/* * This file is part of the coreboot project. * * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c). * * Modifications are: * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com> * Copyright (C) 2003-2004 Linux Networx * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx) * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com> * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov> * Copyright (C) 2005-2006 Tyan * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan) * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org> * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com> */ /* * (c) 1999--2000 Martin Mares <mj@suse.cz> */ /* lots of mods by ron minnich (rminnich@lanl.gov), with * the final architecture guidance from Tom Merritt (tjm@codegen.com) * In particular, we changed from the one-pass original version to * Tom's recommended multiple-pass version. I wasn't sure about doing * it with multiple passes, until I actually started doing it and saw * the wisdom of Tom's recommendations ... * * Lots of cleanups by Eric Biederman to handle bridges, and to * handle resource allocation for non-pci devices. */ #include <console/console.h> #include <bitops.h> #include <arch/io.h> #include <device/device.h> #include <device/pci.h> #include <device/pci_ids.h> #include <stdlib.h> #include <string.h> #include <smp/spinlock.h> /** Linked list of ALL devices */ struct device *all_devices = &dev_root; /** Pointer to the last device */ extern struct device **last_dev_p; /** * @brief Allocate a new device structure. * * Allocte a new device structure and attached it to the device tree as a * child of the parent bus. * * @param parent parent bus the newly created device attached to. * @param path path to the device to be created. * * @return pointer to the newly created device structure. * * @see device_path */ static spinlock_t dev_lock = SPIN_LOCK_UNLOCKED; device_t alloc_dev(struct bus *parent, struct device_path *path) { device_t dev, child; int link; spin_lock(&dev_lock); /* Find the last child of our parent. */ for (child = parent->children; child && child->sibling; /* */ ) { child = child->sibling; } dev = malloc(sizeof(*dev)); if (dev == 0) die("DEV: out of memory.\n"); memset(dev, 0, sizeof(*dev)); memcpy(&dev->path, path, sizeof(*path)); /* Initialize the back pointers in the link fields. */ for (link = 0; link < MAX_LINKS; link++) { dev->link[link].dev = dev; dev->link[link].link = link; } /* By default devices are enabled. */ dev->enabled = 1; /* Add the new device to the list of children of the bus. */ dev->bus = parent; if (child) { child->sibling = dev; } else { parent->children = dev; } /* Append a new device to the global device list. * The list is used to find devices once everything is set up. */ *last_dev_p = dev; last_dev_p = &dev->next; spin_unlock(&dev_lock); return dev; } /** * @brief round a number up to an alignment. * @param val the starting value * @param roundup Alignment as a power of two * @returns rounded up number */ static resource_t round(resource_t val, unsigned long pow) { resource_t mask; mask = (1ULL << pow) - 1ULL; val += mask; val &= ~mask; return val; } /** Read the resources on all devices of a given bus. * @param bus bus to read the resources on. */ static void read_resources(struct bus *bus) { struct device *curdev; printk_spew("%s %s bus %x link: %d\n", dev_path(bus->dev), __func__, bus->secondary, bus->link); /* Walk through all devices and find which resources they need. */ for (curdev = bus->children; curdev; curdev = curdev->sibling) { int i; if (!curdev->enabled) { continue; } if (!curdev->ops || !curdev->ops->read_resources) { printk_err("%s missing read_resources\n", dev_path(curdev)); continue; } curdev->ops->read_resources(curdev); /* Read in the resources behind the current device's links. */ for (i = 0; i < curdev->links; i++) read_resources(&curdev->link[i]); } printk_spew("%s read_resources bus %d link: %d done\n", dev_path(bus->dev), bus->secondary, bus->link); } struct pick_largest_state { struct resource *last; struct device *result_dev; struct resource *result; int seen_last; }; static void pick_largest_resource(void *gp, struct device *dev, struct resource *resource) { struct pick_largest_state *state = gp; struct resource *last; last = state->last; /* Be certain to pick the successor to last. */ if (resource == last) { state->seen_last = 1; return; } if (resource->flags & IORESOURCE_FIXED) return; // Skip it. if (last && ((last->align < resource->align) || ((last->align == resource->align) && (last->size < resource->size)) || ((last->align == resource->align) && (last->size == resource->size) && (!state->seen_last)))) { return; } if (!state->result || (state->result->align < resource->align) || ((state->result->align == resource->align) && (state->result->size < resource->size))) { state->result_dev = dev; state->result = resource; } } static struct device *largest_resource(struct bus *bus, struct resource **result_res, unsigned long type_mask, unsigned long type) { struct pick_largest_state state; state.last = *result_res; state.result_dev = NULL; state.result = NULL; state.seen_last = 0; search_bus_resources(bus, type_mask, type, pick_largest_resource, &state); *result_res = state.result; return state.result_dev; } /* Compute allocate resources is the guts of the resource allocator. * * The problem. * - Allocate resource locations for every device. * - Don't overlap, and follow the rules of bridges. * - Don't overlap with resources in fixed locations. * - Be efficient so we don't have ugly strategies. * * The strategy. * - Devices that have fixed addresses are the minority so don't * worry about them too much. Instead only use part of the address * space for devices with programmable addresses. This easily handles * everything except bridges. * * - PCI devices are required to have their sizes and their alignments * equal. In this case an optimal solution to the packing problem * exists. Allocate all devices from highest alignment to least * alignment or vice versa. Use this. * * - So we can handle more than PCI run two allocation passes on bridges. The * first to see how large the resources are behind the bridge, and what * their alignment requirements are. The second to assign a safe address to * the devices behind the bridge. This allows us to treat a bridge as just * a device with a couple of resources, and not need to special case it in * the allocator. Also this allows handling of other types of bridges. * */ static void compute_resources(struct bus *bus, struct resource *bridge, unsigned long type_mask, unsigned long type) { struct device *dev; struct resource *resource; resource_t base; base = round(bridge->base, bridge->align); printk_spew( "%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx\n", dev_path(bus->dev), __func__, (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? "prefmem" : "mem", base, bridge->size, bridge->align, bridge->gran, bridge->limit); /* For each child which is a bridge, compute_resource_needs. */ for (dev = bus->children; dev; dev = dev->sibling) { unsigned i; struct resource *child_bridge; if (!dev->links) continue; /* Find the resources with matching type flags. */ for (i = 0; i < dev->resources; i++) { unsigned link; child_bridge = &dev->resource[i]; if (!(child_bridge->flags & IORESOURCE_BRIDGE) || (child_bridge->flags & type_mask) != type) continue; /* Split prefetchable memory if combined. Many domains * use the same address space for prefetchable memory * and non-prefetchable memory. Bridges below them * need it separated. Add the PREFETCH flag to the * type_mask and type. */ link = IOINDEX_LINK(child_bridge->index); compute_resources(&dev->link[link], child_bridge, type_mask | IORESOURCE_PREFETCH, type | (child_bridge->flags & IORESOURCE_PREFETCH)); } } /* Remember we haven't found anything yet. */ resource = NULL; /* Walk through all the resources on the current bus and compute the * amount of address space taken by them. Take granularity and * alignment into account. */ while ((dev = largest_resource(bus, &resource, type_mask, type))) { /* Size 0 resources can be skipped. */ if (!resource->size) { continue; } /* Propagate the resource alignment to the bridge resource. */ if (resource->align > bridge->align) { bridge->align = resource->align; } /* Propagate the resource limit to the bridge register. */ if (bridge->limit > resource->limit) { bridge->limit = resource->limit; } /* Warn if it looks like APICs aren't declared. */ if ((resource->limit == 0xffffffff) && (resource->flags & IORESOURCE_ASSIGNED)) { printk_err("Resource limit looks wrong! (no APIC?)\n"); printk_err("%s %02lx limit %08Lx\n", dev_path(dev), resource->index, resource->limit); } if (resource->flags & IORESOURCE_IO) { /* Don't allow potential aliases over the legacy PCI * expansion card addresses. The legacy PCI decodes * only 10 bits, uses 0x100 - 0x3ff. Therefore, only * 0x00 - 0xff can be used out of each 0x400 block of * I/O space. */ if ((base & 0x300) != 0) { base = (base & ~0x3ff) + 0x400; } /* Don't allow allocations in the VGA I/O range. * PCI has special cases for that. */ else if ((base >= 0x3b0) && (base <= 0x3df)) { base = 0x3e0; } } /* Base must be aligned. */ base = round(base, resource->align); resource->base = base; base += resource->size; printk_spew("%s %02lx * [0x%llx - 0x%llx] %s\n", dev_path(dev), resource->index, resource->base, resource->base + resource->size - 1, (resource->flags & IORESOURCE_IO) ? "io" : (resource->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem"); } /* A pci bridge resource does not need to be a power * of two size, but it does have a minimum granularity. * Round the size up to that minimum granularity so we * know not to place something else at an address postitively * decoded by the bridge. */ bridge->size = round(base, bridge->gran) - round(bridge->base, bridge->align); printk_spew("%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx done\n", dev_path(bus->dev), __func__, (bridge->flags & IORESOURCE_IO) ? "io" : (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem", base, bridge->size, bridge->align, bridge->gran, bridge->limit); } /** * This function is the second part of the resource allocator. * * The problem. * - Allocate resource locations for every device. * - Don't overlap, and follow the rules of bridges. * - Don't overlap with resources in fixed locations. * - Be efficient so we don't have ugly strategies. * * The strategy. * - Devices that have fixed addresses are the minority so don't * worry about them too much. Instead only use part of the address * space for devices with programmable addresses. This easily handles * everything except bridges. * * - PCI devices are required to have their sizes and their alignments * equal. In this case an optimal solution to the packing problem * exists. Allocate all devices from highest alignment to least * alignment or vice versa. Use this. * * - So we can handle more than PCI run two allocation passes on bridges. The * first to see how large the resources are behind the bridge, and what * their alignment requirements are. The second to assign a safe address to * the devices behind the bridge. This allows us to treat a bridge as just * a device with a couple of resources, and not need to special case it in * the allocator. Also this allows handling of other types of bridges. * * - This function assigns the resources a value. * * @param bus The bus we are traversing. * @param bridge The bridge resource which must contain the bus' resources. * @param type_mask This value gets anded with the resource type. * @param type This value must match the result of the and. */ static void allocate_resources(struct bus *bus, struct resource *bridge, unsigned long type_mask, unsigned long type) { struct device *dev; struct resource *resource; resource_t base; base = bridge->base; printk_spew("%s %s_%s: base:%llx size:%llx align:%d gran:%d limit:%llx\n", dev_path(bus->dev), __func__, (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? "prefmem" : "mem", base, bridge->size, bridge->align, bridge->gran, bridge->limit); /* Remember we haven't found anything yet. */ resource = NULL; /* Walk through all the resources on the current bus and allocate them * address space. */ while ((dev = largest_resource(bus, &resource, type_mask, type))) { /* Propagate the bridge limit to the resource register. */ if (resource->limit > bridge->limit) { resource->limit = bridge->limit; } /* Size 0 resources can be skipped. */ if (!resource->size) { /* Set the base to limit so it doesn't confuse tolm. */ resource->base = resource->limit; resource->flags |= IORESOURCE_ASSIGNED; continue; } if (resource->flags & IORESOURCE_IO) { /* Don't allow potential aliases over the legacy PCI * expansion card addresses. The legacy PCI decodes * only 10 bits, uses 0x100 - 0x3ff. Therefore, only * 0x00 - 0xff can be used out of each 0x400 block of * I/O space. */ if ((base & 0x300) != 0) { base = (base & ~0x3ff) + 0x400; } /* Don't allow allocations in the VGA I/O range. * PCI has special cases for that. */ else if ((base >= 0x3b0) && (base <= 0x3df)) { base = 0x3e0; } } if ((round(base, resource->align) + resource->size - 1) <= resource->limit) { /* Base must be aligned. */ base = round(base, resource->align); resource->base = base; resource->flags |= IORESOURCE_ASSIGNED; resource->flags &= ~IORESOURCE_STORED; base += resource->size; } else { printk_err("!! Resource didn't fit !!\n"); printk_err(" aligned base %llx size %llx limit %llx\n", round(base, resource->align), resource->size, resource->limit); printk_err(" %llx needs to be <= %llx (limit)\n", (round(base, resource->align) + resource->size) - 1, resource->limit); printk_err(" %s%s %02lx * [0x%llx - 0x%llx] %s\n", (resource-> flags & IORESOURCE_ASSIGNED) ? "Assigned: " : "", dev_path(dev), resource->index, resource->base, resource->base + resource->size - 1, (resource-> flags & IORESOURCE_IO) ? "io" : (resource-> flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem"); } printk_spew("%s%s %02lx * [0x%llx - 0x%llx] %s\n", (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: " : "", dev_path(dev), resource->index, resource->base, resource->size ? resource->base + resource->size - 1 : resource->base, (resource->flags & IORESOURCE_IO) ? "io" : (resource->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem"); } /* A PCI bridge resource does not need to be a power of two size, but * it does have a minimum granularity. Round the size up to that * minimum granularity so we know not to place something else at an * address positively decoded by the bridge. */ bridge->flags |= IORESOURCE_ASSIGNED; printk_spew("%s %s_%s: next_base: %llx size: %llx align: %d gran: %d done\n", dev_path(bus->dev), __func__, (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ? "prefmem" : "mem", base, bridge->size, bridge->align, bridge->gran); /* For each child which is a bridge, allocate_resources. */ for (dev = bus->children; dev; dev = dev->sibling) { unsigned i; struct resource *child_bridge; if (!dev->links) continue; /* Find the resources with matching type flags. */ for (i = 0; i < dev->resources; i++) { unsigned link; child_bridge = &dev->resource[i]; if (!(child_bridge->flags & IORESOURCE_BRIDGE) || (child_bridge->flags & type_mask) != type) continue; /* Split prefetchable memory if combined. Many domains * use the same address space for prefetchable memory * and non-prefetchable memory. Bridges below them * need it separated. Add the PREFETCH flag to the * type_mask and type. */ link = IOINDEX_LINK(child_bridge->index); allocate_resources(&dev->link[link], child_bridge, type_mask | IORESOURCE_PREFETCH, type | (child_bridge->flags & IORESOURCE_PREFETCH)); } } } #if CONFIG_PCI_64BIT_PREF_MEM == 1 #define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM) #else #define MEM_MASK (IORESOURCE_MEM) #endif #define IO_MASK (IORESOURCE_IO) #define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM) #define MEM_TYPE (IORESOURCE_MEM) #define IO_TYPE (IORESOURCE_IO) struct constraints { struct resource pref, io, mem; }; static void constrain_resources(struct device *dev, struct constraints* limits) { struct device *child; struct resource *res; struct resource *lim; int i; printk_spew("%s: %s\n", __func__, dev_path(dev)); /* Constrain limits based on the fixed resources of this device. */ for (i = 0; i < dev->resources; i++) { res = &dev->resource[i]; if (!(res->flags & IORESOURCE_FIXED)) continue; if (!res->size) { /* It makes no sense to have 0-sized, fixed resources.*/ printk_err("skipping %s@%lx fixed resource, size=0!\n", dev_path(dev), res->index); continue; } /* PREFETCH, MEM, or I/O - skip any others. */ if ((res->flags & MEM_MASK) == PREF_TYPE) lim = &limits->pref; else if ((res->flags & MEM_MASK) == MEM_TYPE) lim = &limits->mem; else if ((res->flags & IO_MASK) == IO_TYPE) lim = &limits->io; else continue; /* Is it already outside the limits? */ if (res->size && (((res->base + res->size -1) < lim->base) || (res->base > lim->limit))) continue; /* Choose to be above or below fixed resources. This * check is signed so that "negative" amounts of space * are handled correctly. */ if ((signed long long)(lim->limit - (res->base + res->size -1)) > (signed long long)(res->base - lim->base)) lim->base = res->base + res->size; else lim->limit = res->base -1; } /* Descend into every enabled child and look for fixed resources. */ for (i = 0; i < dev->links; i++) for (child = dev->link[i].children; child; child = child->sibling) if (child->enabled) constrain_resources(child, limits); } static void avoid_fixed_resources(struct device *dev) { struct constraints limits; struct resource *res; int i; printk_spew("%s: %s\n", __func__, dev_path(dev)); /* Initialize constraints to maximum size. */ limits.pref.base = 0; limits.pref.limit = 0xffffffffffffffffULL; limits.io.base = 0; limits.io.limit = 0xffffffffffffffffULL; limits.mem.base = 0; limits.mem.limit = 0xffffffffffffffffULL; /* Constrain the limits to dev's initial resources. */ for (i = 0; i < dev->resources; i++) { res = &dev->resource[i]; if ((res->flags & IORESOURCE_FIXED)) continue; printk_spew("%s:@%s %02lx limit %08Lx\n", __func__, dev_path(dev), res->index, res->limit); if ((res->flags & MEM_MASK) == PREF_TYPE && (res->limit < limits.pref.limit)) limits.pref.limit = res->limit; if ((res->flags & MEM_MASK) == MEM_TYPE && (res->limit < limits.mem.limit)) limits.mem.limit = res->limit; if ((res->flags & IO_MASK) == IO_TYPE && (res->limit < limits.io.limit)) limits.io.limit = res->limit; } /* Look through the tree for fixed resources and update the limits. */ constrain_resources(dev, &limits); /* Update dev's resources with new limits. */ for (i = 0; i < dev->resources; i++) { struct resource *lim; res = &dev->resource[i]; if ((res->flags & IORESOURCE_FIXED)) continue; /* PREFETCH, MEM, or I/O - skip any others. */ if ((res->flags & MEM_MASK) == PREF_TYPE) lim = &limits.pref; else if ((res->flags & MEM_MASK) == MEM_TYPE) lim = &limits.mem; else if ((res->flags & IO_MASK) == IO_TYPE) lim = &limits.io; else continue; printk_spew("%s2: %s@%02lx limit %08Lx\n", __func__, dev_path(dev), res->index, res->limit); printk_spew("\tlim->base %08Lx lim->limit %08Lx\n", lim->base, lim->limit); /* Is the resource outside the limits? */ if (lim->base > res->base) res->base = lim->base; if (res->limit > lim->limit) res->limit = lim->limit; } } #if CONFIG_VGA_BRIDGE_SETUP == 1 device_t vga_pri = 0; static void set_vga_bridge_bits(void) { #warning "FIXME modify set_vga_bridge so it is less pci centric!" #warning "This function knows too much about PCI stuff, it should be just a iterator/visitor." /* FIXME: Handle the VGA palette snooping. */ struct device *dev, *vga, *vga_onboard, *vga_first, *vga_last; struct bus *bus; bus = 0; vga = 0; vga_onboard = 0; vga_first = 0; vga_last = 0; for (dev = all_devices; dev; dev = dev->next) { if (!dev->enabled) continue; if (((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) && ((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) { if (!vga_first) { if (dev->on_mainboard) { vga_onboard = dev; } else { vga_first = dev; } } else { if (dev->on_mainboard) { vga_onboard = dev; } else { vga_last = dev; } } /* It isn't safe to enable other VGA cards. */ dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO); } } vga = vga_last; if (!vga) { vga = vga_first; } #if CONFIG_CONSOLE_VGA_ONBOARD_AT_FIRST == 1 if (vga_onboard) // Will use on board VGA as pri. #else if (!vga) // Will use last add on adapter as pri. #endif { vga = vga_onboard; } if (vga) { /* VGA is first add on card or the only onboard VGA. */ printk_debug("Setting up VGA for %s\n", dev_path(vga)); /* All legacy VGA cards have MEM & I/O space registers. */ vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO); vga_pri = vga; bus = vga->bus; } /* Now walk up the bridges setting the VGA enable. */ while (bus) { printk_debug("Setting PCI_BRIDGE_CTL_VGA for bridge %s\n", dev_path(bus->dev)); bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA; bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus; } } #endif /** * @brief Assign the computed resources to the devices on the bus. * * @param bus Pointer to the structure for this bus * * Use the device specific set_resources method to store the computed * resources to hardware. For bridge devices, the set_resources() method * has to recurse into every down stream buses. * * Mutual recursion: * assign_resources() -> device_operation::set_resources() * device_operation::set_resources() -> assign_resources() */ void assign_resources(struct bus *bus) { struct device *curdev; printk_spew("%s assign_resources, bus %d link: %d\n", dev_path(bus->dev), bus->secondary, bus->link); for (curdev = bus->children; curdev; curdev = curdev->sibling) { if (!curdev->enabled || !curdev->resources) { continue; } if (!curdev->ops || !curdev->ops->set_resources) { printk_err("%s missing set_resources\n", dev_path(curdev)); continue; } curdev->ops->set_resources(curdev); } printk_spew("%s assign_resources, bus %d link: %d\n", dev_path(bus->dev), bus->secondary, bus->link); } /** * @brief Enable the resources for a specific device * * @param dev the device whose resources are to be enabled * * Enable resources of the device by calling the device specific * enable_resources() method. * * The parent's resources should be enabled first to avoid having enabling * order problem. This is done by calling the parent's enable_resources() * method and let that method to call it's children's enable_resoruces() * method via the (global) enable_childrens_resources(). * * Indirect mutual recursion: * enable_resources() -> device_operations::enable_resource() * device_operations::enable_resource() -> enable_children_resources() * enable_children_resources() -> enable_resources() */ void enable_resources(struct device *dev) { if (!dev->enabled) { return; } if (!dev->ops || !dev->ops->enable_resources) { printk_err("%s missing enable_resources\n", dev_path(dev)); return; } dev->ops->enable_resources(dev); } /** * @brief Reset all of the devices a bus * * Reset all of the devices on a bus and clear the bus's reset_needed flag. * * @param bus pointer to the bus structure * * @return 1 if the bus was successfully reset, 0 otherwise. * */ int reset_bus(struct bus *bus) { if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) { bus->dev->ops->reset_bus(bus); bus->reset_needed = 0; return 1; } return 0; } /** * @brief Scan for devices on a bus. * * If there are bridges on the bus, recursively scan the buses behind the * bridges. If the setting up and tuning of the bus causes a reset to be * required, reset the bus and scan it again. * * @param busdev Pointer to the bus device. * @param max Current bus number. * @return The maximum bus number found, after scanning all subordinate buses. */ unsigned int scan_bus(struct device *busdev, unsigned int max) { unsigned int new_max; int do_scan_bus; if (!busdev || !busdev->enabled || !busdev->ops || !busdev->ops->scan_bus) { return max; } do_scan_bus = 1; while (do_scan_bus) { int link; new_max = busdev->ops->scan_bus(busdev, max); do_scan_bus = 0; for (link = 0; link < busdev->links; link++) { if (busdev->link[link].reset_needed) { if (reset_bus(&busdev->link[link])) { do_scan_bus = 1; } else { busdev->bus->reset_needed = 1; } } } } return new_max; } /** * @brief Determine the existence of devices and extend the device tree. * * Most of the devices in the system are listed in the mainboard Config.lb * file. The device structures for these devices are generated at compile * time by the config tool and are organized into the device tree. This * function determines if the devices created at compile time actually exist * in the physical system. * * For devices in the physical system but not listed in the Config.lb file, * the device structures have to be created at run time and attached to the * device tree. * * This function starts from the root device 'dev_root', scan the buses in * the system recursively, modify the device tree according to the result of * the probe. * * This function has no idea how to scan and probe buses and devices at all. * It depends on the bus/device specific scan_bus() method to do it. The * scan_bus() method also has to create the device structure and attach * it to the device tree. */ void dev_enumerate(void) { struct device *root; printk_info("Enumerating buses...\n"); root = &dev_root; show_all_devs(BIOS_DEBUG, "Before Device Enumeration."); printk_debug("Compare with tree...\n"); show_devs_tree(root, BIOS_DEBUG, 0, 0); if (root->chip_ops && root->chip_ops->enable_dev) { root->chip_ops->enable_dev(root); } if (!root->ops || !root->ops->scan_bus) { printk_err("dev_root missing scan_bus operation"); return; } scan_bus(root, 0); printk_info("done\n"); } /** * @brief Configure devices on the devices tree. * * Starting at the root of the device tree, travel it recursively in two * passes. In the first pass, we compute and allocate resources (ranges) * requried by each device. In the second pass, the resources ranges are * relocated to their final position and stored to the hardware. * * I/O resources grow upward. MEM resources grow downward. * * Since the assignment is hierarchical we set the values into the dev_root * struct. */ void dev_configure(void) { struct resource *res; struct device *root; struct device *child; int i; #if CONFIG_VGA_BRIDGE_SETUP == 1 set_vga_bridge_bits(); #endif printk_info("Allocating resources...\n"); root = &dev_root; /* Each domain should create resources which contain the entire address * space for IO, MEM, and PREFMEM resources in the domain. The * allocation of device resources will be done from this address space. */ /* Read the resources for the entire tree. */ printk_info("Reading resources...\n"); read_resources(&root->link[0]); printk_info("Done reading resources.\n"); print_resource_tree(root, BIOS_DEBUG, "After reading."); /* Compute resources for all domains. */ for (child = root->link[0].children; child; child = child->sibling) { if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN)) continue; for (i = 0; i < child->resources; i++) { res = &child->resource[i]; if (res->flags & IORESOURCE_FIXED) continue; if (res->flags & IORESOURCE_PREFETCH) { compute_resources(&child->link[0], res, MEM_MASK, PREF_TYPE); continue; } if (res->flags & IORESOURCE_MEM) { compute_resources(&child->link[0], res, MEM_MASK, MEM_TYPE); continue; } if (res->flags & IORESOURCE_IO) { compute_resources(&child->link[0], res, IO_MASK, IO_TYPE); continue; } } } /* For all domains. */ for (child = root->link[0].children; child; child=child->sibling) if (child->path.type == DEVICE_PATH_PCI_DOMAIN) avoid_fixed_resources(child); /* Now we need to adjust the resources. MEM resources need to start at * the highest address managable. */ for (child = root->link[0].children; child; child = child->sibling) { if (child->path.type != DEVICE_PATH_PCI_DOMAIN) continue; for (i = 0; i < child->resources; i++) { res = &child->resource[i]; if (!(res->flags & IORESOURCE_MEM) || res->flags & IORESOURCE_FIXED) continue; res->base = resource_max(res); } } /* Store the computed resource allocations into device registers ... */ printk_info("Setting resources...\n"); for (child = root->link[0].children; child; child = child->sibling) { if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN)) continue; for (i = 0; i < child->resources; i++) { res = &child->resource[i]; if (res->flags & IORESOURCE_FIXED) continue; if (res->flags & IORESOURCE_PREFETCH) { allocate_resources(&child->link[0], res, MEM_MASK, PREF_TYPE); continue; } if (res->flags & IORESOURCE_MEM) { allocate_resources(&child->link[0], res, MEM_MASK, MEM_TYPE); continue; } if (res->flags & IORESOURCE_IO) { allocate_resources(&child->link[0], res, IO_MASK, IO_TYPE); continue; } } } assign_resources(&root->link[0]); printk_info("Done setting resources.\n"); print_resource_tree(root, BIOS_DEBUG, "After assigning values."); printk_info("Done allocating resources.\n"); } /** * @brief Enable devices on the device tree. * * Starting at the root, walk the tree and enable all devices/bridges by * calling the device's enable_resources() method. */ void dev_enable(void) { printk_info("Enabling resources...\n"); /* now enable everything. */ enable_resources(&dev_root); printk_info("done.\n"); } /** * @brief Initialize all devices in the global device list. * * Starting at the first device on the global device link list, * walk the list and call the device's init() method to do deivce * specific setup. */ void dev_initialize(void) { struct device *dev; printk_info("Initializing devices...\n"); for (dev = all_devices; dev; dev = dev->next) { if (dev->enabled && !dev->initialized && dev->ops && dev->ops->init) { if (dev->path.type == DEVICE_PATH_I2C) { printk_debug("smbus: %s[%d]->", dev_path(dev->bus->dev), dev->bus->link); } printk_debug("%s init\n", dev_path(dev)); dev->initialized = 1; dev->ops->init(dev); } } printk_info("Devices initialized\n"); show_all_devs(BIOS_DEBUG, "After init."); }