/* * This file is part of the coreboot project. * * Copyright (C) 2012 ChromeOS Authors * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_CHROMEOS #include #endif #include "haswell.h" #include "northbridge/intel/haswell/haswell.h" #include "northbridge/intel/haswell/raminit.h" #include "southbridge/intel/lynxpoint/pch.h" #include "southbridge/intel/lynxpoint/me.h" /* The cache-as-ram assembly file calls romstage_main() after setting up * cache-as-ram. romstage_main() will then call the mainboards's * mainboard_romstage_entry() function. That function then calls * romstage_common() below. The reason for the back and forth is to provide * common entry point from cache-as-ram while still allowing for code sharing. * Because we can't use global variables the stack is used for allocations -- * thus the need to call back and forth. */ static inline u32 *stack_push(u32 *stack, u32 value) { stack = &stack[-1]; *stack = value; return stack; } /* setup_romstage_stack_after_car() determines the stack to use after * cache-as-ram is torn down as well as the MTRR settings to use. */ static void *setup_romstage_stack_after_car(void) { unsigned long top_of_stack; int num_mtrrs; u32 *slot; u32 mtrr_mask_upper; /* Top of stack needs to be aligned to a 4-byte boundary. */ top_of_stack = ROMSTAGE_STACK & ~3; slot = (void *)top_of_stack; num_mtrrs = 0; /* The upper bits of the MTRR mask need to set according to the number * of physical address bits. */ mtrr_mask_upper = (1 << ((cpuid_eax(0x80000008) & 0xff) - 32)) - 1; /* The order for each MTTR is value then base with upper 32-bits of * each value coming before the lower 32-bits. The reasoning for * this ordering is to create a stack layout like the following: * +0: Number of MTRRs * +4: MTTR base 0 31:0 * +8: MTTR base 0 63:32 * +12: MTTR mask 0 31:0 * +16: MTTR mask 0 63:32 * +20: MTTR base 1 31:0 * +24: MTTR base 1 63:32 * +28: MTTR mask 1 31:0 * +32: MTTR mask 1 63:32 */ /* Cache the ROM as WP just below 4GiB. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, ~(CONFIG_ROM_SIZE - 1) | MTRR_TYPE_WRPROT); num_mtrrs++; /* Cache RAM as WB from 0 -> CONFIG_RAMTOP. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~(CONFIG_RAMTOP - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, 0 | MTRR_TYPE_WRBACK); num_mtrrs++; /* Cache 8MiB below the top of ram. On haswell systems the top of * ram under 4GiB is the start of the TSEG region. It is required to * be 8MiB aligned. Set this area as cacheable so it can be used later * for ramstage before setting up the entire RAM as cacheable. */ slot = stack_push(slot, mtrr_mask_upper); /* upper mask */ slot = stack_push(slot, ~((8 << 20) - 1) | MTRRphysMaskValid); slot = stack_push(slot, 0); /* upper base */ slot = stack_push(slot, (get_top_of_ram() - (8 << 20)) | MTRR_TYPE_WRBACK); num_mtrrs++; /* Save the number of MTTRs to setup. Return the stack location * pointing to the number of MTRRs. */ slot = stack_push(slot, num_mtrrs); return slot; } void * __attribute__((regparm(0))) romstage_main(unsigned long bist) { int i; void *romstage_stack_after_car; const int num_guards = 4; const u32 stack_guard = 0xdeadbeef; u32 *stack_base = (void *)(CONFIG_DCACHE_RAM_BASE + CONFIG_DCACHE_RAM_SIZE - CONFIG_DCACHE_RAM_ROMSTAGE_STACK_SIZE); printk(BIOS_DEBUG, "Setting up stack guards.\n"); for (i = 0; i < num_guards; i++) stack_base[i] = stack_guard; mainboard_romstage_entry(bist); /* Check the stack. */ for (i = 0; i < num_guards; i++) { if (stack_base[i] == stack_guard) continue; printk(BIOS_DEBUG, "Smashed stack detected in romstage!\n"); } /* Get the stack to use after cache-as-ram is torn down. */ romstage_stack_after_car = setup_romstage_stack_after_car(); #if CONFIG_CONSOLE_CBMEM /* Keep this the last thing this function does. */ cbmemc_reinit(); #endif return romstage_stack_after_car; } void romstage_common(const struct romstage_params *params) { int boot_mode = 0; int wake_from_s3; int cbmem_was_initted; #if CONFIG_COLLECT_TIMESTAMPS tsc_t start_romstage_time; tsc_t before_dram_time; tsc_t after_dram_time; tsc_t base_time = { .lo = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xdc), .hi = pci_read_config32(PCI_DEV(0, 0x1f, 2), 0xd0) }; #endif #if CONFIG_COLLECT_TIMESTAMPS start_romstage_time = rdtsc(); #endif if (params->bist == 0) enable_lapic(); wake_from_s3 = early_pch_init(params->gpio_map, params->rcba_config); /* Halt if there was a built in self test failure */ report_bist_failure(params->bist); /* Perform some early chipset initialization required * before RAM initialization can work */ haswell_early_initialization(HASWELL_MOBILE); printk(BIOS_DEBUG, "Back from haswell_early_initialization()\n"); if (wake_from_s3) { #if CONFIG_HAVE_ACPI_RESUME printk(BIOS_DEBUG, "Resume from S3 detected.\n"); boot_mode = 2; #else printk(BIOS_DEBUG, "Resume from S3 detected, but disabled.\n"); #endif } /* Prepare USB controller early in S3 resume */ if (boot_mode == 2) enable_usb_bar(); post_code(0x3a); params->pei_data->boot_mode = boot_mode; #if CONFIG_COLLECT_TIMESTAMPS before_dram_time = rdtsc(); #endif report_platform_info(); sdram_initialize(params->pei_data); #if CONFIG_COLLECT_TIMESTAMPS after_dram_time = rdtsc(); #endif post_code(0x3b); intel_early_me_status(); quick_ram_check(); post_code(0x3e); #if CONFIG_EARLY_CBMEM_INIT cbmem_was_initted = !cbmem_initialize(); #else cbmem_was_initted = cbmem_reinit((uint64_t) (get_top_of_ram() - HIGH_MEMORY_SIZE)); #endif #if CONFIG_HAVE_ACPI_RESUME /* If there is no high memory area, we didn't boot before, so * this is not a resume. In that case we just create the cbmem toc. */ *(u32 *)CBMEM_BOOT_MODE = 0; *(u32 *)CBMEM_RESUME_BACKUP = 0; if ((boot_mode == 2) && cbmem_was_initted) { void *resume_backup_memory = cbmem_find(CBMEM_ID_RESUME); if (resume_backup_memory) { *(u32 *)CBMEM_BOOT_MODE = boot_mode; *(u32 *)CBMEM_RESUME_BACKUP = (u32)resume_backup_memory; } /* Magic for S3 resume */ pci_write_config32(PCI_DEV(0, 0x00, 0), SKPAD, 0xcafed00d); } else if (boot_mode == 2) { /* Failed S3 resume, reset to come up cleanly */ outb(0x6, 0xcf9); while (1) { hlt(); } } else { pci_write_config32(PCI_DEV(0, 0x00, 0), SKPAD, 0xcafebabe); } #endif post_code(0x3f); #if CONFIG_CHROMEOS init_chromeos(boot_mode); #endif #if CONFIG_COLLECT_TIMESTAMPS timestamp_init(base_time); timestamp_add(TS_START_ROMSTAGE, start_romstage_time ); timestamp_add(TS_BEFORE_INITRAM, before_dram_time ); timestamp_add(TS_AFTER_INITRAM, after_dram_time ); timestamp_add_now(TS_END_ROMSTAGE); #endif }