/* SPDX-License-Identifier: GPL-2.0-only */ /* SMM relocation for i945-ivybridge. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SMRR_SUPPORTED (1 << 11) #define D_OPEN (1 << 6) #define D_CLS (1 << 5) #define D_LCK (1 << 4) #define G_SMRAME (1 << 3) #define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0)) /* On model_6fx, model_1067x and model_106cx SMRR functions slightly differently. The MSR are at different location from the rest and need to be explicitly enabled in IA32_FEATURE_CONTROL MSR. */ bool cpu_has_alternative_smrr(void) { struct cpuinfo_x86 c; get_fms(&c, cpuid_eax(1)); if (c.x86 != 6) return false; switch (c.x86_model) { case 0xf: case 0x17: /* core2 */ case 0x1c: /* Bonnell */ return true; default: return false; } } static void write_smrr_alt(struct smm_relocation_params *relo_params) { msr_t msr; msr = rdmsr(IA32_FEATURE_CONTROL); /* SMRR enabled and feature locked */ if (!((msr.lo & SMRR_ENABLE) && (msr.lo & FEATURE_CONTROL_LOCK_BIT))) { printk(BIOS_WARNING, "SMRR not enabled, skip writing SMRR...\n"); return; } printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n", relo_params->smrr_base.lo, relo_params->smrr_mask.lo); wrmsr(CORE2_SMRR_PHYS_BASE, relo_params->smrr_base); wrmsr(CORE2_SMRR_PHYS_MASK, relo_params->smrr_mask); } static void fill_in_relocation_params(struct smm_relocation_params *params) { uintptr_t tseg_base; size_t tseg_size; /* All range registers are aligned to 4KiB */ const u32 rmask = ~((1 << 12) - 1); smm_region(&tseg_base, &tseg_size); if (!IS_ALIGNED(tseg_base, tseg_size)) { printk(BIOS_WARNING, "TSEG base not aligned with TSEG SIZE! Not setting SMRR\n"); return; } /* SMRR has 32-bits of valid address aligned to 4KiB. */ params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK; params->smrr_base.hi = 0; params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID; params->smrr_mask.hi = 0; /* On model_6fx and model_1067x bits [0:11] on smrr_base are reserved */ if (cpu_has_alternative_smrr()) params->smrr_base.lo &= rmask; smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size); } static void setup_ied_area(struct smm_relocation_params *params) { char *ied_base; struct ied_header ied = { .signature = "INTEL RSVD", .size = params->ied_size, .reserved = {0}, }; ied_base = (void *)params->ied_base; /* Place IED header at IEDBASE. */ memcpy(ied_base, &ied, sizeof(ied)); /* Zero out 32KiB at IEDBASE + 1MiB */ memset(ied_base + (1 << 20), 0, (32 << 10)); } void smm_lock(void) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); northbridge_write_smram(D_LCK | G_SMRAME | C_BASE_SEG); } void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize, size_t *smm_save_state_size) { printk(BIOS_DEBUG, "Setting up SMI for CPU\n"); fill_in_relocation_params(&smm_reloc_params); smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize); if (smm_reloc_params.ied_size) setup_ied_area(&smm_reloc_params); /* This may not be correct for older CPU's supported by this code, but given that em64t101_smm_state_save_area_t is larger than the save_state of these CPU's it works. */ *smm_save_state_size = sizeof(em64t101_smm_state_save_area_t); } void smm_initialize(void) { /* Clear the SMM state in the southbridge. */ smm_southbridge_clear_state(); /* * Run the relocation handler for on the BSP to check and set up * parallel SMM relocation. */ smm_initiate_relocation(); } /* The relocation work is actually performed in SMM context, but the code * resides in the ramstage module. This occurs by trampolining from the default * SMRAM entry point to here. */ void smm_relocation_handler(int cpu, uintptr_t curr_smbase, uintptr_t staggered_smbase) { msr_t mtrr_cap; struct smm_relocation_params *relo_params = &smm_reloc_params; /* The em64t101 save state is sufficiently compatible with older save states with regards of smbase, smm_revision. */ em64t101_smm_state_save_area_t *save_state; u32 smbase = staggered_smbase; u32 iedbase = relo_params->ied_base; printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu); /* Make appropriate changes to the save state map. */ if (relo_params->ied_size) printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n", smbase, iedbase); else printk(BIOS_DEBUG, "New SMBASE=0x%08x\n", smbase); save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE - sizeof(*save_state)); save_state->smbase = smbase; printk(BIOS_SPEW, "SMM revision: 0x%08x\n", save_state->smm_revision); if (save_state->smm_revision == 0x00030101) save_state->iedbase = iedbase; /* Write EMRR and SMRR MSRs based on indicated support. */ mtrr_cap = rdmsr(MTRR_CAP_MSR); if (!(mtrr_cap.lo & SMRR_SUPPORTED)) return; if (cpu_has_alternative_smrr()) write_smrr_alt(relo_params); else write_smrr(relo_params); } /* * The default SMM entry can happen in parallel or serially. If the * default SMM entry is done in parallel the BSP has already setup * the saving state to each CPU's MSRs. At least one save state size * is required for the initial SMM entry for the BSP to determine if * parallel SMM relocation is even feasible. */ void smm_relocate(void) { /* * If smm_save_state_in_msrs is non-zero then parallel SMM relocation * shall take place. Run the relocation handler a second time on the * BSP to do the final move. For APs, a relocation handler always * needs to be run. */ if (!boot_cpu()) smm_initiate_relocation(); }