/* * This file is part of the coreboot project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "model_406dx.h" #include "chip.h" static int get_cores_per_package(void) { struct cpuinfo_x86 c; struct cpuid_result result; int cores = 1; get_fms(&c, cpuid_eax(1)); if (c.x86 != 6) return 1; result = cpuid_ext(0xb, 1); cores = result.ebx & 0xff; return cores; } static void generate_C_state_entries(void) { struct cpu_info *info; struct cpu_driver *cpu; struct device *lapic; struct cpu_intel_model_406dx_config *conf = NULL; /* Find the SpeedStep CPU in the device tree using magic APIC ID */ lapic = dev_find_lapic(SPEEDSTEP_APIC_MAGIC); if (!lapic) return; conf = lapic->chip_info; if (!conf) return; /* Find CPU map of supported C-states */ info = cpu_info(); if (!info) return; cpu = find_cpu_driver(info->cpu); if (!cpu || !cpu->cstates) return; acpigen_emit_byte(0x14); /* MethodOp */ acpigen_write_len_f(); /* PkgLength */ acpigen_emit_namestring("_CST"); acpigen_emit_byte(0x00); /* No Arguments */ /* If running on AC power */ acpigen_emit_byte(0xa0); /* IfOp */ acpigen_write_len_f(); /* PkgLength */ acpigen_emit_namestring("PWRS"); acpigen_emit_byte(0xa4); /* ReturnOp */ acpigen_pop_len(); /* Else on battery power */ acpigen_emit_byte(0xa4); /* ReturnOp */ acpigen_pop_len(); } static acpi_tstate_t tss_table_fine[] = { { 100, 1000, 0, 0x00, 0 }, { 94, 940, 0, 0x1f, 0 }, { 88, 880, 0, 0x1e, 0 }, { 82, 820, 0, 0x1d, 0 }, { 75, 760, 0, 0x1c, 0 }, { 69, 700, 0, 0x1b, 0 }, { 63, 640, 0, 0x1a, 0 }, { 57, 580, 0, 0x19, 0 }, { 50, 520, 0, 0x18, 0 }, { 44, 460, 0, 0x17, 0 }, { 38, 400, 0, 0x16, 0 }, { 32, 340, 0, 0x15, 0 }, { 25, 280, 0, 0x14, 0 }, { 19, 220, 0, 0x13, 0 }, { 13, 160, 0, 0x12, 0 }, }; static acpi_tstate_t tss_table_coarse[] = { { 100, 1000, 0, 0x00, 0 }, { 88, 875, 0, 0x1f, 0 }, { 75, 750, 0, 0x1e, 0 }, { 63, 625, 0, 0x1d, 0 }, { 50, 500, 0, 0x1c, 0 }, { 38, 375, 0, 0x1b, 0 }, { 25, 250, 0, 0x1a, 0 }, { 13, 125, 0, 0x19, 0 }, }; static void generate_T_state_entries(int core, int cores_per_package) { /* Indicate SW_ALL coordination for T-states */ acpigen_write_TSD_package(core, cores_per_package, SW_ALL); /* Indicate FFixedHW so OS will use MSR */ acpigen_write_empty_PTC(); /* Set a T-state limit that can be modified in NVS */ acpigen_write_TPC("\\TLVL"); /* * CPUID.(EAX=6):EAX[5] indicates support * for extended throttle levels. */ if (cpuid_eax(6) & (1 << 5)) acpigen_write_TSS_package( ARRAY_SIZE(tss_table_fine), tss_table_fine); else acpigen_write_TSS_package( ARRAY_SIZE(tss_table_coarse), tss_table_coarse); } static int calculate_power(int tdp, int p1_ratio, int ratio) { u32 m; u32 power; /* * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2 * * Power = (ratio / p1_ratio) * m * tdp */ m = (110000 - ((p1_ratio - ratio) * 625)) / 11; m = (m * m) / 1000; power = ((ratio * 100000 / p1_ratio) / 100); power *= (m / 100) * (tdp / 1000); power /= 1000; return (int)power; } static int get_core_frequency_mhz(int ratio) { int fsb, core_freq; /* Get BCLK - different SKUs can have different BCLK */ fsb = get_timer_fsb(); printk(BIOS_DEBUG, "BCLK:%d MHz ratio:%d\n", fsb, ratio); core_freq = DIV_ROUND_CLOSEST(fsb * ratio, 100) * 100; printk(BIOS_DEBUG, "core frequency for ratio(%d) %dMHz\n", ratio, core_freq); return core_freq; } static void generate_P_state_entries(int core, int cores_per_package) { int ratio_min, ratio_max, ratio_turbo, ratio_step; int coord_type, power_max, num_entries; int ratio, power, clock, clock_max; msr_t msr; /* Rangeley uses hardware only control */ coord_type = HW_ALL; /* Get bus ratio limits and calculate clock speeds */ msr = rdmsr(MSR_PLATFORM_INFO); ratio_min = (msr.hi >> (40-32)) & 0xff; /* Max Efficiency Ratio */ /* Determine if this CPU has configurable TDP */ if (cpu_config_tdp_levels()) { /* Set max ratio to nominal TDP ratio */ msr = rdmsr(MSR_CONFIG_TDP_NOMINAL); ratio_max = msr.lo & 0xff; } else { /* Max Non-Turbo Ratio */ ratio_max = (msr.lo >> 8) & 0xff; } clock_max = get_core_frequency_mhz(ratio_max); /* Calculate CPU TDP in mW */ msr = rdmsr(MSR_PKG_POWER_SKU_UNIT); power_max = 2 << ((msr.lo & 0xf) - 1); /* Write _PCT indicating use of FFixedHW */ acpigen_write_empty_PCT(); /* Write _PPC with no limit on supported P-state */ acpigen_write_PPC_NVS(); /* Write PSD indicating configured coordination type */ acpigen_write_PSD_package(core, cores_per_package, coord_type); /* Add P-state entries in _PSS table */ acpigen_write_name("_PSS"); /* Determine ratio points */ ratio_step = PSS_RATIO_STEP; num_entries = (ratio_max - ratio_min) / ratio_step; while (num_entries > PSS_MAX_ENTRIES-1) { ratio_step <<= 1; num_entries >>= 1; } /* P[T] is Turbo state if enabled */ if (get_turbo_state() == TURBO_ENABLED) { /* _PSS package count including Turbo */ acpigen_write_package(num_entries + 2); msr = rdmsr(MSR_TURBO_RATIO_LIMIT); ratio_turbo = msr.lo & 0xff; /* Add entry for Turbo ratio */ acpigen_write_PSS_package( clock_max + 1, /*MHz*/ power_max, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio_turbo << 8, /*control*/ ratio_turbo << 8); /*status*/ } else { /* _PSS package count without Turbo */ acpigen_write_package(num_entries + 1); } /* First regular entry is max non-turbo ratio */ acpigen_write_PSS_package( clock_max, /*MHz*/ power_max, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio_max << 8, /*control*/ ratio_max << 8); /*status*/ /* Generate the remaining entries */ for (ratio = ratio_min + ((num_entries - 1) * ratio_step); ratio >= ratio_min; ratio -= ratio_step) { /* Calculate power at this ratio */ power = calculate_power(power_max, ratio_max, ratio); clock = get_core_frequency_mhz(ratio); acpigen_write_PSS_package( clock, /*MHz*/ power, /*mW*/ PSS_LATENCY_TRANSITION, /*lat1*/ PSS_LATENCY_BUSMASTER, /*lat2*/ ratio << 8, /*control*/ ratio << 8); /*status*/ } /* Fix package length */ acpigen_pop_len(); } void generate_cpu_entries(struct device *device) { int coreID, cpuID, pcontrol_blk = PMB0_BASE, plen = 6; int totalcores = dev_count_cpu(); int cores_per_package = get_cores_per_package(); int numcpus = totalcores/cores_per_package; printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n", numcpus, cores_per_package); for (cpuID = 1; cpuID <= numcpus; cpuID++) { for (coreID = 1; coreID <= cores_per_package; coreID++) { if (coreID > 1) { pcontrol_blk = 0; plen = 0; } /* Generate processor \_PR.CPUx */ acpigen_write_processor( (cpuID-1)*cores_per_package+coreID-1, pcontrol_blk, plen); /* Generate P-state tables */ generate_P_state_entries( cpuID-1, cores_per_package); /* Generate C-state tables */ generate_C_state_entries(); /* Generate T-state tables */ generate_T_state_entries( cpuID-1, cores_per_package); acpigen_pop_len(); } } /* PPKG is usually used for thermal management of the first and only package. */ acpigen_write_processor_package("PPKG", 0, cores_per_package); /* Add a method to notify processor nodes */ acpigen_write_processor_cnot(cores_per_package); } struct chip_operations cpu_intel_model_406dx_ops = { CHIP_NAME("Intel Rangeley CPU") };