/* * This file is part of the coreboot project. * * Copyright (C) 2010 Samsung Electronics * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include "clk.h" #include "cpu.h" #include "periph.h" /* input clock of PLL: SMDK5420 has 24MHz input clock */ #define CONFIG_SYS_CLK_FREQ 24000000 /* src_bit div_bit prediv_bit */ static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = { {0, 0, -1}, {4, 4, -1}, {8, 8, -1}, {12, 12, -1}, {0, 0, 8}, {4, 16, 24}, {8, 0, 8}, {12, 16, 24}, {-1, -1, -1}, {16, 0, 8}, /* PERIPH_ID_SROMC */ {20, 16, 24}, {24, 0, 8}, {0, 0, 4}, {4, 12, 16}, {-1, -1, -1}, {-1, -1, -1}, [PERIPH_ID_DPHPD] {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, }; /* Epll Clock division values to achive different frequency output */ static struct st_epll_con_val epll_div[] = { { 192000000, 0, 48, 3, 1, 0 }, { 180000000, 0, 45, 3, 1, 0 }, { 73728000, 1, 73, 3, 3, 47710 }, { 67737600, 1, 90, 4, 3, 20762 }, { 49152000, 0, 49, 3, 3, 9961 }, { 45158400, 0, 45, 3, 3, 10381 }, { 180633600, 0, 45, 3, 1, 10381 } }; static inline unsigned long div_round_up(unsigned int n, unsigned int d) { return (n + d - 1) / d; } /* exynos5: return pll clock frequency */ unsigned long get_pll_clk(int pllreg) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned long r, m, p, s, k = 0, mask, fout; unsigned int freq; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; case BPLL: r = readl(&clk->bpll_con0); break; case RPLL: r = readl(&clk->rpll_con0); k = readl(&clk->rpll_con1); break; case SPLL: r = readl(&clk->spll_con0); break; default: printk(BIOS_DEBUG, "Unsupported PLL (%d)\n", pllreg); return 0; } /* * APLL_CON: MIDV [25:16] * MPLL_CON: MIDV [25:16] * EPLL_CON: MIDV [24:16] * VPLL_CON: MIDV [24:16] */ if (pllreg == APLL || pllreg == BPLL || pllreg == MPLL || pllreg == SPLL) mask = 0x3ff; else mask = 0x1ff; m = (r >> 16) & mask; /* PDIV [13:8] */ p = (r >> 8) & 0x3f; /* SDIV [2:0] */ s = r & 0x7; freq = CONFIG_SYS_CLK_FREQ; if (pllreg == EPLL || pllreg == RPLL) { k = k & 0xffff; /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */ fout = (m + k / 65536) * (freq / (p * (1 << s))); } else if (pllreg == VPLL) { k = k & 0xfff; /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */ fout = (m + k / 1024) * (freq / (p * (1 << s))); } else { /* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */ fout = m * (freq / (p * (1 << s))); } return fout; } unsigned long clock_get_periph_rate(enum periph_id peripheral) { struct clk_bit_info *bit_info = &clk_bit_info[peripheral]; unsigned long sclk, sub_clk; unsigned int src, div, sub_div; struct exynos5420_clock *clk = samsung_get_base_clock(); switch (peripheral) { case PERIPH_ID_UART0: case PERIPH_ID_UART1: case PERIPH_ID_UART2: case PERIPH_ID_UART3: src = readl(&clk->clk_src_peric0); div = readl(&clk->clk_div_peric0); break; case PERIPH_ID_PWM0: case PERIPH_ID_PWM1: case PERIPH_ID_PWM2: case PERIPH_ID_PWM3: case PERIPH_ID_PWM4: src = readl(&clk->clk_src_peric0); div = readl(&clk->clk_div_peric3); break; case PERIPH_ID_SPI0: case PERIPH_ID_SPI1: src = readl(&clk->clk_src_peric1); div = readl(&clk->clk_div_peric1); break; case PERIPH_ID_SPI2: src = readl(&clk->clk_src_peric1); div = readl(&clk->clk_div_peric2); break; case PERIPH_ID_SPI3: case PERIPH_ID_SPI4: src = readl(&clk->clk_src_isp); div = readl(&clk->clk_div_isp1); break; case PERIPH_ID_I2C0: case PERIPH_ID_I2C1: case PERIPH_ID_I2C2: case PERIPH_ID_I2C3: case PERIPH_ID_I2C4: case PERIPH_ID_I2C5: case PERIPH_ID_I2C6: case PERIPH_ID_I2C7: case PERIPH_ID_I2C8: case PERIPH_ID_I2C9: case PERIPH_ID_I2C10: sclk = get_pll_clk(MPLL); div = ((readl(&clk->clk_div_top1) >> 8) & 0x3f) + 1; return sclk / div; default: printk(BIOS_DEBUG, "%s: invalid peripheral %d", __func__, peripheral); return -1; }; src = (src >> bit_info->src_bit) & 0xf; switch (src) { case EXYNOS_SRC_MPLL: sclk = get_pll_clk(MPLL); break; case EXYNOS_SRC_EPLL: sclk = get_pll_clk(EPLL); break; default: return 0; } /* Ratio clock division for this peripheral */ sub_div = (div >> bit_info->div_bit) & 0xf; sub_clk = sclk / (sub_div + 1); /* Pre-ratio clock division for SDMMC0 and 2 */ if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) { div = (div >> bit_info->prediv_bit) & 0xff; return sub_clk / (div + 1); } return sub_clk; } /* exynos5: return ARM clock frequency */ unsigned long get_arm_clk(void) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int arm_ratio; unsigned int arm2_ratio; div = readl(&clk->clk_div_cpu0); /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */ arm_ratio = (div >> 0) & 0x7; arm2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (arm_ratio + 1); armclk /= (arm2_ratio + 1); return armclk; } /* exynos5: get the mmc clock */ static unsigned long get_mmc_clk(int dev_index) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel, ratio; int shift = 0; sel = readl(&clk->clk_src_fsys); sel = (sel >> ((dev_index * 4) + 8)) & 0x7; if (sel == 0x3) sclk = get_pll_clk(MPLL); else if (sel == 0x6) sclk = get_pll_clk(EPLL); else return 0; ratio = readl(&clk->clk_div_fsys1); shift = dev_index * 10; ratio = (ratio >> shift) & 0x3ff; uclk = (sclk / (ratio + 1)); printk(BIOS_DEBUG, "%s(%d): %lu\n", __func__, dev_index, uclk); return uclk; } /* exynos5: set the mmc clock */ void set_mmc_clk(int dev_index, unsigned int div) { struct exynos5420_clock *clk = samsung_get_base_clock(); void *addr; unsigned int val, shift; addr = &clk->clk_div_fsys1; shift = dev_index * 10; val = readl(addr); val &= ~(0x3ff << shift); val |= (div & 0x3ff) << shift; writel(val, addr); } /* Set DW MMC Controller clock */ int clock_set_dwmci(enum periph_id peripheral) { /* Request MMC clock value to 52MHz. */ const unsigned long freq = 52000000; unsigned long sclk, div; int device_index = (int)peripheral - (int)PERIPH_ID_SDMMC0; ASSERT(device_index >= 0 && device_index < 4); sclk = get_mmc_clk(device_index); if (!sclk) { return -1; } div = div_round_up(sclk, freq); set_mmc_clk(device_index, div); return 0; } void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned shift; unsigned mask = 0xff; u32 *reg; /* * For now we only handle a very small subset of peipherals here. * Others will need to (and do) mangle the clock registers * themselves, At some point it is hoped that this function can work * from a table or calculated register offset / mask. For now this * is at least better than spreading clock control code around * U-Boot. */ switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->clk_div_peric4; shift = 8; break; case PERIPH_ID_SPI1: reg = &clk->clk_div_peric4; shift = 16; break; case PERIPH_ID_SPI2: reg = &clk->clk_div_peric4; shift = 24; break; case PERIPH_ID_SPI3: reg = &clk->clk_div_isp1; shift = 0; break; case PERIPH_ID_SPI4: reg = &clk->clk_div_isp1; shift = 8; break; default: printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__, periph_id); return; } clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift); } void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned shift; unsigned mask = 0xff; u32 *reg; switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->clk_div_peric1; shift = 20; break; case PERIPH_ID_SPI1: reg = &clk->clk_div_peric1; shift = 24; break; case PERIPH_ID_SPI2: reg = &clk->clk_div_peric1; shift = 28; break; case PERIPH_ID_SPI3: reg = &clk->clk_div_isp1; shift = 16; break; case PERIPH_ID_SPI4: reg = &clk->clk_div_isp1; shift = 20; break; default: printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__, periph_id); return; } clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift); } /** * Linearly searches for the most accurate main and fine stage clock scalars * (divisors) for a specified target frequency and scalar bit sizes by checking * all multiples of main_scalar_bits values. Will always return scalars up to or * slower than target. * * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32 * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32 * @param input_freq Clock frequency to be scaled in Hz * @param target_freq Desired clock frequency in Hz * @param best_fine_scalar Pointer to store the fine stage divisor * * @return best_main_scalar Main scalar for desired frequency or -1 if none * found */ static int clock_calc_best_scalar(unsigned int main_scaler_bits, unsigned int fine_scalar_bits, unsigned int input_rate, unsigned int target_rate, unsigned int *best_fine_scalar) { int i; int best_main_scalar = -1; unsigned int best_error = target_rate; const unsigned int cap = (1 << fine_scalar_bits) - 1; const unsigned int loops = 1 << main_scaler_bits; printk(BIOS_DEBUG, "Input Rate is %u, Target is %u, Cap is %u\n", input_rate, target_rate, cap); ASSERT(best_fine_scalar != NULL); ASSERT(main_scaler_bits <= fine_scalar_bits); *best_fine_scalar = 1; if (input_rate == 0 || target_rate == 0) return -1; if (target_rate >= input_rate) return 1; for (i = 1; i <= loops; i++) { const unsigned int effective_div = MAX(MIN(input_rate / i / target_rate, cap), 1); const unsigned int effective_rate = input_rate / i / effective_div; const int error = target_rate - effective_rate; printk(BIOS_DEBUG, "%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div, effective_rate, error); if (error >= 0 && error <= best_error) { best_error = error; best_main_scalar = i; *best_fine_scalar = effective_div; } } return best_main_scalar; } int clock_set_rate(enum periph_id periph_id, unsigned int rate) { int main; unsigned int fine; switch (periph_id) { case PERIPH_ID_SPI0: case PERIPH_ID_SPI1: case PERIPH_ID_SPI2: case PERIPH_ID_SPI3: case PERIPH_ID_SPI4: main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine); if (main < 0) { printk(BIOS_DEBUG, "%s: Cannot set clock rate for periph %d", __func__, periph_id); return -1; } clock_ll_set_ratio(periph_id, main - 1); clock_ll_set_pre_ratio(periph_id, fine - 1); break; default: printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__, periph_id); return -1; } return 0; } int clock_set_mshci(enum periph_id peripheral) { struct exynos5420_clock *clk = samsung_get_base_clock(); u32 *addr; unsigned int clock; unsigned int tmp; unsigned int i; /* get mpll clock */ clock = get_pll_clk(MPLL) / 1000000; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC0_RATIO [3:0] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC2_RATIO [3:0] */ switch (peripheral) { case PERIPH_ID_SDMMC0: addr = &clk->clk_div_fsys1; break; case PERIPH_ID_SDMMC2: addr = &clk->clk_div_fsys2; break; default: printk(BIOS_DEBUG, "invalid peripheral\n"); return -1; } tmp = readl(addr) & ~0xff0f; for (i = 0; i <= 0xf; i++) { if ((clock / (i + 1)) <= 400) { writel(tmp | i << 0, addr); break; } } return 0; } int clock_epll_set_rate(unsigned long rate) { unsigned int epll_con, epll_con_k; unsigned int i; unsigned int lockcnt; struct mono_time current, end; struct exynos5420_clock *clk = samsung_get_base_clock(); epll_con = readl(&clk->epll_con0); epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK << EPLL_CON0_LOCK_DET_EN_SHIFT) | EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT | EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT | EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT); for (i = 0; i < ARRAY_SIZE(epll_div); i++) { if (epll_div[i].freq_out == rate) break; } if (i == ARRAY_SIZE(epll_div)) return -1; epll_con_k = epll_div[i].k_dsm << 0; epll_con |= epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT; epll_con |= epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT; epll_con |= epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT; epll_con |= epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT; /* * Required period ( in cycles) to genarate a stable clock output. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs * frequency input (as per spec) */ lockcnt = 3000 * epll_div[i].p_div; writel(lockcnt, &clk->epll_lock); writel(epll_con, &clk->epll_con0); writel(epll_con_k, &clk->epll_con1); timer_monotonic_get(¤t); end = current; mono_time_add_msecs(&end, TIMEOUT_EPLL_LOCK); while (!(readl(&clk->epll_con0) & (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) { if (mono_time_after(¤t, &end)) { printk(BIOS_DEBUG, "%s: Timeout waiting for EPLL lock\n", __func__); return -1; } timer_monotonic_get(¤t); } return 0; } void clock_select_i2s_clk_source(void) { struct exynos5420_clock *clk = samsung_get_base_clock(); clrsetbits_le32(&clk->clk_src_peric1, AUDIO1_SEL_MASK, (CLK_SRC_SCLK_EPLL)); } int clock_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq) { struct exynos5420_clock *clk = samsung_get_base_clock(); unsigned int div ; if ((dst_frq == 0) || (src_frq == 0)) { printk(BIOS_DEBUG, "%s: Invalid requency input for prescaler\n", __func__); printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } div = (src_frq / dst_frq); if (div > AUDIO_1_RATIO_MASK) { printk(BIOS_DEBUG, "%s: Frequency ratio is out of range\n", __func__); printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } clrsetbits_le32(&clk->clk_div_peric4, AUDIO_1_RATIO_MASK, (div & AUDIO_1_RATIO_MASK)); return 0; }