/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include /** * Given a Local APIC ID, find the device structure. * * @param apic_id The Local APIC ID number. * @return Pointer to the device structure (if found), 0 otherwise. */ struct device *dev_find_lapic(unsigned int apic_id) { struct device *dev; struct device *result = NULL; for (dev = all_devices; dev; dev = dev->next) { if (dev->path.type == DEVICE_PATH_APIC && dev->path.apic.apic_id == apic_id) { result = dev; break; } } return result; } /** * Find a device of a given vendor and type. * * @param vendor A PCI vendor ID (e.g. 0x8086 for Intel). * @param device A PCI device ID. * @param from Pointer to the device structure, used as a starting point in * the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_device(u16 vendor, u16 device, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->vendor != vendor || from->device != device)) from = from->next; return from; } /** * Find a device of a given class. * * @param class Class of the device. * @param from Pointer to the device structure, used as a starting point in * the linked list of all_devices, which can be 0 to start at the * head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_class(unsigned int class, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->class & 0xffffff00) != class) from = from->next; return from; } /** * Encode the device path into 3 bytes for logging to CMOS. * * @param dev The device path to encode. * @return Device path encoded into lower 3 bytes of dword. */ u32 dev_path_encode(const struct device *dev) { u32 ret; if (!dev) return 0; /* Store the device type in 3rd byte. */ ret = dev->path.type << 16; /* Encode the device specific path in the low word. */ switch (dev->path.type) { case DEVICE_PATH_ROOT: break; case DEVICE_PATH_PCI: ret |= dev->upstream->segment_group << 16 | dev->upstream->secondary << 8 | dev->path.pci.devfn; break; case DEVICE_PATH_PNP: ret |= dev->path.pnp.port << 8 | dev->path.pnp.device; break; case DEVICE_PATH_I2C: ret |= dev->path.i2c.mode_10bit << 8 | dev->path.i2c.device; break; case DEVICE_PATH_APIC: ret |= dev->path.apic.apic_id; break; case DEVICE_PATH_DOMAIN: ret |= dev->path.domain.domain; break; case DEVICE_PATH_CPU_CLUSTER: ret |= dev->path.cpu_cluster.cluster; break; case DEVICE_PATH_CPU: ret |= dev->path.cpu.id; break; case DEVICE_PATH_CPU_BUS: ret |= dev->path.cpu_bus.id; break; case DEVICE_PATH_IOAPIC: ret |= dev->path.ioapic.ioapic_id; break; case DEVICE_PATH_GENERIC: ret |= dev->path.generic.subid << 8 | dev->path.generic.id; break; case DEVICE_PATH_SPI: ret |= dev->path.spi.cs; break; case DEVICE_PATH_USB: ret |= dev->path.usb.port_type << 8 | dev->path.usb.port_id; break; case DEVICE_PATH_GPIO: ret |= dev->path.gpio.id; break; case DEVICE_PATH_MDIO: ret |= dev->path.mdio.addr; break; case DEVICE_PATH_NONE: case DEVICE_PATH_MMIO: /* don't care */ default: break; } return ret; } /* * Warning: This function uses a static buffer. Don't call it more than once * from the same print statement! */ const char *dev_path(const struct device *dev) { static char buffer[DEVICE_PATH_MAX]; buffer[0] = '\0'; if (!dev) { strcpy(buffer, ""); } else { switch (dev->path.type) { case DEVICE_PATH_NONE: strcpy(buffer, "NONE"); break; case DEVICE_PATH_ROOT: strcpy(buffer, "Root Device"); break; case DEVICE_PATH_PCI: snprintf(buffer, sizeof(buffer), "PCI: %02x:%02x:%02x.%01x", dev->upstream->segment_group, dev->upstream->secondary, PCI_SLOT(dev->path.pci.devfn), PCI_FUNC(dev->path.pci.devfn)); break; case DEVICE_PATH_PNP: snprintf(buffer, sizeof(buffer), "PNP: %04x.%01x", dev->path.pnp.port, dev->path.pnp.device); break; case DEVICE_PATH_I2C: snprintf(buffer, sizeof(buffer), "I2C: %02x:%02x", dev->upstream->secondary, dev->path.i2c.device); break; case DEVICE_PATH_APIC: snprintf(buffer, sizeof(buffer), "APIC: %02x", dev->path.apic.apic_id); break; case DEVICE_PATH_IOAPIC: snprintf(buffer, sizeof(buffer), "IOAPIC: %02x", dev->path.ioapic.ioapic_id); break; case DEVICE_PATH_DOMAIN: snprintf(buffer, sizeof(buffer), "DOMAIN: %08x", dev->path.domain.domain); break; case DEVICE_PATH_CPU_CLUSTER: snprintf(buffer, sizeof(buffer), "CPU_CLUSTER: %01x", dev->path.cpu_cluster.cluster); break; case DEVICE_PATH_CPU: snprintf(buffer, sizeof(buffer), "CPU: %02x", dev->path.cpu.id); break; case DEVICE_PATH_CPU_BUS: snprintf(buffer, sizeof(buffer), "CPU_BUS: %02x", dev->path.cpu_bus.id); break; case DEVICE_PATH_GENERIC: snprintf(buffer, sizeof(buffer), "GENERIC: %d.%d", dev->path.generic.id, dev->path.generic.subid); break; case DEVICE_PATH_SPI: snprintf(buffer, sizeof(buffer), "SPI: %02x", dev->path.spi.cs); break; case DEVICE_PATH_USB: snprintf(buffer, sizeof(buffer), "USB%u port %u", dev->path.usb.port_type, dev->path.usb.port_id); break; case DEVICE_PATH_MMIO: snprintf(buffer, sizeof(buffer), "MMIO: %08lx", dev->path.mmio.addr); break; case DEVICE_PATH_GPIO: snprintf(buffer, sizeof(buffer), "GPIO: %d", dev->path.gpio.id); break; case DEVICE_PATH_MDIO: snprintf(buffer, sizeof(buffer), "MDIO: %02x", dev->path.mdio.addr); break; default: printk(BIOS_ERR, "Unknown device path type: %d\n", dev->path.type); break; } } return buffer; } const char *dev_name(const struct device *dev) { if (dev->name) return dev->name; else if (dev->chip_ops && dev->chip_ops->name) return dev->chip_ops->name; else return "unknown"; } /* Returns the domain for the given device */ const struct device *dev_get_domain(const struct device *dev) { /* Walk up the tree up to the domain */ while (dev && dev->upstream && !is_root_device(dev)) { if (dev->path.type == DEVICE_PATH_DOMAIN) return dev; dev = dev->upstream->dev; } return NULL; } bool is_domain0(const struct device *dev) { return dev && dev->path.type == DEVICE_PATH_DOMAIN && dev->path.domain.domain == 0; } bool is_dev_on_domain0(const struct device *dev) { return is_domain0(dev_get_domain(dev)); } /** * Allocate 64 more resources to the free list. * * @return TODO. */ static int allocate_more_resources(void) { int i; struct resource *new_res_list; new_res_list = malloc(64 * sizeof(*new_res_list)); if (new_res_list == NULL) return 0; memset(new_res_list, 0, 64 * sizeof(*new_res_list)); for (i = 0; i < 64 - 1; i++) new_res_list[i].next = &new_res_list[i+1]; free_resources = new_res_list; return 1; } /** * Remove resource res from the device's list and add it to the free list. * * @param dev TODO * @param res TODO * @param prev TODO * @return TODO. */ static void free_resource(struct device *dev, struct resource *res, struct resource *prev) { if (prev) prev->next = res->next; else dev->resource_list = res->next; res->next = free_resources; free_resources = res; } /** * See if we have unused but allocated resource structures. * * If so remove the allocation. * * @param dev The device to find the resource on. */ void compact_resources(struct device *dev) { struct resource *res, *next, *prev = NULL; /* Move all of the free resources to the end */ for (res = dev->resource_list; res; res = next) { next = res->next; if (!res->flags) free_resource(dev, res, prev); else prev = res; } } /** * See if a resource structure already exists for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * @return The resource, if it already exists. */ struct resource *probe_resource(const struct device *dev, unsigned int index) { struct resource *res; /* See if there is a resource with the appropriate index */ for (res = dev->resource_list; res; res = res->next) { if (res->index == index) break; } return res; } /** * See if a resource structure already exists for a given index and if not * allocate one. * * Then initialize the resource to default values. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * @return TODO. */ struct resource *new_resource(struct device *dev, unsigned int index) { struct resource *resource, *tail; /* First move all of the free resources to the end. */ compact_resources(dev); /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) { if (free_resources == NULL && !allocate_more_resources()) die("Couldn't allocate more resources."); resource = free_resources; free_resources = free_resources->next; memset(resource, 0, sizeof(*resource)); resource->next = NULL; tail = dev->resource_list; if (tail) { while (tail->next) tail = tail->next; tail->next = resource; } else { dev->resource_list = resource; } } /* Initialize the resource values. */ if (!(resource->flags & IORESOURCE_FIXED)) { resource->flags = 0; resource->base = 0; } resource->size = 0; resource->limit = 0; resource->index = index; resource->align = 0; resource->gran = 0; return resource; } /** * Return an existing resource structure for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * return TODO. */ struct resource *find_resource(const struct device *dev, unsigned int index) { struct resource *resource; /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) die("%s missing resource: %02x\n", dev_path(dev), index); return resource; } /** * Round a number up to the next multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @return The aligned value. */ static resource_t align_up(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val += mask; val &= ~mask; return val; } /** * Round a number up to the previous multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @return The aligned value. */ static resource_t align_down(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val &= ~mask; return val; } /** * Compute the maximum address that is part of a resource. * * @param resource The resource whose limit is desired. * @return The end. */ resource_t resource_end(const struct resource *resource) { resource_t base, end; /* Get the base address. */ base = resource->base; /* * For a non bridge resource granularity and alignment are the same. * For a bridge resource align is the largest needed alignment below * the bridge. While the granularity is simply how many low bits of * the address cannot be set. */ /* Get the end (rounded up). */ end = base + align_up(resource->size, resource->gran) - 1; return end; } /** * Compute the maximum legal value for resource->base. * * @param resource The resource whose maximum is desired. * @return The maximum. */ resource_t resource_max(const struct resource *resource) { resource_t max; max = align_down(resource->limit - resource->size + 1, resource->align); return max; } /** * Return the resource type of a resource. * * @param resource The resource type to decode. * @return TODO. */ const char *resource_type(const struct resource *resource) { static char buffer[RESOURCE_TYPE_MAX]; snprintf(buffer, sizeof(buffer), "%s%s%s%s", ((resource->flags & IORESOURCE_READONLY) ? "ro" : ""), ((resource->flags & IORESOURCE_PREFETCH) ? "pref" : ""), ((resource->flags == 0) ? "unused" : (resource->flags & IORESOURCE_IO) ? "io" : (resource->flags & IORESOURCE_DRQ) ? "drq" : (resource->flags & IORESOURCE_IRQ) ? "irq" : (resource->flags & IORESOURCE_MEM) ? "mem" : "??????"), ((resource->flags & IORESOURCE_PCI64) ? "64" : "")); return buffer; } /** * Print the resource that was just stored. * * @param dev The device the stored resource lives on. * @param resource The resource that was just stored. * @param comment TODO */ void report_resource_stored(struct device *dev, const struct resource *resource, const char *comment) { char buf[10]; unsigned long long base, end; if (!(resource->flags & IORESOURCE_STORED)) return; base = resource->base; end = resource_end(resource); buf[0] = '\0'; if (dev->downstream && (resource->flags & IORESOURCE_PCI_BRIDGE)) { snprintf(buf, sizeof(buf), "seg %02x bus %02x ", dev->downstream->segment_group, dev->downstream->secondary); } printk(BIOS_DEBUG, "%s %02lx <- [0x%016llx - 0x%016llx] size 0x%08llx " "gran 0x%02x %s%s%s\n", dev_path(dev), resource->index, base, end, resource->size, resource->gran, buf, resource_type(resource), comment); } void search_bus_resources(struct bus *bus, unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for (curdev = bus->children; curdev; curdev = curdev->sibling) { struct resource *res; /* Ignore disabled devices. */ if (!curdev->enabled) continue; for (res = curdev->resource_list; res; res = res->next) { /* If it isn't the right kind of resource ignore it. */ if ((res->flags & type_mask) != type) continue; /* If it is a subtractive resource recurse. */ if (res->flags & IORESOURCE_SUBTRACTIVE) { if (curdev->downstream) search_bus_resources(curdev->downstream, type_mask, type, search, gp); continue; } search(gp, curdev, res); } } } void search_global_resources(unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for (curdev = all_devices; curdev; curdev = curdev->next) { struct resource *res; /* Ignore disabled devices. */ if (!curdev->enabled) continue; for (res = curdev->resource_list; res; res = res->next) { /* If it isn't the right kind of resource ignore it. */ if ((res->flags & type_mask) != type) continue; /* If it is a subtractive resource ignore it. */ if (res->flags & IORESOURCE_SUBTRACTIVE) continue; /* If the resource is not assigned ignore it. */ if (!(res->flags & IORESOURCE_ASSIGNED)) continue; search(gp, curdev, res); } } } void dev_set_enabled(struct device *dev, int enable) { if (dev->enabled == enable) return; dev->enabled = enable; if (dev->ops && dev->ops->enable) dev->ops->enable(dev); else if (dev->chip_ops && dev->chip_ops->enable_dev) dev->chip_ops->enable_dev(dev); } void disable_children(struct bus *bus) { struct device *child; for (child = bus->children; child; child = child->sibling) { if (child->downstream) disable_children(child->downstream); dev_set_enabled(child, 0); } } /* * Returns true if the device is an enabled bridge that has at least * one enabled device on its secondary bus that is not of type NONE. */ bool dev_is_active_bridge(struct device *dev) { struct device *child; if (!dev || !dev->enabled) return 0; if (!dev->downstream || !dev->downstream->children) return 0; for (child = dev->downstream->children; child; child = child->sibling) { if (child->path.type == DEVICE_PATH_NONE) continue; if (child->enabled) return 1; } return 0; } static void resource_tree(const struct device *root, int debug_level, int depth) { int i = 0; struct device *child; struct resource *res; char indent[30]; /* If your tree has more levels, it's wrong. */ for (i = 0; i < depth + 1 && i < 29; i++) indent[i] = ' '; indent[i] = '\0'; printk(BIOS_DEBUG, "%s%s", indent, dev_path(root)); if (root->downstream && root->downstream->children) printk(BIOS_DEBUG, " child on link 0 %s", dev_path(root->downstream->children)); printk(BIOS_DEBUG, "\n"); for (res = root->resource_list; res; res = res->next) { printk(debug_level, "%s%s resource base %llx size %llx " "align %d gran %d limit %llx flags %lx index %lx\n", indent, dev_path(root), res->base, res->size, res->align, res->gran, res->limit, res->flags, res->index); } if (!root->downstream) return; for (child = root->downstream->children; child; child = child->sibling) resource_tree(child, debug_level, depth + 1); } void print_resource_tree(const struct device *root, int debug_level, const char *msg) { /* Bail if root is null. */ if (!root) { printk(debug_level, "%s passed NULL for root!\n", __func__); return; } /* Bail if not printing to screen. */ if (!printk(debug_level, "Show resources in subtree (%s)...%s\n", dev_path(root), msg)) return; resource_tree(root, debug_level, 0); } void show_devs_tree(const struct device *dev, int debug_level, int depth) { char depth_str[20]; int i; struct device *sibling; for (i = 0; i < depth; i++) depth_str[i] = ' '; depth_str[i] = '\0'; printk(debug_level, "%s%s: enabled %d\n", depth_str, dev_path(dev), dev->enabled); if (!dev->downstream) return; for (sibling = dev->downstream->children; sibling; sibling = sibling->sibling) show_devs_tree(sibling, debug_level, depth + 1); } void show_all_devs_tree(int debug_level, const char *msg) { /* Bail if not printing to screen. */ if (!printk(debug_level, "Show all devs in tree form... %s\n", msg)) return; show_devs_tree(all_devices, debug_level, 0); } void show_devs_subtree(struct device *root, int debug_level, const char *msg) { /* Bail if not printing to screen. */ if (!printk(debug_level, "Show all devs in subtree %s... %s\n", dev_path(root), msg)) return; printk(debug_level, "%s\n", msg); show_devs_tree(root, debug_level, 0); } void show_all_devs(int debug_level, const char *msg) { struct device *dev; /* Bail if not printing to screen. */ if (!printk(debug_level, "Show all devs... %s\n", msg)) return; for (dev = all_devices; dev; dev = dev->next) { printk(debug_level, "%s: enabled %d\n", dev_path(dev), dev->enabled); } } void show_one_resource(int debug_level, struct device *dev, struct resource *resource, const char *comment) { char buf[10]; unsigned long long base, end; base = resource->base; end = resource_end(resource); buf[0] = '\0'; printk(debug_level, "%s %02lx <- [0x%016llx - 0x%016llx] " "size 0x%08llx gran 0x%02x %s%s%s\n", dev_path(dev), resource->index, base, end, resource->size, resource->gran, buf, resource_type(resource), comment); } void show_all_devs_resources(int debug_level, const char *msg) { struct device *dev; if (!printk(debug_level, "Show all devs with resources... %s\n", msg)) return; for (dev = all_devices; dev; dev = dev->next) { struct resource *res; printk(debug_level, "%s: enabled %d\n", dev_path(dev), dev->enabled); for (res = dev->resource_list; res; res = res->next) show_one_resource(debug_level, dev, res, ""); } } const struct resource *resource_range_idx(struct device *dev, unsigned long index, uint64_t base, uint64_t size, unsigned long flags) { struct resource *resource; if (!size) return NULL; resource = new_resource(dev, index); resource->base = base; if (flags & IORESOURCE_FIXED) resource->size = size; if (flags & IORESOURCE_BRIDGE) resource->limit = base + size - 1; resource->flags = IORESOURCE_ASSIGNED; resource->flags |= flags; printk(BIOS_SPEW, "dev: %s, index: 0x%lx, base: 0x%llx, size: 0x%llx\n", dev_path(dev), resource->index, resource->base, resource->size); return resource; } const struct resource *lower_ram_end(struct device *dev, unsigned long index, uint64_t end) { return ram_from_to(dev, index, 0, end); } const struct resource *upper_ram_end(struct device *dev, unsigned long index, uint64_t end) { if (end <= 4ull * GiB) return NULL; printk(BIOS_INFO, "Available memory above 4GB: %lluM\n", (end - 4ull * GiB) / MiB); return ram_from_to(dev, index, 4ull * GiB, end); } void mmconf_resource(struct device *dev, unsigned long index) { struct resource *resource = new_resource(dev, index); resource->base = CONFIG_ECAM_MMCONF_BASE_ADDRESS; resource->size = CONFIG_ECAM_MMCONF_LENGTH; resource->flags = IORESOURCE_MEM | IORESOURCE_RESERVE | IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED; printk(BIOS_DEBUG, "Adding PCIe enhanced config space BAR 0x%08lx-0x%08lx.\n", (unsigned long)(resource->base), (unsigned long)(resource->base + resource->size)); } void tolm_test(void *gp, struct device *dev, struct resource *new) { struct resource **best_p = gp; struct resource *best; best = *best_p; /* * If resource is not allocated any space i.e. size is zero, * then do not consider this resource in tolm calculations. */ if (new->size == 0) return; if (!best || (best->base > new->base)) best = new; *best_p = best; } u32 find_pci_tolm(struct bus *bus) { struct resource *min = NULL; u32 tolm; unsigned long mask_match = IORESOURCE_MEM | IORESOURCE_ASSIGNED; search_bus_resources(bus, mask_match, mask_match, tolm_test, &min); tolm = 0xffffffffUL; if (min && tolm > min->base) tolm = min->base; return tolm; } /* Count of enabled CPUs */ int dev_count_cpu(void) { struct device *cpu; int count = 0; for (cpu = all_devices; cpu; cpu = cpu->next) { if (!is_enabled_cpu(cpu)) continue; count++; } return count; } /* Get device path name */ const char *dev_path_name(enum device_path_type type) { static const char *const type_names[] = DEVICE_PATH_NAMES; const char *type_name = "Unknown"; /* Translate the type value into a string */ if (type < ARRAY_SIZE(type_names)) type_name = type_names[type]; return type_name; } bool dev_path_hotplug(const struct device *dev) { for (dev = dev->upstream->dev; dev != dev->upstream->dev; dev = dev->upstream->dev) { if (dev->hotplug_port) return true; } return false; } void log_resource(const char *type, const struct device *dev, const struct resource *res, const char *srcfile, const int line) { printk(BIOS_SPEW, "%s:%d res: %s, dev: %s, index: 0x%lx, base: 0x%llx, " "end: 0x%llx, size_kb: 0x%llx\n", srcfile, line, type, dev_path(dev), res->index, res->base, resource_end(res), res->size / KiB); } bool is_cpu(const struct device *cpu) { return cpu->path.type == DEVICE_PATH_APIC && cpu->upstream->dev->path.type == DEVICE_PATH_CPU_CLUSTER; } bool is_enabled_cpu(const struct device *cpu) { return is_cpu(cpu) && cpu->enabled; } bool is_pci(const struct device *pci) { return pci->path.type == DEVICE_PATH_PCI; } bool is_enabled_pci(const struct device *pci) { return is_pci(pci) && pci->enabled; } bool is_pci_dev_on_bus(const struct device *pci, unsigned int bus) { return is_pci(pci) && pci->upstream->segment_group == 0 && pci->upstream->secondary == bus; } bool is_pci_bridge(const struct device *pci) { return is_pci(pci) && ((pci->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE); }