#include #include #include #include #include #include /** * @brief See if a device structure exists for path * * @param bus The bus to find the device on * @param path The relative path from the bus to the appropriate device * @return pointer to a device structure for the device on bus at path * or 0/NULL if no device is found */ device_t find_dev_path(struct bus *parent, struct device_path *path) { device_t child; for(child = parent->children; child; child = child->sibling) { if (path_eq(path, &child->path)) { break; } } return child; } /** * @brief See if a device structure already exists and if not allocate it * * @param bus The bus to find the device on * @param path The relative path from the bus to the appropriate device * @return pointer to a device structure for the device on bus at path */ device_t alloc_find_dev(struct bus *parent, struct device_path *path) { device_t child; child = find_dev_path(parent, path); if (!child) { child = alloc_dev(parent, path); } return child; } /** * Given a bus and a devfn number, find the device structure * @param bus The bus number * @param devfn a device/function number * @return pointer to the device structure */ struct device *dev_find_slot(unsigned int bus, unsigned int devfn) { struct device *dev, *result; result = 0; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_PCI) && (dev->bus->secondary == bus) && (dev->path.u.pci.devfn == devfn)) { result = dev; break; } } return result; } /** Find a device of a given vendor and type * @param vendor Vendor ID (e.g. 0x8086 for Intel) * @param device Device ID * @param from Pointer to the device structure, used as a starting point * in the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices) * @return Pointer to the device struct */ struct device *dev_find_device(unsigned int vendor, unsigned int device, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->vendor != vendor || from->device != device)) { from = from->next; } return from; } /** Find a device of a given class * @param class Class of the device * @param from Pointer to the device structure, used as a starting point * in the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices) * @return Pointer to the device struct */ struct device *dev_find_class(unsigned int class, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->class & 0xffffff00) != class) from = from->next; return from; } const char *dev_path(device_t dev) { static char buffer[DEVICE_PATH_MAX]; buffer[0] = '\0'; if (!dev) { memcpy(buffer, "", 7); } else { switch(dev->path.type) { case DEVICE_PATH_ROOT: memcpy(buffer, "Root Device", 12); break; case DEVICE_PATH_PCI: sprintf(buffer, "PCI: %02x:%02x.%01x", dev->bus->secondary, PCI_SLOT(dev->path.u.pci.devfn), PCI_FUNC(dev->path.u.pci.devfn)); break; case DEVICE_PATH_PNP: sprintf(buffer, "PNP: %04x.%01x", dev->path.u.pnp.port, dev->path.u.pnp.device); break; case DEVICE_PATH_I2C: sprintf(buffer, "I2C: %02x", dev->path.u.i2c.device); break; case DEVICE_PATH_APIC: sprintf(buffer, "APIC: %02x", dev->path.u.apic.apic_id); break; case DEVICE_PATH_PCI_DOMAIN: sprintf(buffer, "PCI_DOMAIN: %04x", dev->path.u.pci_domain.domain); break; case DEVICE_PATH_APIC_CLUSTER: sprintf(buffer, "APIC_CLUSTER: %01x", dev->path.u.apic_cluster.cluster); break; case DEVICE_PATH_CPU: sprintf(buffer, "CPU: %02x", dev->path.u.cpu.id); break; case DEVICE_PATH_CPU_BUS: sprintf(buffer, "CPU_BUS: %02x", dev->path.u.cpu_bus.id); break; default: printk_err("Unknown device path type: %d\n", dev->path.type); break; } } return buffer; } int path_eq(struct device_path *path1, struct device_path *path2) { int equal = 0; if (path1->type == path2->type) { switch(path1->type) { case DEVICE_PATH_NONE: break; case DEVICE_PATH_ROOT: equal = 1; break; case DEVICE_PATH_PCI: equal = (path1->u.pci.devfn == path2->u.pci.devfn); break; case DEVICE_PATH_PNP: equal = (path1->u.pnp.port == path2->u.pnp.port) && (path1->u.pnp.device == path2->u.pnp.device); break; case DEVICE_PATH_I2C: equal = (path1->u.i2c.device == path2->u.i2c.device); break; case DEVICE_PATH_APIC: equal = (path1->u.apic.apic_id == path2->u.apic.apic_id); break; case DEVICE_PATH_PCI_DOMAIN: equal = (path1->u.pci_domain.domain == path2->u.pci_domain.domain); break; case DEVICE_PATH_APIC_CLUSTER: equal = (path1->u.apic_cluster.cluster == path2->u.apic_cluster.cluster); break; case DEVICE_PATH_CPU: equal = (path1->u.cpu.id == path2->u.cpu.id); break; case DEVICE_PATH_CPU_BUS: equal = (path1->u.cpu_bus.id == path2->u.cpu_bus.id); break; default: printk_err("Uknown device type: %d\n", path1->type); break; } } return equal; } /** * See if we have unused but allocated resource structures. * If so remove the allocation. * @param dev The device to find the resource on */ void compact_resources(device_t dev) { struct resource *resource; int i; /* Move all of the free resources to the end */ for(i = 0; i < dev->resources;) { resource = &dev->resource[i]; if (!resource->flags) { memmove(resource, resource + 1, dev->resources - i); dev->resources -= 1; memset(&dev->resource[dev->resources], 0, sizeof(*resource)); } else { i++; } } } /** * See if a resource structure already exists for a given index * @param dev The device to find the resource on * @param index The index of the resource on the device. * @return the resource if it already exists */ struct resource *probe_resource(device_t dev, unsigned index) { struct resource *resource; int i; /* See if there is a resource with the appropriate index */ resource = 0; for(i = 0; i < dev->resources; i++) { if (dev->resource[i].index == index) { resource = &dev->resource[i]; break; } } return resource; } /** * See if a resource structure already exists for a given index and if * not allocate one. Then initialize the initialize the resource * to default values. * @param dev The device to find the resource on * @param index The index of the resource on the device. */ struct resource *new_resource(device_t dev, unsigned index) { struct resource *resource; /* First move all of the free resources to the end */ compact_resources(dev); /* See if there is a resource with the appropriate index */ resource = probe_resource(dev, index); if (!resource) { if (dev->resources == MAX_RESOURCES) { die("MAX_RESOURCES exceeded."); } resource = &dev->resource[dev->resources]; memset(resource, 0, sizeof(*resource)); dev->resources++; } /* Initialize the resource values */ if (!(resource->flags & IORESOURCE_FIXED)) { resource->flags = 0; resource->base = 0; } resource->size = 0; resource->limit = 0; resource->index = index; resource->align = 0; resource->gran = 0; return resource; } /** * Return an existing resource structure for a given index. * @param dev The device to find the resource on * @param index The index of the resource on the device. */ struct resource *find_resource(device_t dev, unsigned index) { struct resource *resource; /* See if there is a resource with the appropriate index */ resource = probe_resource(dev, index); if (!resource) { printk_emerg("%s missing resource: %02x\n", dev_path(dev), index); die(""); } return resource; } /** * @brief round a number up to the next multiple of gran * @param val the starting value * @param gran granularity we are aligning the number to. * @returns aligned value */ static resource_t align_up(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val += mask; val &= ~mask; return val; } /** * @brief round a number up to the previous multiple of gran * @param val the starting value * @param gran granularity we are aligning the number to. * @returns aligned value */ static resource_t align_down(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val &= ~mask; return val; } /** * @brief Compute the maximum address that is part of a resource * @param resource the resource whose limit is desired * @returns the end */ resource_t resource_end(struct resource *resource) { resource_t base, end; /* get the base address */ base = resource->base; /* For a non bridge resource granularity and alignment are the same. * For a bridge resource align is the largest needed alignment below * the bridge. While the granularity is simply how many low bits of the * address cannot be set. */ /* Get the end (rounded up) */ end = base + align_up(resource->size, resource->gran) - 1; return end; } /** * @brief Compute the maximum legal value for resource->base * @param resource the resource whose maximum is desired * @returns the maximum */ resource_t resource_max(struct resource *resource) { resource_t max; max = align_down(resource->limit - resource->size + 1, resource->align); return max; } /** * @brief print the resource that was just stored. * @param dev the device the stored resorce lives on * @param resource the resource that was just stored. */ void report_resource_stored(device_t dev, struct resource *resource, const char *comment) { if (resource->flags & IORESOURCE_STORED) { unsigned char buf[10]; unsigned long long base, end; base = resource->base; end = resource_end(resource); buf[0] = '\0'; if (resource->flags & IORESOURCE_PCI_BRIDGE) { sprintf(buf, "bus %d ", dev->link[0].secondary); } printk_debug( "%s %02x <- [0x%010Lx - 0x%010Lx] %s%s%s%s\n", dev_path(dev), resource->index, base, end, buf, (resource->flags & IORESOURCE_PREFETCH) ? "pref" : "", (resource->flags & IORESOURCE_IO)? "io": (resource->flags & IORESOURCE_DRQ)? "drq": (resource->flags & IORESOURCE_IRQ)? "irq": (resource->flags & IORESOURCE_MEM)? "mem": "????", comment); } } void search_bus_resources(struct bus *bus, unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for(curdev = bus->children; curdev; curdev = curdev->sibling) { int i; /* Ignore disabled devices */ if (!curdev->have_resources) continue; for(i = 0; i < curdev->resources; i++) { struct resource *resource = &curdev->resource[i]; /* If it isn't the right kind of resource ignore it */ if ((resource->flags & type_mask) != type) { continue; } /* If it is a subtractive resource recurse */ if (resource->flags & IORESOURCE_SUBTRACTIVE) { struct bus * subbus; subbus = &curdev->link[IOINDEX_SUBTRACTIVE_LINK(resource->index)]; search_bus_resources(subbus, type_mask, type, search, gp); continue; } search(gp, curdev, resource); } } } void search_global_resources( unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for(curdev = all_devices; curdev; curdev = curdev->next) { int i; /* Ignore disabled devices */ if (!curdev->have_resources) continue; for(i = 0; i < curdev->resources; i++) { struct resource *resource = &curdev->resource[i]; /* If it isn't the right kind of resource ignore it */ if ((resource->flags & type_mask) != type) { continue; } /* If it is a subtractive resource ignore it */ if (resource->flags & IORESOURCE_SUBTRACTIVE) { continue; } search(gp, curdev, resource); } } }