NULL; } static int counts_from_time(const struct freq *f, int ns) { return DIV_ROUND_UP(f->ticks * ns, f->ns); } static int counts_from_freq(const struct freq *fast, const struct freq *slow) { return DIV_ROUND_UP(fast->ticks * slow->ns, fast->ns * slow->ticks); } /* Enable this I2C controller */ static void dw_i2c_enable(struct dw_i2c_regs *regs) { uint32_t enable = read32(®s->enable); if (!(enable & ENABLE_CONTROLLER)) write32(®s->enable, enable | ENABLE_CONTROLLER); } /* Disable this I2C controller */ static int dw_i2c_disable(struct dw_i2c_regs *regs) { uint32_t enable = read32(®s->enable); if (enable & ENABLE_CONTROLLER) { struct stopwatch sw; write32(®s->enable, enable & ~ENABLE_CONTROLLER); /* Wait for enable bit to clear */ stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US); while (read32(®s->enable_status) & ENABLE_CONTROLLER) if (stopwatch_expired(&sw)) return -1; } return 0; } /* Wait for this I2C controller to go idle for transmit */ static int dw_i2c_wait_for_bus_idle(struct dw_i2c_regs *regs) { struct stopwatch sw; /* Start timeout for up to 16 bytes in FIFO */ stopwatch_init_usecs_expire(&sw, 16 * DW_I2C_TIMEOUT_US); while (!stopwatch_expired(&sw)) { uint32_t status = read32(®s->status); /* Check for master activity and keep waiting */ if (status & STATUS_MASTER_ACTIVITY) continue; /* Check for TX FIFO empty to indicate TX idle */ if (status & STATUS_TX_FIFO_EMPTY) return 0; } /* Timed out while waiting for bus to go idle */ return -1; } /* Transfer one byte of one segment, sending stop bit if requested */ static int dw_i2c_transfer_byte(struct dw_i2c_regs *regs, const struct i2c_msg *segment, size_t byte, int send_stop) { struct stopwatch sw; uint32_t cmd = CMD_DATA_CMD; /* Read op */ stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US); if (!(segment->flags & I2C_M_RD)) { /* Write op only: Wait for FIFO not full */ while (!(read32(®s->status) & STATUS_TX_FIFO_NOT_FULL)) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "I2C transmit timeout\n"); return -1; } } cmd = segment->buf[byte]; } /* Send stop on last byte, if desired */ if (send_stop && byte == segment->len - 1) cmd |= CMD_DATA_STOP; write32(®s->cmd_data, cmd); if (segment->flags & I2C_M_RD) { /* Read op only: Wait for FIFO data and store it */ while (!(read32(®s->status) & STATUS_RX_FIFO_NOT_EMPTY)) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "I2C receive timeout\n"); return -1; } } segment->buf[byte] = read32(®s->cmd_data); } return 0; } int dw_i2c_transfer(unsigned int bus, const struct i2c_msg *segments, size_t count) { struct stopwatch sw; struct dw_i2c_regs *regs; size_t byte; int ret = -1; if (count == 0 || !segments) return -1; regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus); if (!regs) { printk(BIOS_ERR, "I2C bus %u base address not found\n", bus); return -1; } dw_i2c_enable(regs); if (dw_i2c_wait_for_bus_idle(regs)) { printk(BIOS_ERR, "I2C timeout waiting for bus %u idle\n", bus); goto out; } /* Process each segment */ while (count--) { if (IS_ENABLED(CONFIG_DRIVERS_I2C_DESIGNWARE_DEBUG)) { printk(BIOS_DEBUG, "i2c %u:%02x %s %d bytes : ", bus, segments->slave, (segments->flags & I2C_M_RD) ? "R" : "W", segments->len); } /* Set target slave address */ write32(®s->target_addr, segments->slave); /* Read or write each byte in segment */ for (byte = 0; byte < segments->len; byte++) { /* * Set stop condition on final segment only. * Repeated start will be automatically generated * by the controller on R->W or W->R switch. */ if (dw_i2c_transfer_byte(regs, segments, byte, count == 0) < 0) { printk(BIOS_ERR, "I2C %s failed: bus %u " "addr 0x%02x\n", (segments->flags & I2C_M_RD) ? "read" : "write", bus, segments->slave); goto out; } } if (IS_ENABLED(CONFIG_DRIVERS_I2C_DESIGNWARE_DEBUG)) { int j; for (j = 0; j < segments->len; j++) printk(BIOS_DEBUG, "%02x ", segments->buf[j]); printk(BIOS_DEBUG, "\n"); } segments++; } /* Wait for interrupt status to indicate transfer is complete */ stopwatch_init_usecs_expire(&sw, DW_I2C_TIMEOUT_US); while (!(read32(®s->raw_intr_stat) & INTR_STAT_STOP_DET)) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "I2C stop bit not received\n"); goto out; } } /* Read to clear INTR_STAT_STOP_DET */ read32(®s->clear_stop_det_intr); /* Wait for the bus to go idle */ if (dw_i2c_wait_for_bus_idle(regs)) { printk(BIOS_ERR, "I2C timeout waiting for bus %u idle\n", bus); goto out; } /* Flush the RX FIFO in case it is not empty */ stopwatch_init_usecs_expire(&sw, 16 * DW_I2C_TIMEOUT_US); while (read32(®s->status) & STATUS_RX_FIFO_NOT_EMPTY) { if (stopwatch_expired(&sw)) { printk(BIOS_ERR, "I2C timeout flushing RX FIFO\n"); goto out; } read32(®s->cmd_data); } ret = 0; out: read32(®s->clear_intr); dw_i2c_disable(regs); return ret; } /* Global I2C bus handler, defined in include/device/i2c_simple.h */ int platform_i2c_transfer(unsigned int bus, struct i2c_msg *msg, int count) { return dw_i2c_transfer(bus, msg, count < 0 ? 0 : count); } static int dw_i2c_set_speed_config(unsigned int bus, const struct dw_i2c_speed_config *config) { struct dw_i2c_regs *regs; void *hcnt_reg, *lcnt_reg; regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus); if (!regs || !config) return -1; /* Nothing to do if no values are set */ if (!config->scl_lcnt && !config->scl_hcnt && !config->sda_hold) return 0; if (config->speed >= I2C_SPEED_HIGH) { /* High and Fast Ultra speed */ hcnt_reg = ®s->hs_scl_hcnt; lcnt_reg = ®s->hs_scl_lcnt; } else if (config->speed >= I2C_SPEED_FAST) { /* Fast and Fast-Plus speed */ hcnt_reg = ®s->fs_scl_hcnt; lcnt_reg = ®s->fs_scl_lcnt; } else { /* Standard speed */ hcnt_reg = ®s->ss_scl_hcnt; lcnt_reg = ®s->ss_scl_lcnt; } /* SCL count must be set after the speed is selected */ if (config->scl_hcnt) write32(hcnt_reg, config->scl_hcnt); if (config->scl_lcnt) write32(lcnt_reg, config->scl_lcnt); /* Set SDA Hold Time register */ if (config->sda_hold) write32(®s->sda_hold, config->sda_hold); return 0; } static int dw_i2c_gen_config_rise_fall_time(struct dw_i2c_regs *regs, enum i2c_speed speed, const struct dw_i2c_bus_config *bcfg, int ic_clk, struct dw_i2c_speed_config *config) { const struct i2c_descriptor *bus; const struct soc_clock *soc; int fall_cnt, rise_cnt, min_tlow_cnt, min_thigh_cnt, spk_cnt; int hcnt, lcnt, period_cnt, diff, tot; int data_hold_time_ns; bus = get_bus_descriptor(speed); soc = get_soc_descriptor(ic_clk); if (bus == NULL) { printk(BIOS_ERR, "dw_i2c: invalid bus speed %d\n", speed); return -1; } if (soc == NULL) { printk(BIOS_ERR, "dw_i2c: invalid SoC clock speed %d MHz\n", ic_clk); return -1; } /* Get the proper spike suppression count based on target speed. */ if (speed >= I2C_SPEED_HIGH) spk_cnt = read32(®s->hs_spklen); else spk_cnt = read32(®s->fs_spklen); /* Find the period, rise, fall, min tlow, and min thigh in terms of * counts of SoC clock. */ period_cnt = counts_from_freq(&soc->freq, &bus->freq); rise_cnt = counts_from_time(&soc->freq, bcfg->rise_time_ns); fall_cnt = counts_from_time(&soc->freq, bcfg->fall_time_ns); min_tlow_cnt = counts_from_time(&soc->freq, bus->min_tlow_ns); min_thigh_cnt = counts_from_time(&soc->freq, bus->min_thigh_ns); printk(DW_I2C_DEBUG, "dw_i2c: SoC %d/%d ns Bus: %d/%d ns\n", soc->freq.ticks, soc->freq.ns, bus->freq.ticks, bus->freq.ns); printk(DW_I2C_DEBUG, " dw_i2c: period %d rise %d fall %d tlow %d thigh %d spk %d\n", period_cnt, rise_cnt, fall_cnt, min_tlow_cnt, min_thigh_cnt, spk_cnt); /* * Back solve for hcnt and lcnt according to the following equations. * SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time * SCL_Low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time */ hcnt = min_thigh_cnt - fall_cnt - 7 - spk_cnt; lcnt = min_tlow_cnt - rise_cnt + fall_cnt - 1; if (hcnt < 0 || lcnt < 0) { printk(BIOS_ERR, "dw_i2c: bad counts. hcnt = %d lcnt = %d\n", hcnt, lcnt); return -1; } /* Now add things back up to ensure the period is hit. If off, * split the difference and bias to lcnt for remainder. */ tot = hcnt + lcnt + 7 + spk_cnt + rise_cnt + 1; if (tot < period_cnt) { diff = (period_cnt - tot) / 2; hcnt += diff; lcnt += diff; tot = hcnt + lcnt + 7 + spk_cnt + rise_cnt + 1; lcnt += period_cnt - tot; } config->speed = speed; config->scl_lcnt = lcnt; config->scl_hcnt = hcnt; /* Use internal default unless other value is specified. */ data_hold_time_ns = DEFAULT_SDA_HOLD_TIME; if (bcfg->data_hold_time_ns) data_hold_time_ns = bcfg->data_hold_time_ns; config->sda_hold = counts_from_time(&soc->freq, data_hold_time_ns); printk(DW_I2C_DEBUG, "dw_i2c: hcnt = %d lcnt = %d sda hold = %d\n", hcnt, lcnt, config->sda_hold); return 0; } int dw_i2c_gen_speed_config(uintptr_t dw_i2c_addr, enum i2c_speed speed, const struct dw_i2c_bus_config *bcfg, struct dw_i2c_speed_config *config) { const int ic_clk = CONFIG_DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ; struct dw_i2c_regs *regs; uint16_t hcnt_min, lcnt_min; int i; regs = (struct dw_i2c_regs *)dw_i2c_addr; _Static_assert(CONFIG_DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ != 0, "DRIVERS_I2C_DESIGNWARE_CLOCK_MHZ can't be zero!"); /* Apply board specific override for this speed if found */ for (i = 0; i < DW_I2C_SPEED_CONFIG_COUNT; i++) { if (bcfg->speed_config[i].speed != speed) continue; memcpy(config, &bcfg->speed_config[i], sizeof(*config)); return 0; } /* If rise time is set use the time calculation. */ if (bcfg->rise_time_ns) return dw_i2c_gen_config_rise_fall_time(regs, speed, bcfg, ic_clk, config); if (speed >= I2C_SPEED_HIGH) { /* High speed */ hcnt_min = MIN_HS_SCL_HIGHTIME; lcnt_min = MIN_HS_SCL_LOWTIME; } else if (speed >= I2C_SPEED_FAST_PLUS) { /* Fast-Plus speed */ hcnt_min = MIN_FP_SCL_HIGHTIME; lcnt_min = MIN_FP_SCL_LOWTIME; } else if (speed >= I2C_SPEED_FAST) { /* Fast speed */ hcnt_min = MIN_FS_SCL_HIGHTIME; lcnt_min = MIN_FS_SCL_LOWTIME; } else { /* Standard speed */ hcnt_min = MIN_SS_SCL_HIGHTIME; lcnt_min = MIN_SS_SCL_LOWTIME; } config->speed = speed; config->scl_hcnt = ic_clk * hcnt_min / KHz; config->scl_lcnt = ic_clk * lcnt_min / KHz; config->sda_hold = ic_clk * DEFAULT_SDA_HOLD_TIME / KHz; return 0; } static int dw_i2c_set_speed(unsigned int bus, enum i2c_speed speed, const struct dw_i2c_bus_config *bcfg) { struct dw_i2c_regs *regs; struct dw_i2c_speed_config config; uint32_t control; /* Clock must be provided by Kconfig */ regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus); if (!regs || !speed) return -1; control = read32(®s->control); control &= ~CONTROL_SPEED_MASK; if (speed >= I2C_SPEED_HIGH) { /* High and Fast-Ultra speed share config registers */ control |= CONTROL_SPEED_HS; } else if (speed >= I2C_SPEED_FAST) { /* Fast speed and Fast-Plus */ control |= CONTROL_SPEED_FS; } else { /* Standard speed */ control |= CONTROL_SPEED_SS; } /* Generate speed config based on clock */ if (dw_i2c_gen_speed_config((uintptr_t)regs, speed, bcfg, &config) < 0) return -1; /* Select this speed in the control register */ write32(®s->control, control); /* Write the speed config that was generated earlier */ dw_i2c_set_speed_config(bus, &config); return 0; } /* * Initialize this bus controller and set the speed. * * The bus speed can be passed in Hz or using values from device/i2c.h and * will default to I2C_SPEED_FAST if it is not provided. */ int dw_i2c_init(unsigned int bus, const struct dw_i2c_bus_config *bcfg) { struct dw_i2c_regs *regs; enum i2c_speed speed; if (!bcfg) return -1; speed = bcfg->speed ? : I2C_SPEED_FAST; regs = (struct dw_i2c_regs *)dw_i2c_base_address(bus); if (!regs) { printk(BIOS_ERR, "I2C bus %u base address not found\n", bus); return -1; } if (dw_i2c_disable(regs) < 0) { printk(BIOS_ERR, "I2C timeout disabling bus %u\n", bus); return -1; } /* Put controller in master mode with restart enabled */ write32(®s->control, CONTROL_MASTER_MODE | CONTROL_SLAVE_DISABLE | CONTROL_RESTART_ENABLE); /* Set bus speed to FAST by default */ if (dw_i2c_set_speed(bus, speed, bcfg) < 0) { printk(BIOS_ERR, "I2C failed to set speed for bus %u\n", bus); return -1; } /* Set RX/TX thresholds to smallest values */ write32(®s->rx_thresh, 0); write32(®s->tx_thresh, 0); /* Enable stop detection interrupt */ write32(®s->intr_mask, INTR_STAT_STOP_DET); printk(BIOS_INFO, "DW I2C bus %u at 0x%p (%u KHz)\n", bus, regs, speed / KHz); return 0; }