/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include static enum cb_err azalia_set_bits(void *port, u32 mask, u32 val) { struct stopwatch sw; u32 reg32; /* Write (val & mask) to port */ val &= mask; reg32 = read32(port); reg32 &= ~mask; reg32 |= val; write32(port, reg32); /* Wait for readback of register to match what was just written to it */ stopwatch_init_msecs_expire(&sw, 50); do { /* Wait 1ms based on BKDG wait time */ mdelay(1); reg32 = read32(port); reg32 &= mask; } while ((reg32 != val) && !stopwatch_expired(&sw)); /* Timeout occurred */ if (stopwatch_expired(&sw)) return CB_ERR; return CB_SUCCESS; } enum cb_err azalia_enter_reset(u8 *base) { /* Set bit 0 to 0 to enter reset state (BAR + 0x8)[0] */ return azalia_set_bits(base + HDA_GCTL_REG, HDA_GCTL_CRST, 0); } enum cb_err azalia_exit_reset(u8 *base) { /* Set bit 0 to 1 to exit reset state (BAR + 0x8)[0] */ return azalia_set_bits(base + HDA_GCTL_REG, HDA_GCTL_CRST, HDA_GCTL_CRST); } static u16 codec_detect(u8 *base) { struct stopwatch sw; u16 reg16; if (azalia_exit_reset(base) != CB_SUCCESS) goto no_codec; /* * In the HD Audio Specification Rev. 1.0a, every bitfield in the GCAP * register is RO (Read Only). However, it is known that in some Intel * PCHs (e.g 6-series and 7-series, documents 324645 and 326776), some * of the bitfields in the GCAP register are R/WO (Read / Write Once). * GCAP is RO on 5-series PCHs; 8-series and 9-series PCHs have a lock * bit for GCAP elsewhere. * * Lock GCAP by reading GCAP and writing back the same value. This has * no effect on platforms that implement GCAP as a RO register or lock * GCAP through a different mechanism. */ write16(base + HDA_GCAP_REG, read16(base + HDA_GCAP_REG)); /* clear STATESTS bits (BAR + 0x0e)[14:0] */ reg16 = read16(base + HDA_STATESTS_REG); reg16 |= 0x7fff; write16(base + HDA_STATESTS_REG, reg16); /* Wait for readback of register to * match what was just written to it */ stopwatch_init_msecs_expire(&sw, 50); do { /* Wait 1ms based on BKDG wait time */ mdelay(1); reg16 = read16(base + HDA_STATESTS_REG); } while ((reg16 != 0) && !stopwatch_expired(&sw)); /* Timeout occurred */ if (stopwatch_expired(&sw)) goto no_codec; if (azalia_enter_reset(base) != CB_SUCCESS) goto no_codec; if (azalia_exit_reset(base) != CB_SUCCESS) goto no_codec; /* Read in Codec location (BAR + 0x0e)[14:0] */ reg16 = read16(base + HDA_STATESTS_REG); reg16 &= 0x7fff; if (!reg16) goto no_codec; return reg16; no_codec: /* Codec Not found */ azalia_enter_reset(base); printk(BIOS_DEBUG, "azalia_audio: no codec!\n"); return 0; } /* * Find a specific entry within a verb table * * @param verb_table: verb table data * @param verb_table_bytes: verb table size in bytes * @param viddid: vendor/device to search for * @param verb: pointer to entry within table * * Returns size of the entry within the verb table, * Returns 0 if the entry is not found * * The HDA verb table is composed of dwords. A set of 4 dwords is * grouped together to form a "jack" descriptor. * Bits 31:28 - Codec Address * Bits 27:20 - NID * Bits 19:8 - Verb ID * Bits 7:0 - Payload * * coreboot groups different codec verb tables into a single table * and prefixes each with a specific header consisting of 3 * dword entries: * 1 - Codec Vendor/Device ID * 2 - Subsystem ID * 3 - Number of jacks (groups of 4 dwords) for this codec */ u32 azalia_find_verb(const u32 *verb_table, u32 verb_table_bytes, u32 viddid, const u32 **verb) { int idx = 0; while (idx < (verb_table_bytes / sizeof(u32))) { /* Header contains the number of jacks, aka groups of 4 dwords */ u32 verb_size = 4 * verb_table[idx + 2]; if (verb_table[idx] != viddid) { idx += verb_size + 3; // skip verb + header continue; } *verb = &verb_table[idx + 3]; return verb_size; } /* Not all codecs need to load another verb */ return 0; } /* * Wait 50usec for the codec to indicate it is ready. * No response would imply that the codec is non-operative. */ static int wait_for_ready(u8 *base) { struct stopwatch sw; /* Use a 50 usec timeout - the Linux kernel uses the same duration */ stopwatch_init_usecs_expire(&sw, 50); while (!stopwatch_expired(&sw)) { u32 reg32 = read32(base + HDA_ICII_REG); if (!(reg32 & HDA_ICII_BUSY)) return 0; udelay(1); } return -1; } /* * Wait for the codec to indicate that it accepted the previous command. * No response would imply that the codec is non-operative. */ static int wait_for_valid(u8 *base) { struct stopwatch sw; u32 reg32; /* Send the verb to the codec */ reg32 = read32(base + HDA_ICII_REG); reg32 |= HDA_ICII_BUSY | HDA_ICII_VALID; write32(base + HDA_ICII_REG, reg32); /* * The timeout is never reached when the codec is functioning properly. * Using a small timeout value can result in spurious errors with some * codecs, e.g. a codec that is slow to respond but operates correctly. * When a codec is non-operative, the timeout is only reached once per * verb table, thus the impact on booting time is relatively small. So, * use a reasonably long enough timeout to cover all possible cases. */ stopwatch_init_msecs_expire(&sw, 1); while (!stopwatch_expired(&sw)) { reg32 = read32(base + HDA_ICII_REG); if ((reg32 & (HDA_ICII_VALID | HDA_ICII_BUSY)) == HDA_ICII_VALID) return 0; udelay(1); } return -1; } static int azalia_write_verb(u8 *base, u32 verb) { if (wait_for_ready(base) < 0) return -1; write32(base + HDA_IC_REG, verb); return wait_for_valid(base); } int azalia_program_verb_table(u8 *base, const u32 *verbs, u32 verb_size) { if (!verbs) return 0; for (u32 i = 0; i < verb_size; i++) { if (azalia_write_verb(base, verbs[i]) < 0) return -1; } return 0; } __weak void mainboard_azalia_program_runtime_verbs(u8 *base, u32 viddid) { } static bool codec_is_operative(u8 *base, const int addr) { if (wait_for_ready(base) < 0) { printk(BIOS_DEBUG, "azalia_audio: codec #%d not ready\n", addr); return false; } const u32 reg32 = (addr << 28) | 0x000f0000; write32(base + HDA_IC_REG, reg32); if (wait_for_valid(base) < 0) { printk(BIOS_DEBUG, "azalia_audio: codec #%d not valid\n", addr); return false; } return true; } void azalia_codec_init(u8 *base, int addr, const u32 *verb_table, u32 verb_table_bytes) { const u32 viddid = read32(base + HDA_IR_REG); const u32 *verb; u32 verb_size; printk(BIOS_DEBUG, "azalia_audio: initializing codec #%d...\n", addr); printk(BIOS_DEBUG, "azalia_audio: - vendor/device id: 0x%08x\n", viddid); verb_size = azalia_find_verb(verb_table, verb_table_bytes, viddid, &verb); if (verb_size == 0) { printk(BIOS_DEBUG, "azalia_audio: - no verb!\n"); return; } printk(BIOS_DEBUG, "azalia_audio: - verb size: %u\n", verb_size); if (azalia_program_verb_table(base, verb, verb_size) < 0) printk(BIOS_DEBUG, "azalia_audio: - verb not loaded\n"); else printk(BIOS_DEBUG, "azalia_audio: - verb loaded\n"); mainboard_azalia_program_runtime_verbs(base, viddid); } static bool codec_can_init(const u16 codec_mask, u8 *base, const int addr) { return codec_mask & (1 << addr) && codec_is_operative(base, addr); } void azalia_codecs_init(u8 *base, u16 codec_mask) { for (int i = AZALIA_MAX_CODECS - 1; i >= 0; i--) { if (codec_can_init(codec_mask, base, i)) azalia_codec_init(base, i, cim_verb_data, cim_verb_data_size); } azalia_program_verb_table(base, pc_beep_verbs, pc_beep_verbs_size); } void azalia_audio_init(struct device *dev) { u8 *base; struct resource *res; u16 codec_mask; res = probe_resource(dev, PCI_BASE_ADDRESS_0); if (!res) return; // NOTE this will break as soon as the azalia_audio gets a bar above 4G. // Is there anything we can do about it? base = res2mmio(res, 0, 0); printk(BIOS_DEBUG, "azalia_audio: base = %p\n", base); codec_mask = codec_detect(base); if (codec_mask) { printk(BIOS_DEBUG, "azalia_audio: codec_mask = 0x%02x\n", codec_mask); azalia_codecs_init(base, codec_mask); } } struct device_operations default_azalia_audio_ops = { .read_resources = pci_dev_read_resources, .set_resources = pci_dev_set_resources, .enable_resources = pci_dev_enable_resources, .init = azalia_audio_init, .ops_pci = &pci_dev_ops_pci, };