/* * This file is part of the coreboot project. * * Copyright (C) 2007 Advanced Micro Devices, Inc. * Copyright (C) 2009-2010 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <arch/io.h> #include <arch/interrupt.h> #include <arch/registers.h> #include <boot/coreboot_tables.h> #include <cbfs.h> #include <console/console.h> #include <cpu/amd/lxdef.h> #include <cpu/amd/vr.h> #include <delay.h> #include <device/pci.h> #include <device/pci_ids.h> #include <lib/jpeg.h> #include <pc80/i8259.h> #include <pc80/i8254.h> #include <string.h> #include <vbe.h> /* we use x86emu's register file representation */ #include <x86emu/regs.h> #include "x86.h" /* The following symbols cannot be used directly. They need to be fixed up * to point to the correct address location after the code has been copied * to REALMODE_BASE. Absolute symbols are not used because those symbols are * relocated when a relocatable ramstage is enabled. */ extern unsigned char __realmode_call, __realmode_interrupt; extern unsigned char __realmode_buffer; #define PTR_TO_REAL_MODE(sym)\ (void *)(REALMODE_BASE + ((char *)&(sym) - (char *)&__realmode_code)) /* to have a common register file for interrupt handlers */ X86EMU_sysEnv _X86EMU_env; void (*realmode_call)(u32 addr, u32 eax, u32 ebx, u32 ecx, u32 edx, u32 esi, u32 edi) asmlinkage; void (*realmode_interrupt)(u32 intno, u32 eax, u32 ebx, u32 ecx, u32 edx, u32 esi, u32 edi) asmlinkage; static void setup_realmode_code(void) { memcpy(REALMODE_BASE, &__realmode_code, __realmode_code_size); /* Ensure the global pointers are relocated properly. */ realmode_call = PTR_TO_REAL_MODE(__realmode_call); realmode_interrupt = PTR_TO_REAL_MODE(__realmode_interrupt); printk(BIOS_SPEW, "Real mode stub @%p: %d bytes\n", REALMODE_BASE, __realmode_code_size); } static void setup_rombios(void) { const char date[] = "06/11/99"; memcpy((void *)0xffff5, &date, 8); const char ident[] = "PCI_ISA"; memcpy((void *)0xfffd9, &ident, 7); /* system model: IBM-AT */ write8((void *)0xffffe, 0xfc); } static int (*intXX_handler[256])(void) = { NULL }; static int intXX_exception_handler(void) { /* compatibility shim */ struct eregs reg_info = { .eax=X86_EAX, .ecx=X86_ECX, .edx=X86_EDX, .ebx=X86_EBX, .esp=X86_ESP, .ebp=X86_EBP, .esi=X86_ESI, .edi=X86_EDI, .vector=M.x86.intno, .error_code=0, // FIXME: fill in .eip=X86_EIP, .cs=X86_CS, .eflags=X86_EFLAGS }; struct eregs *regs = ®_info; printk(BIOS_INFO, "Oops, exception %d while executing option rom\n", regs->vector); x86_exception(regs); // Call coreboot exception handler return 0; // Never really returns } static int intXX_unknown_handler(void) { printk(BIOS_INFO, "Unsupported software interrupt #0x%x eax 0x%x\n", M.x86.intno, X86_EAX); return -1; } /* setup interrupt handlers for mainboard */ void mainboard_interrupt_handlers(int intXX, int (*intXX_func)(void)) { intXX_handler[intXX] = intXX_func; } static void setup_interrupt_handlers(void) { int i; /* The first 16 intXX functions are not BIOS services, * but the CPU-generated exceptions ("hardware interrupts") */ for (i = 0; i < 0x10; i++) intXX_handler[i] = &intXX_exception_handler; /* Mark all other intXX calls as unknown first */ for (i = 0x10; i < 0x100; i++) { /* If the mainboard_interrupt_handler isn't called first. */ if(!intXX_handler[i]) { /* Now set the default functions that are actually * needed to initialize the option roms. This is * very slick, as it allows us to implement mainboard * specific interrupt handlers, such as the int15. */ switch (i) { case 0x10: intXX_handler[0x10] = &int10_handler; break; case 0x12: intXX_handler[0x12] = &int12_handler; break; case 0x16: intXX_handler[0x16] = &int16_handler; break; case 0x1a: intXX_handler[0x1a] = &int1a_handler; break; default: intXX_handler[i] = &intXX_unknown_handler; break; } } } } static void write_idt_stub(void *target, u8 intnum) { unsigned char *codeptr; codeptr = (unsigned char *) target; memcpy(codeptr, &__idt_handler, __idt_handler_size); codeptr[3] = intnum; /* modify int# in the code stub. */ } static void setup_realmode_idt(void) { struct realmode_idt *idts = (struct realmode_idt *) 0; int i; /* Copy IDT stub code for each interrupt. This might seem wasteful * but it is really simple */ for (i = 0; i < 256; i++) { idts[i].cs = 0; idts[i].offset = 0x1000 + (i * __idt_handler_size); write_idt_stub((void *)((uintptr_t)idts[i].offset), i); } /* Many option ROMs use the hard coded interrupt entry points in the * system bios. So install them at the known locations. */ /* int42 is the relocated int10 */ write_idt_stub((void *)0xff065, 0x42); /* BIOS Int 11 Handler F000:F84D */ write_idt_stub((void *)0xff84d, 0x11); /* BIOS Int 12 Handler F000:F841 */ write_idt_stub((void *)0xff841, 0x12); /* BIOS Int 13 Handler F000:EC59 */ write_idt_stub((void *)0xfec59, 0x13); /* BIOS Int 14 Handler F000:E739 */ write_idt_stub((void *)0xfe739, 0x14); /* BIOS Int 15 Handler F000:F859 */ write_idt_stub((void *)0xff859, 0x15); /* BIOS Int 16 Handler F000:E82E */ write_idt_stub((void *)0xfe82e, 0x16); /* BIOS Int 17 Handler F000:EFD2 */ write_idt_stub((void *)0xfefd2, 0x17); /* ROM BIOS Int 1A Handler F000:FE6E */ write_idt_stub((void *)0xffe6e, 0x1a); } #if IS_ENABLED(CONFIG_FRAMEBUFFER_SET_VESA_MODE) vbe_mode_info_t mode_info; static int mode_info_valid; static int vbe_mode_info_valid(void) { return mode_info_valid; } static u8 vbe_get_mode_info(vbe_mode_info_t * mi) { printk(BIOS_DEBUG, "VBE: Getting information about VESA mode %04x\n", mi->video_mode); char *buffer = PTR_TO_REAL_MODE(__realmode_buffer); u16 buffer_seg = (((unsigned long)buffer) >> 4) & 0xff00; u16 buffer_adr = ((unsigned long)buffer) & 0xffff; realmode_interrupt(0x10, VESA_GET_MODE_INFO, 0x0000, mi->video_mode, 0x0000, buffer_seg, buffer_adr); memcpy(mi->mode_info_block, buffer, sizeof(mi->mode_info_block)); mode_info_valid = 1; return 0; } static u8 vbe_set_mode(vbe_mode_info_t * mi) { printk(BIOS_DEBUG, "VBE: Setting VESA mode %04x\n", mi->video_mode); // request linear framebuffer mode mi->video_mode |= (1 << 14); // request clearing of framebuffer mi->video_mode &= ~(1 << 15); realmode_interrupt(0x10, VESA_SET_MODE, mi->video_mode, 0x0000, 0x0000, 0x0000, 0x0000); return 0; } /* These two functions could probably even be generic between * yabel and x86 native. TBD later. */ void vbe_set_graphics(void) { mode_info.video_mode = (1 << 14) | CONFIG_FRAMEBUFFER_VESA_MODE; vbe_get_mode_info(&mode_info); unsigned char *framebuffer = (unsigned char *)mode_info.vesa.phys_base_ptr; printk(BIOS_DEBUG, "VBE: resolution: %dx%d@%d\n", le16_to_cpu(mode_info.vesa.x_resolution), le16_to_cpu(mode_info.vesa.y_resolution), mode_info.vesa.bits_per_pixel); printk(BIOS_DEBUG, "VBE: framebuffer: %p\n", framebuffer); if (!framebuffer) { printk(BIOS_DEBUG, "VBE: Mode does not support linear " "framebuffer\n"); return; } vbe_set_mode(&mode_info); #if IS_ENABLED(CONFIG_BOOTSPLASH) struct jpeg_decdata *decdata; unsigned char *jpeg = cbfs_boot_map_with_leak("bootsplash.jpg", CBFS_TYPE_BOOTSPLASH, NULL); if (!jpeg) { printk(BIOS_DEBUG, "VBE: No bootsplash found.\n"); return; } decdata = malloc(sizeof(*decdata)); int ret = 0; ret = jpeg_decode(jpeg, framebuffer, 1024, 768, 16, decdata); #endif } void vbe_textmode_console(void) { delay(2); realmode_interrupt(0x10, 0x0003, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000); } int fill_lb_framebuffer(struct lb_framebuffer *framebuffer) { if (!vbe_mode_info_valid()) return -1; framebuffer->physical_address = mode_info.vesa.phys_base_ptr; framebuffer->x_resolution = le16_to_cpu(mode_info.vesa.x_resolution); framebuffer->y_resolution = le16_to_cpu(mode_info.vesa.y_resolution); framebuffer->bytes_per_line = le16_to_cpu(mode_info.vesa.bytes_per_scanline); framebuffer->bits_per_pixel = mode_info.vesa.bits_per_pixel; framebuffer->red_mask_pos = mode_info.vesa.red_mask_pos; framebuffer->red_mask_size = mode_info.vesa.red_mask_size; framebuffer->green_mask_pos = mode_info.vesa.green_mask_pos; framebuffer->green_mask_size = mode_info.vesa.green_mask_size; framebuffer->blue_mask_pos = mode_info.vesa.blue_mask_pos; framebuffer->blue_mask_size = mode_info.vesa.blue_mask_size; framebuffer->reserved_mask_pos = mode_info.vesa.reserved_mask_pos; framebuffer->reserved_mask_size = mode_info.vesa.reserved_mask_size; return 0; } #endif void run_bios(struct device *dev, unsigned long addr) { u32 num_dev = (dev->bus->secondary << 8) | dev->path.pci.devfn; /* Setting up required hardware. * Removing this will cause random illegal instruction exceptions * in some option roms. */ setup_i8259(); setup_i8254(); /* Set up some legacy information in the F segment */ setup_rombios(); /* Set up C interrupt handlers */ setup_interrupt_handlers(); /* Set up real-mode IDT */ setup_realmode_idt(); /* Make sure the code is placed. */ setup_realmode_code(); printk(BIOS_DEBUG, "Calling Option ROM...\n"); /* TODO ES:DI Pointer to System BIOS PnP Installation Check Structure */ /* Option ROM entry point is at OPROM start + 3 */ realmode_call(addr + 0x0003, num_dev, 0xffff, 0x0000, 0xffff, 0x0, 0x0); printk(BIOS_DEBUG, "... Option ROM returned.\n"); #if IS_ENABLED(CONFIG_FRAMEBUFFER_SET_VESA_MODE) if ((dev->class >> 8)== PCI_CLASS_DISPLAY_VGA) vbe_set_graphics(); #endif } /* interrupt_handler() is called from assembler code only, * so there is no use in putting the prototype into a header file. */ int asmlinkage interrupt_handler(u32 intnumber, u32 gsfs, u32 dses, u32 edi, u32 esi, u32 ebp, u32 esp, u32 ebx, u32 edx, u32 ecx, u32 eax, u32 cs_ip, u16 stackflags); int asmlinkage interrupt_handler(u32 intnumber, u32 gsfs, u32 dses, u32 edi, u32 esi, u32 ebp, u32 esp, u32 ebx, u32 edx, u32 ecx, u32 eax, u32 cs_ip, u16 stackflags) { u32 ip; u32 cs; u32 flags; int ret = 0; ip = cs_ip & 0xffff; cs = cs_ip >> 16; flags = stackflags; #if IS_ENABLED(CONFIG_REALMODE_DEBUG) printk(BIOS_DEBUG, "oprom: INT# 0x%x\n", intnumber); printk(BIOS_DEBUG, "oprom: eax: %08x ebx: %08x ecx: %08x edx: %08x\n", eax, ebx, ecx, edx); printk(BIOS_DEBUG, "oprom: ebp: %08x esp: %08x edi: %08x esi: %08x\n", ebp, esp, edi, esi); printk(BIOS_DEBUG, "oprom: ip: %04x cs: %04x flags: %08x\n", ip, cs, flags); #endif // Fetch arguments from the stack and put them to a place // suitable for the interrupt handlers X86_EAX = eax; X86_ECX = ecx; X86_EDX = edx; X86_EBX = ebx; X86_ESP = esp; X86_EBP = ebp; X86_ESI = esi; X86_EDI = edi; M.x86.intno = intnumber; /* TODO: error_code must be stored somewhere */ X86_EIP = ip; X86_CS = cs; X86_EFLAGS = flags; // Call the interrupt handler for this int# ret = intXX_handler[intnumber](); // Put registers back on the stack. The assembler code // will later pop them. // What happens here is that we force (volatile!) changing // the values of the parameters of this function. We do this // because we know that they stay alive on the stack after // we leave this function. Don't say this is bollocks. *(volatile u32 *)&eax = X86_EAX; *(volatile u32 *)&ecx = X86_ECX; *(volatile u32 *)&edx = X86_EDX; *(volatile u32 *)&ebx = X86_EBX; *(volatile u32 *)&esi = X86_ESI; *(volatile u32 *)&edi = X86_EDI; flags = X86_EFLAGS; /* Pass success or error back to our caller via the CARRY flag */ if (ret) { flags &= ~1; // no error: clear carry }else{ printk(BIOS_DEBUG,"int%02x call returned error.\n", intnumber); flags |= 1; // error: set carry } *(volatile u16 *)&stackflags = flags; /* The assembler code doesn't actually care for the return value, * but keep it around so its expectations are met */ return ret; }