/* * This file is part of the coreboot project. * * Copyright (C) 2013 Google LLC * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* SMM relocation with intention to work for i945-ivybridge. Right now used for sandybridge and ivybridge. */ #include #include #include #include #include #include #include #include #include #include #include #include "smi.h" #define SMRR_SUPPORTED (1 << 11) #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRAME (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) struct ied_header { char signature[10]; u32 size; u8 reserved[34]; } __packed; struct smm_relocation_params { u32 smram_base; u32 smram_size; u32 ied_base; u32 ied_size; msr_t smrr_base; msr_t smrr_mask; }; /* This gets filled in and used during relocation. */ static struct smm_relocation_params smm_reloc_params; static void *default_smm_area = NULL; static void write_smrr(struct smm_relocation_params *relo_params) { struct cpuinfo_x86 c; printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n", relo_params->smrr_base.lo, relo_params->smrr_mask.lo); /* Both model_6fx and model_1067x SMRR function slightly differently from the rest. The MSR are at different location from the rest and need to be explicitly enabled. */ get_fms(&c, cpuid_eax(1)); if (c.x86 == 6 && (c.x86_model == 0xf || c.x86_model == 0x17)) { msr_t msr; msr = rdmsr(IA32_FEATURE_CONTROL); /* SMRR enabled and feature locked */ if (!((msr.lo & SMRR_ENABLE) && (msr.lo & FEATURE_CONTROL_LOCK_BIT))) { printk(BIOS_WARNING, "SMRR not enabled, skip writing SMRR...\n"); return; } wrmsr(MSR_SMRR_PHYS_BASE, relo_params->smrr_base); wrmsr(MSR_SMRR_PHYS_MASK, relo_params->smrr_mask); } else { wrmsr(IA32_SMRR_PHYS_BASE, relo_params->smrr_base); wrmsr(IA32_SMRR_PHYS_MASK, relo_params->smrr_mask); } } /* The relocation work is actually performed in SMM context, but the code * resides in the ramstage module. This occurs by trampolining from the default * SMRAM entry point to here. */ static void asmlinkage cpu_smm_do_relocation(void *arg) { em64t101_smm_state_save_area_t *save_state; msr_t mtrr_cap; struct smm_relocation_params *relo_params; const struct smm_module_params *p; const struct smm_runtime *runtime; int cpu; p = arg; runtime = p->runtime; relo_params = p->arg; cpu = p->cpu; if (cpu >= CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "Invalid CPU number assigned in SMM stub: %d\n", cpu); return; } printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu); /* All threads need to set IEDBASE and SMBASE in the save state area. * Since one thread runs at a time during the relocation the save state * is the same for all cpus. */ save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE - runtime->save_state_size); /* The relocated handler runs with all CPUs concurrently. Therefore * stagger the entry points adjusting SMBASE downwards by save state * size * CPU num. */ save_state->smbase = relo_params->smram_base - cpu * runtime->save_state_size; if (CONFIG_IED_REGION_SIZE != 0) { save_state->iedbase = relo_params->ied_base; printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x @ %p\n", save_state->smbase, save_state->iedbase, save_state); } else { printk(BIOS_DEBUG, "New SMBASE=0x%08x @ %p\n", save_state->smbase, save_state); } /* Write SMRR MSRs based on indicated support. */ mtrr_cap = rdmsr(MTRR_CAP_MSR); if (mtrr_cap.lo & SMRR_SUPPORTED) write_smrr(relo_params); southbridge_clear_smi_status(); } static void fill_in_relocation_params(struct smm_relocation_params *params) { /* All range registers are aligned to 4KiB */ const u32 rmask = ~((1 << 12) - 1); const u32 tsegmb = northbridge_get_tseg_base(); /* TSEG base is usually aligned down (to 8MiB). So we can't derive the TSEG size from the distance to GTT but use the configuration value instead. */ const u32 tseg_size = northbridge_get_tseg_size(); params->smram_base = tsegmb; params->smram_size = tseg_size; if (CONFIG_IED_REGION_SIZE != 0) { ASSERT(params->smram_size > CONFIG_IED_REGION_SIZE); params->smram_size -= CONFIG_IED_REGION_SIZE; params->ied_base = tsegmb + tseg_size - CONFIG_IED_REGION_SIZE; params->ied_size = CONFIG_IED_REGION_SIZE; } /* Adjust available SMM handler memory size. */ if (IS_ENABLED(CONFIG_CACHE_RELOCATED_RAMSTAGE_OUTSIDE_CBMEM)) { ASSERT(params->smram_size > CONFIG_SMM_RESERVED_SIZE); params->smram_size -= CONFIG_SMM_RESERVED_SIZE; } if (IS_ALIGNED(tsegmb, tseg_size)) { /* SMRR has 32-bits of valid address aligned to 4KiB. */ struct cpuinfo_x86 c; /* On model_6fx and model_1067x bits [0:11] on smrr_base are reserved */ get_fms(&c, cpuid_eax(1)); if (c.x86 == 6 && (c.x86_model == 0xf || c.x86_model == 0x17)) params->smrr_base.lo = (params->smram_base & rmask); else params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK; params->smrr_base.hi = 0; params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID; params->smrr_mask.hi = 0; } else { printk(BIOS_WARNING, "TSEG base not aligned with TSEG SIZE! Not setting SMRR\n"); } } static int install_relocation_handler(int *apic_id_map, int num_cpus, struct smm_relocation_params *relo_params) { /* The default SMM entry happens serially at the default location. * Therefore, there is only 1 concurrent save state area. Set the * stack size to the save state size, and call into the * do_relocation handler. */ int save_state_size = sizeof(em64t101_smm_state_save_area_t); struct smm_loader_params smm_params = { .per_cpu_stack_size = save_state_size, .num_concurrent_stacks = num_cpus, .per_cpu_save_state_size = save_state_size, .num_concurrent_save_states = 1, .handler = &cpu_smm_do_relocation, .handler_arg = (void *)relo_params, }; default_smm_area = backup_default_smm_area(); if (smm_setup_relocation_handler(&smm_params)) return -1; int i; for (i = 0; i < num_cpus; i++) smm_params.runtime->apic_id_to_cpu[i] = apic_id_map[i]; return 0; } static void setup_ied_area(struct smm_relocation_params *params) { char *ied_base; struct ied_header ied = { .signature = "INTEL RSVD", .size = params->ied_size, .reserved = {0}, }; ied_base = (void *)params->ied_base; /* Place IED header at IEDBASE. */ memcpy(ied_base, &ied, sizeof(ied)); /* Zero out 32KiB at IEDBASE + 1MiB */ memset(ied_base + (1 << 20), 0, (32 << 10)); } static int install_permanent_handler(int *apic_id_map, int num_cpus, struct smm_relocation_params *relo_params) { /* There are num_cpus concurrent stacks and num_cpus concurrent save * state areas. Lastly, set the stack size to the save state size. */ int save_state_size = sizeof(em64t101_smm_state_save_area_t); struct smm_loader_params smm_params = { .per_cpu_stack_size = save_state_size, .num_concurrent_stacks = num_cpus, .per_cpu_save_state_size = save_state_size, .num_concurrent_save_states = num_cpus, }; printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n", relo_params->smram_base); if (smm_load_module((void *)relo_params->smram_base, relo_params->smram_size, &smm_params)) return -1; int i; for (i = 0; i < num_cpus; i++) smm_params.runtime->apic_id_to_cpu[i] = apic_id_map[i]; return 0; } static int cpu_smm_setup(void) { int num_cpus; int apic_id_map[CONFIG_MAX_CPUS]; printk(BIOS_DEBUG, "Setting up SMI for CPU\n"); fill_in_relocation_params(&smm_reloc_params); /* enable the SMM memory window */ northbridge_write_smram(D_OPEN | G_SMRAME | C_BASE_SEG); if (CONFIG_IED_REGION_SIZE != 0) setup_ied_area(&smm_reloc_params); num_cpus = cpu_get_apic_id_map(apic_id_map); if (num_cpus > CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n", num_cpus, CONFIG_MAX_CPUS); } if (install_relocation_handler(apic_id_map, num_cpus, &smm_reloc_params)) { printk(BIOS_CRIT, "SMM Relocation handler install failed.\n"); return -1; } if (install_permanent_handler(apic_id_map, num_cpus, &smm_reloc_params)) { printk(BIOS_CRIT, "SMM Permanent handler install failed.\n"); return -1; } /* Ensure the SMM handlers hit DRAM before performing first SMI. */ /* TODO(adurbin): Is this really needed? */ wbinvd(); /* close the SMM memory window and enable normal SMM */ northbridge_write_smram(G_SMRAME | C_BASE_SEG); return 0; } void smm_init(void) { /* Return early if CPU SMM setup failed. */ if (cpu_smm_setup()) return; southbridge_smm_init(); /* Initiate first SMI to kick off SMM-context relocation. Note: this * SMI being triggered here queues up an SMI in the APs which are in * wait-for-SIPI state. Once an AP gets an SIPI it will service the SMI * at the SMM_DEFAULT_BASE before jumping to startup vector. */ southbridge_trigger_smi(); printk(BIOS_DEBUG, "Relocation complete.\n"); /* Lock down the SMRAM space. */ smm_lock(); } void smm_init_completion(void) { restore_default_smm_area(default_smm_area); } void smm_lock(void) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); northbridge_write_smram(D_LCK | G_SMRAME | C_BASE_SEG); }