/* SPDX-License-Identifier: GPL-2.0-only */ #include <console/console.h> #include <string.h> #include <rmodule.h> #include <commonlib/helpers.h> #include <cpu/cpu.h> #include <cpu/intel/microcode.h> #include <cpu/x86/cache.h> #include <cpu/x86/gdt.h> #include <cpu/x86/lapic.h> #include <cpu/x86/name.h> #include <cpu/x86/msr.h> #include <cpu/x86/mtrr.h> #include <cpu/x86/smm.h> #include <cpu/x86/topology.h> #include <cpu/x86/mp.h> #include <delay.h> #include <device/device.h> #include <device/path.h> #include <smp/atomic.h> #include <smp/spinlock.h> #include <symbols.h> #include <timer.h> #include <thread.h> #include <types.h> /* Generated header */ #include <ramstage/cpu/x86/smm_start32_offset.h> #include <security/intel/stm/SmmStm.h> struct mp_callback { void (*func)(void *); void *arg; int logical_cpu_number; }; static char processor_name[49]; /* * A mp_flight_record details a sequence of calls for the APs to perform * along with the BSP to coordinate sequencing. Each flight record either * provides a barrier for each AP before calling the callback or the APs * are allowed to perform the callback without waiting. Regardless, each * record has the cpus_entered field incremented for each record. When * the BSP observes that the cpus_entered matches the number of APs * the bsp_call is called with bsp_arg and upon returning releases the * barrier allowing the APs to make further progress. * * Note that ap_call() and bsp_call() can be NULL. In the NULL case the * callback will just not be called. */ struct mp_flight_record { atomic_t barrier; atomic_t cpus_entered; void (*ap_call)(void); void (*bsp_call)(void); } __aligned(CACHELINE_SIZE); #define _MP_FLIGHT_RECORD(barrier_, ap_func_, bsp_func_) \ { \ .barrier = ATOMIC_INIT(barrier_), \ .cpus_entered = ATOMIC_INIT(0), \ .ap_call = ap_func_, \ .bsp_call = bsp_func_, \ } #define MP_FR_BLOCK_APS(ap_func_, bsp_func_) \ _MP_FLIGHT_RECORD(0, ap_func_, bsp_func_) #define MP_FR_NOBLOCK_APS(ap_func_, bsp_func_) \ _MP_FLIGHT_RECORD(1, ap_func_, bsp_func_) /* The mp_params structure provides the arguments to the mp subsystem * for bringing up APs. */ struct mp_params { int num_cpus; /* Total cpus include BSP */ int parallel_microcode_load; const void *microcode_pointer; /* Flight plan for APs and BSP. */ struct mp_flight_record *flight_plan; int num_records; }; /* This needs to match the layout in the .module_parametrs section. */ struct sipi_params { uint16_t gdtlimit; uint32_t gdt; uint16_t unused; uint32_t idt_ptr; uint32_t per_cpu_segment_descriptors; uint32_t per_cpu_segment_selector; uint32_t stack_top; uint32_t stack_size; uint32_t microcode_lock; /* 0xffffffff means parallel loading. */ uint32_t microcode_ptr; uint32_t msr_table_ptr; uint32_t msr_count; uint32_t c_handler; atomic_t ap_count; } __packed; /* This also needs to match the assembly code for saved MSR encoding. */ struct saved_msr { uint32_t index; uint32_t lo; uint32_t hi; } __packed; /* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */ extern char _binary_sipi_vector_start[]; /* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is that the * memory range is already reserved so the OS cannot use it. That region is * free to use for AP bringup before SMM is initialized. */ static const uintptr_t sipi_vector_location = SMM_DEFAULT_BASE; static const int sipi_vector_location_size = SMM_DEFAULT_SIZE; struct mp_flight_plan { int num_records; struct mp_flight_record *records; }; static int global_num_aps; static struct mp_flight_plan mp_info; static inline void barrier_wait(atomic_t *b) { while (atomic_read(b) == 0) asm ("pause"); mfence(); } static inline void release_barrier(atomic_t *b) { mfence(); atomic_set(b, 1); } static enum cb_err wait_for_aps(atomic_t *val, int target, int total_delay, int delay_step) { int delayed = 0; while (atomic_read(val) != target) { udelay(delay_step); delayed += delay_step; if (delayed >= total_delay) { /* Not all APs ready before timeout */ return CB_ERR; } } /* APs ready before timeout */ printk(BIOS_SPEW, "APs are ready after %dus\n", delayed); return CB_SUCCESS; } static void ap_do_flight_plan(void) { int i; for (i = 0; i < mp_info.num_records; i++) { struct mp_flight_record *rec = &mp_info.records[i]; atomic_inc(&rec->cpus_entered); barrier_wait(&rec->barrier); if (rec->ap_call != NULL) rec->ap_call(); } } static void park_this_cpu(void *unused) { stop_this_cpu(); } static struct bus *g_cpu_bus; /* By the time APs call ap_init() caching has been setup, and microcode has * been loaded. */ static asmlinkage void ap_init(unsigned int index) { /* Ensure the local APIC is enabled */ enable_lapic(); setup_lapic_interrupts(); struct device *dev; int i = 0; for (dev = g_cpu_bus->children; dev; dev = dev->sibling) if (i++ == index) break; if (!dev) { printk(BIOS_ERR, "Could not find allocated device for index %u\n", index); return; } set_cpu_info(index, dev); /* Fix up APIC id with reality. */ dev->path.apic.apic_id = lapicid(); dev->path.apic.initial_lapicid = initial_lapicid(); dev->enabled = 1; set_cpu_topology_from_leaf_b(dev); if (cpu_is_intel()) printk(BIOS_INFO, "AP: slot %u apic_id %x, MCU rev: 0x%08x\n", index, dev->path.apic.apic_id, get_current_microcode_rev()); else printk(BIOS_INFO, "AP: slot %u apic_id %x\n", index, dev->path.apic.apic_id); /* Walk the flight plan */ ap_do_flight_plan(); /* Park the AP. */ park_this_cpu(NULL); } static __aligned(16) uint8_t ap_stack[CONFIG_AP_STACK_SIZE * CONFIG_MAX_CPUS]; static void setup_default_sipi_vector_params(struct sipi_params *sp) { sp->gdt = (uintptr_t)&gdt; sp->gdtlimit = (uintptr_t)&gdt_end - (uintptr_t)&gdt - 1; sp->idt_ptr = (uintptr_t)&idtarg; sp->per_cpu_segment_descriptors = (uintptr_t)&per_cpu_segment_descriptors; sp->per_cpu_segment_selector = per_cpu_segment_selector; sp->stack_size = CONFIG_AP_STACK_SIZE; sp->stack_top = (uintptr_t)ap_stack + ARRAY_SIZE(ap_stack); } static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = { MTRR_FIX_64K_00000, MTRR_FIX_16K_80000, MTRR_FIX_16K_A0000, MTRR_FIX_4K_C0000, MTRR_FIX_4K_C8000, MTRR_FIX_4K_D0000, MTRR_FIX_4K_D8000, MTRR_FIX_4K_E0000, MTRR_FIX_4K_E8000, MTRR_FIX_4K_F0000, MTRR_FIX_4K_F8000, }; static inline struct saved_msr *save_msr(int index, struct saved_msr *entry) { msr_t msr; msr = rdmsr(index); entry->index = index; entry->lo = msr.lo; entry->hi = msr.hi; /* Return the next entry. */ entry++; return entry; } static int save_bsp_msrs(char *start, int size) { int msr_count; int num_var_mtrrs; struct saved_msr *msr_entry; int i; /* Determine number of MTRRs need to be saved. */ num_var_mtrrs = get_var_mtrr_count(); /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */ msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1; if ((msr_count * sizeof(struct saved_msr)) > size) { printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count); return -1; } fixed_mtrrs_expose_amd_rwdram(); msr_entry = (void *)start; for (i = 0; i < NUM_FIXED_MTRRS; i++) msr_entry = save_msr(fixed_mtrrs[i], msr_entry); for (i = 0; i < num_var_mtrrs; i++) { msr_entry = save_msr(MTRR_PHYS_BASE(i), msr_entry); msr_entry = save_msr(MTRR_PHYS_MASK(i), msr_entry); } msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry); fixed_mtrrs_hide_amd_rwdram(); /* Tell static analysis we know value is left unused. */ (void)msr_entry; return msr_count; } static atomic_t *load_sipi_vector(struct mp_params *mp_params) { struct rmodule sipi_mod; int module_size; int num_msrs; struct sipi_params *sp; char *mod_loc = (void *)sipi_vector_location; const int loc_size = sipi_vector_location_size; atomic_t *ap_count = NULL; if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) { printk(BIOS_CRIT, "Unable to parse sipi module.\n"); return ap_count; } if (rmodule_entry_offset(&sipi_mod) != 0) { printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n"); return ap_count; } if (rmodule_load_alignment(&sipi_mod) != 4096) { printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n", rmodule_load_alignment(&sipi_mod)); return ap_count; } module_size = rmodule_memory_size(&sipi_mod); /* Align to 4 bytes. */ module_size = ALIGN_UP(module_size, 4); if (module_size > loc_size) { printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n", module_size, loc_size); return ap_count; } num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size); if (num_msrs < 0) { printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n"); return ap_count; } if (rmodule_load(mod_loc, &sipi_mod)) { printk(BIOS_CRIT, "Unable to load SIPI module.\n"); return ap_count; } sp = rmodule_parameters(&sipi_mod); if (sp == NULL) { printk(BIOS_CRIT, "SIPI module has no parameters.\n"); return ap_count; } setup_default_sipi_vector_params(sp); /* Setup MSR table. */ sp->msr_table_ptr = (uintptr_t)&mod_loc[module_size]; sp->msr_count = num_msrs; /* Provide pointer to microcode patch. */ sp->microcode_ptr = (uintptr_t)mp_params->microcode_pointer; /* Pass on ability to load microcode in parallel. */ if (mp_params->parallel_microcode_load) sp->microcode_lock = ~0; else sp->microcode_lock = 0; sp->c_handler = (uintptr_t)&ap_init; ap_count = &sp->ap_count; atomic_set(ap_count, 0); /* Make sure SIPI data hits RAM so the APs that come up will see the startup code even if the caches are disabled. */ if (clflush_supported()) clflush_region((uintptr_t)mod_loc, module_size); else wbinvd(); return ap_count; } static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p) { int i; int max_cpus; struct cpu_info *info; max_cpus = p->num_cpus; if (max_cpus > CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n", max_cpus, CONFIG_MAX_CPUS); max_cpus = CONFIG_MAX_CPUS; } info = cpu_info(); for (i = 1; i < max_cpus; i++) { /* Assuming linear APIC space allocation. AP will set its own APIC id in the ap_init() path above. */ struct device *new = add_cpu_device(cpu_bus, info->cpu->path.apic.apic_id + i, 1); if (new == NULL) { printk(BIOS_CRIT, "Could not allocate CPU device\n"); max_cpus--; continue; } new->name = processor_name; new->enabled = 0; /* Runtime will enable it */ } return max_cpus; } static enum cb_err apic_wait_timeout(int total_delay, int delay_step) { int total = 0; while (lapic_busy()) { udelay(delay_step); total += delay_step; if (total >= total_delay) { /* LAPIC not ready before the timeout */ return CB_ERR; } } /* LAPIC ready before the timeout */ return CB_SUCCESS; } /* Send Startup IPI to APs */ static enum cb_err send_sipi_to_aps(int ap_count, atomic_t *num_aps, int sipi_vector) { if (lapic_busy()) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy...\n"); if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) { printk(BIOS_ERR, "timed out. Aborting.\n"); return CB_ERR; } printk(BIOS_DEBUG, "done.\n"); } lapic_send_ipi_others(LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector); printk(BIOS_DEBUG, "Waiting for SIPI to complete...\n"); if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */) != CB_SUCCESS) { printk(BIOS_ERR, "timed out.\n"); return CB_ERR; } printk(BIOS_DEBUG, "done.\n"); return CB_SUCCESS; } static enum cb_err start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps) { int sipi_vector, total_delay; /* Max location is 4KiB below 1MiB */ const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12; if (ap_count == 0) return CB_SUCCESS; /* The vector is sent as a 4k aligned address in one byte. */ sipi_vector = sipi_vector_location >> 12; if (sipi_vector > max_vector_loc) { printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n", sipi_vector); return CB_ERR; } printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count); if (lapic_busy()) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy...\n"); if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) { printk(BIOS_ERR, "timed out. Aborting.\n"); return CB_ERR; } printk(BIOS_DEBUG, "done.\n"); } /* Send INIT IPI to all but self. */ lapic_send_ipi_others(LAPIC_INT_ASSERT | LAPIC_DM_INIT); if (!CONFIG(X86_INIT_NEED_1_SIPI)) { printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n"); mdelay(10); /* Send 1st Startup IPI (SIPI) */ if (send_sipi_to_aps(ap_count, num_aps, sipi_vector) != CB_SUCCESS) return CB_ERR; /* Wait for CPUs to check in. */ wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */); } /* Send final SIPI */ if (send_sipi_to_aps(ap_count, num_aps, sipi_vector) != CB_SUCCESS) return CB_ERR; /* Wait for CPUs to check in. */ total_delay = 50000 * ap_count; /* 50 ms per AP */ if (wait_for_aps(num_aps, ap_count, total_delay, 50 /* us */) != CB_SUCCESS) { printk(BIOS_ERR, "Not all APs checked in: %d/%d.\n", atomic_read(num_aps), ap_count); return CB_ERR; } return CB_SUCCESS; } static enum cb_err bsp_do_flight_plan(struct mp_params *mp_params) { int i; enum cb_err ret = CB_SUCCESS; /* * Set time out for flight plan to a huge minimum value (>=1 second). * CPUs with many APs may take longer if there is contention for * resources such as UART, so scale the time out up by increments of * 100ms if needed. */ const int timeout_us = MAX(1000000, 100000 * mp_params->num_cpus); const int step_us = 100; int num_aps = mp_params->num_cpus - 1; struct stopwatch sw; stopwatch_init(&sw); for (i = 0; i < mp_params->num_records; i++) { struct mp_flight_record *rec = &mp_params->flight_plan[i]; /* Wait for APs if the record is not released. */ if (atomic_read(&rec->barrier) == 0) { /* Wait for the APs to check in. */ if (wait_for_aps(&rec->cpus_entered, num_aps, timeout_us, step_us) != CB_SUCCESS) { printk(BIOS_ERR, "MP record %d timeout.\n", i); ret = CB_ERR; } } if (rec->bsp_call != NULL) rec->bsp_call(); release_barrier(&rec->barrier); } printk(BIOS_INFO, "%s done after %lld msecs.\n", __func__, stopwatch_duration_msecs(&sw)); return ret; } static enum cb_err init_bsp(struct bus *cpu_bus) { struct cpu_info *info; /* Print processor name */ fill_processor_name(processor_name); printk(BIOS_INFO, "CPU: %s.\n", processor_name); /* Ensure the local APIC is enabled */ enable_lapic(); setup_lapic_interrupts(); struct device *bsp = add_cpu_device(cpu_bus, lapicid(), 1); if (bsp == NULL) { printk(BIOS_CRIT, "Failed to find or allocate BSP struct device\n"); return CB_ERR; } bsp->path.apic.initial_lapicid = initial_lapicid(); set_cpu_topology_from_leaf_b(bsp); /* Find the device structure for the boot CPU. */ set_cpu_info(0, bsp); info = cpu_info(); info->cpu = bsp; info->cpu->name = processor_name; if (info->index != 0) { printk(BIOS_CRIT, "BSP index(%zd) != 0!\n", info->index); return CB_ERR; } return CB_SUCCESS; } /* * mp_init() will set up the SIPI vector and bring up the APs according to * mp_params. Each flight record will be executed according to the plan. Note * that the MP infrastructure uses SMM default area without saving it. It's * up to the chipset or mainboard to either e820 reserve this area or save this * region prior to calling mp_init() and restoring it after mp_init returns. * * At the time mp_init() is called the MTRR MSRs are mirrored into APs then * caching is enabled before running the flight plan. * * The MP initialization has the following properties: * 1. APs are brought up in parallel. * 2. The ordering of coreboot CPU number and APIC ids is not deterministic. * Therefore, one cannot rely on this property or the order of devices in * the device tree unless the chipset or mainboard know the APIC ids * a priori. */ static enum cb_err mp_init(struct bus *cpu_bus, struct mp_params *p) { int num_cpus; atomic_t *ap_count; g_cpu_bus = cpu_bus; if (init_bsp(cpu_bus) != CB_SUCCESS) { printk(BIOS_CRIT, "Setting up BSP failed\n"); return CB_ERR; } if (p == NULL || p->flight_plan == NULL || p->num_records < 1) { printk(BIOS_CRIT, "Invalid MP parameters\n"); return CB_ERR; } /* We just need to run things on the BSP */ if (!CONFIG(SMP)) return bsp_do_flight_plan(p); /* Default to currently running CPU. */ num_cpus = allocate_cpu_devices(cpu_bus, p); if (num_cpus < p->num_cpus) { printk(BIOS_CRIT, "ERROR: More cpus requested (%d) than supported (%d).\n", p->num_cpus, num_cpus); return CB_ERR; } /* Copy needed parameters so that APs have a reference to the plan. */ mp_info.num_records = p->num_records; mp_info.records = p->flight_plan; /* Load the SIPI vector. */ ap_count = load_sipi_vector(p); if (ap_count == NULL) return CB_ERR; /* Start the APs providing number of APs and the cpus_entered field. */ global_num_aps = p->num_cpus - 1; if (start_aps(cpu_bus, global_num_aps, ap_count) != CB_SUCCESS) { mdelay(1000); printk(BIOS_DEBUG, "%d/%d eventually checked in?\n", atomic_read(ap_count), global_num_aps); return CB_ERR; } /* Walk the flight plan for the BSP. */ return bsp_do_flight_plan(p); } void smm_initiate_relocation_parallel(void) { if (lapic_busy()) { printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) { printk(BIOS_DEBUG, "timed out. Aborting.\n"); return; } printk(BIOS_DEBUG, "done.\n"); } lapic_send_ipi_self(LAPIC_INT_ASSERT | LAPIC_DM_SMI); if (lapic_busy()) { if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */) != CB_SUCCESS) { printk(BIOS_DEBUG, "SMI Relocation timed out.\n"); return; } } printk(BIOS_DEBUG, "Relocation complete.\n"); } DECLARE_SPIN_LOCK(smm_relocation_lock); /* Send SMI to self with single user serialization. */ void smm_initiate_relocation(void) { spin_lock(&smm_relocation_lock); smm_initiate_relocation_parallel(); spin_unlock(&smm_relocation_lock); } struct mp_state { struct mp_ops ops; int cpu_count; uintptr_t perm_smbase; size_t perm_smsize; size_t smm_save_state_size; bool do_smm; } mp_state; static bool is_smm_enabled(void) { return CONFIG(HAVE_SMI_HANDLER) && mp_state.do_smm; } static void smm_disable(void) { mp_state.do_smm = false; } static void smm_enable(void) { if (CONFIG(HAVE_SMI_HANDLER)) mp_state.do_smm = true; } /* * This code is built as part of ramstage, but it actually runs in SMM. This * means that ENV_SMM is 0, but we are actually executing in the environment * setup by the smm_stub. */ static asmlinkage void smm_do_relocation(void *arg) { const struct smm_module_params *p; int cpu; const uintptr_t curr_smbase = SMM_DEFAULT_BASE; uintptr_t perm_smbase; p = arg; cpu = p->cpu; if (cpu >= CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "Invalid CPU number assigned in SMM stub: %d\n", cpu); return; } /* * The permanent handler runs with all cpus concurrently. Precalculate * the location of the new SMBASE. If using SMM modules then this * calculation needs to match that of the module loader. */ perm_smbase = smm_get_cpu_smbase(cpu); if (!perm_smbase) { printk(BIOS_ERR, "%s: bad SMBASE for CPU %d\n", __func__, cpu); return; } /* Setup code checks this callback for validity. */ printk(BIOS_INFO, "%s : curr_smbase 0x%x perm_smbase 0x%x, cpu = %d\n", __func__, (int)curr_smbase, (int)perm_smbase, cpu); mp_state.ops.relocation_handler(cpu, curr_smbase, perm_smbase); if (CONFIG(STM)) { uintptr_t mseg; mseg = mp_state.perm_smbase + (mp_state.perm_smsize - CONFIG_MSEG_SIZE); stm_setup(mseg, p->cpu, perm_smbase, mp_state.perm_smbase, SMM_START32_OFFSET); } } static enum cb_err install_relocation_handler(int num_cpus, size_t save_state_size) { if (CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER)) return CB_SUCCESS; struct smm_loader_params smm_params = { .num_cpus = num_cpus, .cpu_save_state_size = save_state_size, .num_concurrent_save_states = 1, .handler = smm_do_relocation, }; if (smm_setup_relocation_handler(&smm_params)) { printk(BIOS_ERR, "%s: smm setup failed\n", __func__); return CB_ERR; } return CB_SUCCESS; } static enum cb_err install_permanent_handler(int num_cpus, uintptr_t smbase, size_t smsize, size_t save_state_size) { /* * All the CPUs will relocate to permanent handler now. Set parameters * needed for all CPUs. The placement of each CPUs entry point is * determined by the loader. This code simply provides the beginning of * SMRAM region, the number of CPUs who will use the handler, the stack * size and save state size for each CPU. */ struct smm_loader_params smm_params = { .num_cpus = num_cpus, .cpu_save_state_size = save_state_size, .num_concurrent_save_states = num_cpus, }; printk(BIOS_DEBUG, "Installing permanent SMM handler to 0x%08lx\n", smbase); if (smm_load_module(smbase, smsize, &smm_params)) return CB_ERR; return CB_SUCCESS; } /* Load SMM handlers as part of MP flight record. */ static void load_smm_handlers(void) { const size_t save_state_size = mp_state.smm_save_state_size; /* Do nothing if SMM is disabled.*/ if (!is_smm_enabled()) return; if (smm_setup_stack(mp_state.perm_smbase, mp_state.perm_smsize, mp_state.cpu_count, CONFIG_SMM_MODULE_STACK_SIZE)) { printk(BIOS_ERR, "Unable to install SMM relocation handler.\n"); smm_disable(); } /* Install handlers. */ if (install_relocation_handler(mp_state.cpu_count, save_state_size) != CB_SUCCESS) { printk(BIOS_ERR, "Unable to install SMM relocation handler.\n"); smm_disable(); } if (install_permanent_handler(mp_state.cpu_count, mp_state.perm_smbase, mp_state.perm_smsize, save_state_size) != CB_SUCCESS) { printk(BIOS_ERR, "Unable to install SMM permanent handler.\n"); smm_disable(); } /* Ensure the SMM handlers hit DRAM before performing first SMI. */ wbinvd(); /* * Indicate that the SMM handlers have been loaded and MP * initialization is about to start. */ if (is_smm_enabled() && mp_state.ops.pre_mp_smm_init != NULL) mp_state.ops.pre_mp_smm_init(); } /* Trigger SMM as part of MP flight record. */ static void trigger_smm_relocation(void) { /* Do nothing if SMM is disabled.*/ if (!is_smm_enabled() || mp_state.ops.per_cpu_smm_trigger == NULL) return; /* Trigger SMM mode for the currently running processor. */ mp_state.ops.per_cpu_smm_trigger(); } static struct mp_callback *ap_callbacks[CONFIG_MAX_CPUS]; enum AP_STATUS { /* AP takes the task but not yet finishes */ AP_BUSY = 1, /* AP finishes the task or no task to run yet */ AP_NOT_BUSY }; static atomic_t ap_status[CONFIG_MAX_CPUS]; static struct mp_callback *read_callback(struct mp_callback **slot) { struct mp_callback *ret; asm volatile ("mov %1, %0\n" : "=r" (ret) : "m" (*slot) : "memory" ); return ret; } static void store_callback(struct mp_callback **slot, struct mp_callback *val) { asm volatile ("mov %1, %0\n" : "=m" (*slot) : "r" (val) : "memory" ); } static enum cb_err run_ap_work(struct mp_callback *val, long expire_us, bool wait_ap_finish) { int i; int cpus_accepted, cpus_finish; struct stopwatch sw; int cur_cpu; if (!CONFIG(PARALLEL_MP_AP_WORK)) { printk(BIOS_ERR, "APs already parked. PARALLEL_MP_AP_WORK not selected.\n"); return CB_ERR; } cur_cpu = cpu_index(); if (cur_cpu < 0) { printk(BIOS_ERR, "Invalid CPU index.\n"); return CB_ERR; } /* Signal to all the APs to run the func. */ for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) { if (cur_cpu == i) continue; store_callback(&ap_callbacks[i], val); } mfence(); /* Wait for all the APs to signal back that call has been accepted. */ if (expire_us > 0) stopwatch_init_usecs_expire(&sw, expire_us); do { cpus_accepted = 0; cpus_finish = 0; for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) { if (cur_cpu == i) continue; if (read_callback(&ap_callbacks[i]) == NULL) { cpus_accepted++; /* Only increase cpus_finish if AP took the task and not busy */ if (atomic_read(&ap_status[i]) == AP_NOT_BUSY) cpus_finish++; } } /* * if wait_ap_finish is true, need to make sure all CPUs finish task and return * else just need to make sure all CPUs take task */ if (cpus_accepted == global_num_aps) if (!wait_ap_finish || (cpus_finish == global_num_aps)) return CB_SUCCESS; } while (expire_us <= 0 || !stopwatch_expired(&sw)); printk(BIOS_CRIT, "CRITICAL ERROR: AP call expired. %d/%d CPUs accepted.\n", cpus_accepted, global_num_aps); return CB_ERR; } static void ap_wait_for_instruction(void) { struct mp_callback lcb; struct mp_callback **per_cpu_slot; int cur_cpu; if (!CONFIG(PARALLEL_MP_AP_WORK)) return; cur_cpu = cpu_index(); if (cur_cpu < 0) { printk(BIOS_ERR, "Invalid CPU index.\n"); return; } per_cpu_slot = &ap_callbacks[cur_cpu]; /* Init ap_status[cur_cpu] to AP_NOT_BUSY and ready to take job */ atomic_set(&ap_status[cur_cpu], AP_NOT_BUSY); while (1) { struct mp_callback *cb = read_callback(per_cpu_slot); if (cb == NULL) { asm ("pause"); continue; } /* * Set ap_status to AP_BUSY before store_callback(per_cpu_slot, NULL). * it's to let BSP know APs take tasks and busy to avoid race condition. */ atomic_set(&ap_status[cur_cpu], AP_BUSY); /* Copy to local variable before signaling consumption. */ memcpy(&lcb, cb, sizeof(lcb)); mfence(); store_callback(per_cpu_slot, NULL); if (lcb.logical_cpu_number == MP_RUN_ON_ALL_CPUS || (cur_cpu == lcb.logical_cpu_number)) lcb.func(lcb.arg); atomic_set(&ap_status[cur_cpu], AP_NOT_BUSY); } } enum cb_err mp_run_on_aps(void (*func)(void *), void *arg, int logical_cpu_num, long expire_us) { struct mp_callback lcb = { .func = func, .arg = arg, .logical_cpu_number = logical_cpu_num}; return run_ap_work(&lcb, expire_us, false); } static enum cb_err mp_run_on_aps_and_wait_for_complete(void (*func)(void *), void *arg, int logical_cpu_num, long expire_us) { struct mp_callback lcb = { .func = func, .arg = arg, .logical_cpu_number = logical_cpu_num}; return run_ap_work(&lcb, expire_us, true); } enum cb_err mp_run_on_all_aps(void (*func)(void *), void *arg, long expire_us, bool run_parallel) { int ap_index, bsp_index; if (run_parallel) return mp_run_on_aps(func, arg, MP_RUN_ON_ALL_CPUS, expire_us); bsp_index = cpu_index(); const int total_threads = global_num_aps + 1; /* +1 for BSP */ for (ap_index = 0; ap_index < total_threads; ap_index++) { /* skip if BSP */ if (ap_index == bsp_index) continue; if (mp_run_on_aps(func, arg, ap_index, expire_us) != CB_SUCCESS) return CB_ERR; } return CB_SUCCESS; } enum cb_err mp_run_on_all_cpus(void (*func)(void *), void *arg) { /* Run on BSP first. */ func(arg); /* For up to 1 second for AP to finish previous work. */ return mp_run_on_aps(func, arg, MP_RUN_ON_ALL_CPUS, 1000 * USECS_PER_MSEC); } enum cb_err mp_run_on_all_cpus_synchronously(void (*func)(void *), void *arg) { /* Run on BSP first. */ func(arg); /* For up to 1 second per AP (console can be slow) to finish previous work. */ return mp_run_on_aps_and_wait_for_complete(func, arg, MP_RUN_ON_ALL_CPUS, 1000 * USECS_PER_MSEC * global_num_aps); } enum cb_err mp_park_aps(void) { struct stopwatch sw; enum cb_err ret; long duration_msecs; stopwatch_init(&sw); ret = mp_run_on_aps(park_this_cpu, NULL, MP_RUN_ON_ALL_CPUS, 1000 * USECS_PER_MSEC); duration_msecs = stopwatch_duration_msecs(&sw); if (ret == CB_SUCCESS) printk(BIOS_DEBUG, "%s done after %ld msecs.\n", __func__, duration_msecs); else printk(BIOS_ERR, "%s failed after %ld msecs.\n", __func__, duration_msecs); return ret; } static struct mp_flight_record mp_steps[] = { /* Once the APs are up load the SMM handlers. */ MP_FR_BLOCK_APS(NULL, load_smm_handlers), /* Perform SMM relocation. */ MP_FR_NOBLOCK_APS(trigger_smm_relocation, trigger_smm_relocation), /* Initialize each CPU through the driver framework. */ MP_FR_BLOCK_APS(cpu_initialize, cpu_initialize), /* Wait for APs to finish then optionally start looking for work. */ MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL), }; static void fill_mp_state_smm(struct mp_state *state, const struct mp_ops *ops) { if (ops->get_smm_info != NULL) ops->get_smm_info(&state->perm_smbase, &state->perm_smsize, &state->smm_save_state_size); /* * Make sure there is enough room for the SMM descriptor */ state->smm_save_state_size += STM_PSD_SIZE; /* * Default to smm_initiate_relocation() if trigger callback isn't * provided. */ if (ops->per_cpu_smm_trigger == NULL) mp_state.ops.per_cpu_smm_trigger = smm_initiate_relocation; } static void fill_mp_state(struct mp_state *state, const struct mp_ops *ops) { /* * Make copy of the ops so that defaults can be set in the non-const * structure if needed. */ memcpy(&state->ops, ops, sizeof(*ops)); if (ops->get_cpu_count != NULL) state->cpu_count = ops->get_cpu_count(); if (CONFIG(HAVE_SMI_HANDLER)) fill_mp_state_smm(state, ops); } static enum cb_err do_mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops) { enum cb_err ret; void *default_smm_area; struct mp_params mp_params; if (mp_ops->pre_mp_init != NULL) mp_ops->pre_mp_init(); fill_mp_state(&mp_state, mp_ops); memset(&mp_params, 0, sizeof(mp_params)); if (mp_state.cpu_count <= 0) { printk(BIOS_ERR, "Invalid cpu_count: %d\n", mp_state.cpu_count); return CB_ERR; } /* Sanity check SMM state. */ smm_enable(); if (mp_state.perm_smsize == 0) smm_disable(); if (mp_state.smm_save_state_size == 0) smm_disable(); if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER) && mp_state.ops.relocation_handler == NULL) smm_disable(); if (is_smm_enabled()) printk(BIOS_INFO, "Will perform SMM setup.\n"); mp_params.num_cpus = mp_state.cpu_count; /* Gather microcode information. */ if (mp_state.ops.get_microcode_info != NULL) mp_state.ops.get_microcode_info(&mp_params.microcode_pointer, &mp_params.parallel_microcode_load); mp_params.flight_plan = &mp_steps[0]; mp_params.num_records = ARRAY_SIZE(mp_steps); /* Perform backup of default SMM area when using SMM relocation handler. */ if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER)) default_smm_area = backup_default_smm_area(); ret = mp_init(cpu_bus, &mp_params); if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER)) restore_default_smm_area(default_smm_area); /* Signal callback on success if it's provided. */ if (ret == CB_SUCCESS && mp_state.ops.post_mp_init != NULL) mp_state.ops.post_mp_init(); return ret; } enum cb_err mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops) { enum cb_err ret = do_mp_init_with_smm(cpu_bus, mp_ops); if (ret != CB_SUCCESS) printk(BIOS_ERR, "MP initialization failure.\n"); return ret; }