/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include "model_206ax.h" #include "chip.h" #define MWAIT_RES(state, sub_state) \ { \ .addrl = (((state) << 4) | (sub_state)), \ .space_id = ACPI_ADDRESS_SPACE_FIXED, \ .bit_width = ACPI_FFIXEDHW_VENDOR_INTEL, \ .bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT, \ .access_size = ACPI_FFIXEDHW_FLAG_HW_COORD, \ } /* * List of supported C-states in this processor * * Latencies are typical worst-case package exit time in uS * taken from the SandyBridge BIOS specification. */ static acpi_cstate_t cstate_map[NUM_C_STATES] = { [C_STATE_C0] = { }, [C_STATE_C1] = { .latency = 1, .power = 1000, .resource = MWAIT_RES(0, 0), }, [C_STATE_C1E] = { .latency = 1, .power = 1000, .resource = MWAIT_RES(0, 1), }, [C_STATE_C3] = { .latency = 63, .power = 500, .resource = MWAIT_RES(1, 0), }, [C_STATE_C6] = { .latency = 87, .power = 350, .resource = MWAIT_RES(2, 0), }, [C_STATE_C7] = { .latency = 90, .power = 200, .resource = MWAIT_RES(3, 0), }, [C_STATE_C7S] = { .latency = 90, .power = 200, .resource = MWAIT_RES(3, 1), }, }; static const char *const c_state_names[] = {"C0", "C1", "C1E", "C3", "C6", "C7", "C7S"}; static int get_logical_cores_per_package(void) { msr_t msr = rdmsr(MSR_CORE_THREAD_COUNT); return msr.lo & 0xffff; } static void print_supported_cstates(void) { uint8_t state, substate; printk(BIOS_DEBUG, "Supported C-states: "); for (size_t i = 0; i < ARRAY_SIZE(cstate_map); i++) { state = (cstate_map[i].resource.addrl >> 4) + 1; substate = cstate_map[i].resource.addrl & 0xf; /* CPU C0 is always supported */ if (i == 0 || cpu_get_c_substate_support(state) > substate) printk(BIOS_DEBUG, " %s", c_state_names[i]); } printk(BIOS_DEBUG, "\n"); } /* * Returns the supported C-state or the next lower one that * is supported. */ static int get_supported_cstate(int cstate) { uint8_t state, substate; size_t i; assert(cstate < NUM_C_STATES); for (i = cstate; i > 0; i--) { state = (cstate_map[i].resource.addrl >> 4) + 1; substate = cstate_map[i].resource.addrl & 0xf; if (cpu_get_c_substate_support(state) > substate) break; } if (cstate != i) printk(BIOS_INFO, "Requested C-state %s not supported, using %s instead\n", c_state_names[cstate], c_state_names[i]); return i; } static void generate_C_state_entries(const struct device *dev) { struct cpu_intel_model_206ax_config *conf = dev->chip_info; int acpi_cstates[3] = { conf->acpi_c1, conf->acpi_c2, conf->acpi_c3 }; acpi_cstate_t acpi_cstate_map[ARRAY_SIZE(acpi_cstates)] = { 0 }; /* Count number of active C-states */ int count = 0; for (int i = 0; i < ARRAY_SIZE(acpi_cstates); i++) { /* Remove invalid states */ if (acpi_cstates[i] >= ARRAY_SIZE(cstate_map)) { printk(BIOS_ERR, "Invalid C-state in devicetree: %d\n", acpi_cstates[i]); acpi_cstates[i] = 0; continue; } /* Skip C0, it's always supported */ if (acpi_cstates[i] == 0) continue; /* Find supported state. Might downgrade a state. */ acpi_cstates[i] = get_supported_cstate(acpi_cstates[i]); /* Remove duplicate states */ for (int j = i - 1; j >= 0; j--) { if (acpi_cstates[i] == acpi_cstates[j]) { acpi_cstates[i] = 0; break; } } } /* Convert C-state to ACPI C-states */ for (int i = 0; i < ARRAY_SIZE(acpi_cstates); i++) { if (acpi_cstates[i] == 0) continue; acpi_cstate_map[count] = cstate_map[acpi_cstates[i]]; acpi_cstate_map[count].ctype = i + 1; count++; printk(BIOS_DEBUG, "Advertising ACPI C State type C%d as CPU %s\n", i + 1, c_state_names[acpi_cstates[i]]); } acpigen_write_CST_package(acpi_cstate_map, count); } static acpi_tstate_t tss_table_fine[] = { { 100, 1000, 0, 0x00, 0 }, { 94, 940, 0, 0x1f, 0 }, { 88, 880, 0, 0x1e, 0 }, { 82, 820, 0, 0x1d, 0 }, { 75, 760, 0, 0x1c, 0 }, { 69, 700, 0, 0x1b, 0 }, { 63, 640, 0, 0x1a, 0 }, { 57, 580, 0, 0x19, 0 }, { 50, 520, 0, 0x18, 0 }, { 44, 460, 0, 0x17, 0 }, { 38, 400, 0, 0x16, 0 }, { 32, 340, 0, 0x15, 0 }, { 25, 280, 0, 0x14, 0 }, { 19, 220, 0, 0x13, 0 }, { 13, 160, 0, 0x12, 0 }, }; static acpi_tstate_t tss_table_coarse[] = { { 100, 1000, 0, 0x00, 0 }, { 88, 875, 0, 0x1f, 0 }, { 75, 750, 0, 0x1e, 0 }, { 63, 625, 0, 0x1d, 0 }, { 50, 500, 0, 0x1c, 0 }, { 38, 375, 0, 0x1b, 0 }, { 25, 250, 0, 0x1a, 0 }, { 13, 125, 0, 0x19, 0 }, }; static void generate_T_state_entries(int core, int cores_per_package) { /* Indicate SW_ALL coordination for T-states */ acpigen_write_TSD_package(core, cores_per_package, SW_ALL); /* Indicate FFixedHW so OS will use MSR */ acpigen_write_empty_PTC(); /* Set a T-state limit that can be modified in NVS */ acpigen_write_TPC("\\TLVL"); /* * CPUID.(EAX=6):EAX[5] indicates support * for extended throttle levels. */ if (cpuid_eax(6) & (1 << 5)) acpigen_write_TSS_package( ARRAY_SIZE(tss_table_fine), tss_table_fine); else acpigen_write_TSS_package( ARRAY_SIZE(tss_table_coarse), tss_table_coarse); } static int calculate_power(int tdp, int p1_ratio, int ratio) { u32 m; u32 power; /* * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2 * * Power = (ratio / p1_ratio) * m * tdp */ m = (110000 - ((p1_ratio - ratio) * 625)) / 11; m = (m * m) / 1000; power = ((ratio * 100000 / p1_ratio) / 100); power *= (m / 100) * (tdp / 1000); power /= 1000; return (int)power; } static void generate_P_state_entries(int core, int cores_per_package) { int ratio_min, ratio_max, ratio_turbo, ratio_step; int coord_type, power_max, power_unit, num_entries; int ratio, power, clock, clock_max; msr_t msr; /* Determine P-state coordination type from MISC_PWR_MGMT[0] */ msr = rdmsr(MSR_MISC_PWR_MGMT); if (msr.lo & MISC_PWR_MGMT_EIST_HW_DIS) coord_type = SW_ANY; else coord_type = HW_ALL; /* Get bus ratio limits and calculate clock speeds */ msr = rdmsr(MSR_PLATFORM_INFO); ratio_min = (msr.hi >> (40-32)) & 0xff; /* Max Efficiency Ratio */ /* Determine if this CPU has configurable TDP */ if (cpu_config_tdp_levels()) { /* Set max ratio to nominal TDP ratio */ msr = rdmsr(MSR_CONFIG_TDP_NOMINAL); ratio_max = msr.lo & 0xff; } else { /* Max Non-Turbo Ratio */ ratio_max = (msr.lo >> 8) & 0xff; } clock_max = ratio_max * SANDYBRIDGE_BCLK; /* Calculate CPU TDP in mW */ msr = rdmsr(MSR_PKG_POWER_SKU_UNIT); power_unit = 2 << ((msr.lo & 0xf) - 1); msr = rdmsr(MSR_PKG_POWER_SKU); power_max = ((msr.lo & 0x7fff) / power_unit) * 1000; /* Write _PCT indicating use of FFixedHW */ acpigen_write_empty_PCT(); /* Write _PPC with no limit on supported P-state */ acpigen_write_PPC_NVS(); /* Write PSD indicating configured coordination type */ acpigen_write_PSD_package(core, cores_per_package, coord_type); /* Add P-state entries in _PSS table */ acpigen_write_name("_PSS"); /* Determine ratio points */ ratio_step = PSS_RATIO_STEP; num_entries = (ratio_max - ratio_min) / ratio_step; while (num_entries > PSS_MAX_ENTRIES-1) { ratio_step <<= 1; num_entries >>= 1; } /* P[T] is Turbo state if enabled */ if (get_turbo_state() == TURBO_ENABLED) { /* _PSS package count including Turbo */ acpigen_write_package(num_entries + 2); msr = rdmsr(MSR_TURBO_RATIO_LIMIT); ratio_turbo = msr.lo & 0xff; /* Add entry for Turbo ratio */ acpigen_write_PSS_package( clock_max + 1, /*MHz*/ power_max, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio_turbo << 8, /*control*/ ratio_turbo << 8); /*status*/ } else { /* _PSS package count without Turbo */ acpigen_write_package(num_entries + 1); } /* First regular entry is max non-turbo ratio */ acpigen_write_PSS_package( clock_max, /*MHz*/ power_max, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio_max << 8, /*control*/ ratio_max << 8); /*status*/ /* Generate the remaining entries */ for (ratio = ratio_min + ((num_entries - 1) * ratio_step); ratio >= ratio_min; ratio -= ratio_step) { /* Calculate power at this ratio */ power = calculate_power(power_max, ratio_max, ratio); clock = ratio * SANDYBRIDGE_BCLK; acpigen_write_PSS_package( clock, /*MHz*/ power, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio << 8, /*control*/ ratio << 8); /*status*/ } /* Fix package length */ acpigen_pop_len(); } static void generate_cpu_entry(const struct device *device, int cpu, int core, int cores_per_package) { /* Generate Scope(\_SB) { Device(CPUx */ acpigen_write_processor_device(cpu * cores_per_package + core); /* Generate P-state tables */ generate_P_state_entries(cpu, cores_per_package); /* Generate C-state tables */ generate_C_state_entries(device); /* Generate T-state tables */ generate_T_state_entries(cpu, cores_per_package); acpigen_write_processor_device_end(); } void generate_cpu_entries(const struct device *device) { int totalcores = dev_count_cpu(); int cores_per_package = get_logical_cores_per_package(); int numcpus = totalcores / cores_per_package; printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n", numcpus, cores_per_package); print_supported_cstates(); for (int cpu_id = 0; cpu_id < numcpus; cpu_id++) for (int core_id = 0; core_id < cores_per_package; core_id++) generate_cpu_entry(device, cpu_id, core_id, cores_per_package); /* PPKG is usually used for thermal management of the first and only package. */ acpigen_write_processor_package("PPKG", 0, cores_per_package); /* Add a method to notify processor nodes */ acpigen_write_processor_cnot(cores_per_package); } struct chip_operations cpu_intel_model_206ax_ops = { .name = "Intel SandyBridge/IvyBridge CPU", };