/* * This file is part of the coreboot project. * * Copyright (C) 2013 ChromeOS Authors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "haswell.h" #define EMRRphysBase_MSR 0x1f4 #define EMRRphysMask_MSR 0x1f5 #define UNCORE_EMRRphysBase_MSR 0x2f4 #define UNCORE_EMRRphysMask_MSR 0x2f5 #define SMM_MCA_CAP_MSR 0x17d #define SMM_CPU_SVRSTR_BIT 57 #define SMM_CPU_SVRSTR_MASK (1 << (SMM_CPU_SVRSTR_BIT - 32)) #define SMM_FEATURE_CONTROL_MSR 0x4e0 #define SMM_CPU_SAVE_EN (1 << 1) /* SMM save state MSRs */ #define SMBASE_MSR 0xc20 #define IEDBASE_MSR 0xc22 #define SMRR_SUPPORTED (1<<11) #define EMRR_SUPPORTED (1<<12) struct smm_relocation_params { u32 smram_base; u32 smram_size; u32 ied_base; u32 ied_size; msr_t smrr_base; msr_t smrr_mask; msr_t emrr_base; msr_t emrr_mask; msr_t uncore_emrr_base; msr_t uncore_emrr_mask; /* The smm_save_state_in_msrs field indicates if SMM save state * locations live in MSRs. This indicates to the CPUs how to adjust * the SMMBASE and IEDBASE */ int smm_save_state_in_msrs; }; /* This gets filled in and used during relocation. */ static struct smm_relocation_params smm_reloc_params; static inline void write_smrr(struct smm_relocation_params *relo_params) { printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n", relo_params->smrr_base.lo, relo_params->smrr_mask.lo); wrmsr(SMRRphysBase_MSR, relo_params->smrr_base); wrmsr(SMRRphysMask_MSR, relo_params->smrr_mask); } static inline void write_emrr(struct smm_relocation_params *relo_params) { printk(BIOS_DEBUG, "Writing EMRR. base = 0x%08x, mask=0x%08x\n", relo_params->emrr_base.lo, relo_params->emrr_mask.lo); wrmsr(EMRRphysBase_MSR, relo_params->emrr_base); wrmsr(EMRRphysMask_MSR, relo_params->emrr_mask); } static inline void write_uncore_emrr(struct smm_relocation_params *relo_params) { printk(BIOS_DEBUG, "Writing UNCORE_EMRR. base = 0x%08x, mask=0x%08x\n", relo_params->uncore_emrr_base.lo, relo_params->uncore_emrr_mask.lo); wrmsr(UNCORE_EMRRphysBase_MSR, relo_params->uncore_emrr_base); wrmsr(UNCORE_EMRRphysMask_MSR, relo_params->uncore_emrr_mask); } static void update_save_state(int cpu, struct smm_relocation_params *relo_params, const struct smm_runtime *runtime) { u32 smbase; u32 iedbase; /* The relocated handler runs with all CPUs concurrently. Therefore * stagger the entry points adjusting SMBASE downwards by save state * size * CPU num. */ smbase = relo_params->smram_base - cpu * runtime->save_state_size; iedbase = relo_params->ied_base; printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n", smbase, iedbase); /* All threads need to set IEDBASE and SMBASE to the relocated * handler region. However, the save state location depends on the * smm_save_state_in_msrs field in the relocation parameters. If * smm_save_state_in_msrs is non-zero then the CPUs are relocating * the SMM handler in parallel, and each CPUs save state area is * located in their respective MSR space. If smm_save_state_in_msrs * is zero then the SMM relocation is happening serially so the * save state is at the same default location for all CPUs. */ if (relo_params->smm_save_state_in_msrs) { msr_t smbase_msr; msr_t iedbase_msr; smbase_msr.lo = smbase; smbase_msr.hi = 0; /* According the BWG the IEDBASE MSR is in bits 63:32. It's * not clear why it differs from the SMBASE MSR. */ iedbase_msr.lo = 0; iedbase_msr.hi = iedbase; wrmsr(SMBASE_MSR, smbase_msr); wrmsr(IEDBASE_MSR, iedbase_msr); } else { em64t101_smm_state_save_area_t *save_state; save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE - runtime->save_state_size); save_state->smbase = smbase; save_state->iedbase = iedbase; } } /* Returns 1 if SMM MSR save state was set. */ static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params) { msr_t smm_mca_cap; smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR); if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) { msr_t smm_feature_control; smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR); smm_feature_control.hi = 0; smm_feature_control.lo |= SMM_CPU_SAVE_EN; wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control); relo_params->smm_save_state_in_msrs = 1; } return relo_params->smm_save_state_in_msrs; } /* The relocation work is actually performed in SMM context, but the code * resides in the ramstage module. This occurs by trampolining from the default * SMRAM entry point to here. */ static void __attribute__((cdecl)) cpu_smm_do_relocation(void *arg, int cpu, const struct smm_runtime *runtime) { msr_t mtrr_cap; struct smm_relocation_params *relo_params = arg; if (cpu >= CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "Invalid CPU number assigned in SMM stub: %d\n", cpu); return; } printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu); /* Determine if the processor supports saving state in MSRs. If so, * enable it before the non-BSPs run so that SMM relocation can occur * in parallel in the non-BSP CPUs. */ if (cpu == 0) { /* If smm_save_state_in_msrs is 1 then that means this is the * 2nd time through the relocation handler for the BSP. * Parallel SMM handler relocation is taking place. However, * it is desired to access other CPUs save state in the real * SMM handler. Therefore, disable the SMM save state in MSRs * feature. */ if (relo_params->smm_save_state_in_msrs) { msr_t smm_feature_control; smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR); smm_feature_control.lo &= ~SMM_CPU_SAVE_EN; wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control); } else if (bsp_setup_msr_save_state(relo_params)) /* Just return from relocation handler if MSR save * state is enabled. In that case the BSP will come * back into the relocation handler to setup the new * SMBASE as well disabling SMM save state in MSRs. */ return; } /* Make appropriate changes to the save state map. */ update_save_state(cpu, relo_params, runtime); /* Write EMRR and SMRR MSRs based on indicated support. */ mtrr_cap = rdmsr(MTRRcap_MSR); if (mtrr_cap.lo & SMRR_SUPPORTED) write_smrr(relo_params); if (mtrr_cap.lo & EMRR_SUPPORTED) { write_emrr(relo_params); /* UNCORE_EMRR msrs are package level. Therefore, only * configure these MSRs on the BSP. */ if (cpu == 0) write_uncore_emrr(relo_params); } } static u32 northbridge_get_base_reg(device_t dev, int reg) { u32 value; value = pci_read_config32(dev, reg); /* Base registers are at 1MiB granularity. */ value &= ~((1 << 20) - 1); return value; } static void fill_in_relocation_params(device_t dev, struct smm_relocation_params *params) { u32 tseg_size; u32 tsegmb; u32 bgsm; u32 emrr_base; u32 emrr_size; int phys_bits; /* All range registers are aligned to 4KiB */ const u32 rmask = ~((1 << 12) - 1); /* Some of the range registers are dependent on the number of physical * address bits supported. */ phys_bits = cpuid_eax(0x80000008) & 0xff; /* The range bounded by the TSEGMB and BGSM registers encompasses the * SMRAM range as well as the IED range. However, the SMRAM available * to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB. */ tsegmb = northbridge_get_base_reg(dev, TSEG); bgsm = northbridge_get_base_reg(dev, BGSM); tseg_size = bgsm - tsegmb; params->smram_base = tsegmb; params->smram_size = 4 << 20; params->ied_base = tsegmb + params->smram_size; params->ied_size = tseg_size - params->smram_size; /* Adjust available SMM handler memory size. */ params->smram_size -= RESERVED_SMM_SIZE; /* SMRR has 32-bits of valid address aligned to 4KiB. */ params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK; params->smrr_base.hi = 0; params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRRphysMaskValid; params->smrr_mask.hi = 0; /* The EMRR and UNCORE_EMRR are at IEDBASE + 2MiB */ emrr_base = (params->ied_base + (2 << 20)) & rmask; emrr_size = params->ied_size - (2 << 20); /* EMRR has 46 bits of valid address aligned to 4KiB. It's dependent * on the number of physical address bits supported. */ params->emrr_base.lo = emrr_base | MTRR_TYPE_WRBACK; params->emrr_base.hi = 0; params->emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRRphysMaskValid; params->emrr_mask.hi = (1 << (phys_bits - 32)) - 1; /* UNCORE_EMRR has 39 bits of valid address aligned to 4KiB. */ params->uncore_emrr_base.lo = emrr_base; params->uncore_emrr_base.hi = 0; params->uncore_emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRRphysMaskValid; params->uncore_emrr_mask.hi = (1 << (39 - 32)) - 1; } static int install_relocation_handler(int num_cpus, struct smm_relocation_params *relo_params) { /* The default SMM entry can happen in parallel or serially. If the * default SMM entry is done in parallel the BSP has already setup * the saving state to each CPU's MSRs. At least one save state size * is required for the initial SMM entry for the BSP to determine if * parallel SMM relocation is even feasible. Set the stack size to * the save state size, and call into the do_relocation handler. */ int save_state_size = sizeof(em64t101_smm_state_save_area_t); struct smm_loader_params smm_params = { .per_cpu_stack_size = save_state_size, .num_concurrent_stacks = num_cpus, .per_cpu_save_state_size = save_state_size, .num_concurrent_save_states = 1, .handler = (smm_handler_t)&cpu_smm_do_relocation, .handler_arg = (void *)relo_params, }; return smm_setup_relocation_handler(&smm_params); } static void setup_ied_area(struct smm_relocation_params *params) { char *ied_base; struct ied_header ied = { .signature = "INTEL RSVD", .size = params->ied_size, .reserved = {0}, }; ied_base = (void *)params->ied_base; /* Place IED header at IEDBASE. */ memcpy(ied_base, &ied, sizeof(ied)); /* Zero out 32KiB at IEDBASE + 1MiB */ memset(ied_base + (1 << 20), 0, (32 << 10)); /* According to the BWG MP init section 2MiB of memory at IEDBASE + * 2MiB should be zeroed as well. However, I suspect what is inteneded * is to clear the memory covered by EMRR. TODO(adurbin): figure out if * this is really required. */ //memset(ied_base + (2 << 20), 0, (2 << 20)); } static int install_permanent_handler(int num_cpus, struct smm_relocation_params *relo_params) { /* There are num_cpus concurrent stacks and num_cpus concurrent save * state areas. Lastly, set the stack size to the save state size. */ int save_state_size = sizeof(em64t101_smm_state_save_area_t); struct smm_loader_params smm_params = { .per_cpu_stack_size = save_state_size, .num_concurrent_stacks = num_cpus, .per_cpu_save_state_size = save_state_size, .num_concurrent_save_states = num_cpus, }; printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n", relo_params->smram_base); return smm_load_module((void *)relo_params->smram_base, relo_params->smram_size, &smm_params); } static int cpu_smm_setup(void) { device_t dev; int num_cpus; msr_t msr; printk(BIOS_DEBUG, "Setting up SMI for CPU\n"); dev = dev_find_slot(0, PCI_DEVFN(0, 0)); fill_in_relocation_params(dev, &smm_reloc_params); setup_ied_area(&smm_reloc_params); msr = rdmsr(CORE_THREAD_COUNT_MSR); num_cpus = msr.lo & 0xffff; if (num_cpus > CONFIG_MAX_CPUS) { printk(BIOS_CRIT, "Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n", num_cpus, CONFIG_MAX_CPUS); } if (install_relocation_handler(num_cpus, &smm_reloc_params)) { printk(BIOS_CRIT, "SMM Relocation handler install failed.\n"); return -1; } if (install_permanent_handler(num_cpus, &smm_reloc_params)) { printk(BIOS_CRIT, "SMM Permanent handler install failed.\n"); return -1; } /* Ensure the SMM handlers hit DRAM before performing first SMI. */ /* TODO(adurbin): Is this really needed? */ wbinvd(); return 0; } int smm_initialize(void) { /* Return early if CPU SMM setup failed. */ if (cpu_smm_setup()) return -1; /* Clear the SMM state in the southbridge. */ southbridge_smm_clear_state(); /* Run the relocation handler. */ smm_initiate_relocation(); /* If smm_save_state_in_msrs is non-zero then parallel SMM relocation * shall take place. Run the relocation handler a second time to do * the final move. */ if (smm_reloc_params.smm_save_state_in_msrs) { printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n"); release_aps_for_smm_relocation(1); smm_initiate_relocation_parallel(); } else { release_aps_for_smm_relocation(0); } /* Now that all APs have been relocated as well as the BSP let SMIs * start flowing. */ southbridge_smm_enable_smi(); /* Lock down the SMRAM space. */ smm_lock(); return 0; } void smm_init(void) { /* smm_init() is normally called from initialize_cpus() in * lapic_cpu_init.c. However, that path is no longer used. Don't reuse * the function name because that would cause confusion. * The smm_initialize() function above is used to setup SMM at the * appropriate time. */ } void smm_lock(void) { /* LOCK the SMM memory window and enable normal SMM. * After running this function, only a full reset can * make the SMM registers writable again. */ printk(BIOS_DEBUG, "Locking SMM.\n"); pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM, D_LCK | G_SMRAME | C_BASE_SEG); }