/* * This file is part of the coreboot project. * * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc. */ #include "cpu/amd/car/post_cache_as_ram.c" #include "defaults.h" #include #include #include #include #include #include #include #include static void prep_fid_change(void); static void init_fidvid_stage2(u32 apicid, u32 nodeid); void cpuSetAMDMSR(void); #if CONFIG_PCI_IO_CFG_EXT static void set_EnableCf8ExtCfg(void) { // set the NB_CFG[46]=1; msr_t msr; msr = rdmsr(NB_CFG_MSR); // EnableCf8ExtCfg: We need that to access CONFIG_PCI_IO_CFG_EXT 4K range msr.hi |= (1 << (46 - 32)); wrmsr(NB_CFG_MSR, msr); } #else static void set_EnableCf8ExtCfg(void) { } #endif typedef void (*process_ap_t) (u32 apicid, void *gp); //core_range = 0 : all cores //core range = 1 : core 0 only //core range = 2 : cores other than core0 static void for_each_ap(u32 bsp_apicid, u32 core_range, process_ap_t process_ap, void *gp) { // here assume the OS don't change our apicid u32 ap_apicid; u32 nodes; u32 siblings; u32 disable_siblings; u32 cores_found; u32 nb_cfg_54; int i, j; u32 ApicIdCoreIdSize; /* get_nodes define in ht_wrapper.c */ nodes = get_nodes(); if (!CONFIG_LOGICAL_CPUS || read_option(multi_core, 0) != 0) { // 0 means multi core disable_siblings = 1; } else { disable_siblings = 0; } /* Assume that all node are same stepping, otherwise we can use use nb_cfg_54 from bsp for all nodes */ nb_cfg_54 = read_nb_cfg_54(); ApicIdCoreIdSize = (cpuid_ecx(0x80000008) >> 12 & 0xf); if (ApicIdCoreIdSize) { siblings = ((1 << ApicIdCoreIdSize) - 1); } else { siblings = 3; //quad core } for (i = 0; i < nodes; i++) { cores_found = get_core_num_in_bsp(i); u32 jstart, jend; if (core_range == 2) { jstart = 1; } else { jstart = 0; } if (disable_siblings || (core_range == 1)) { jend = 0; } else { jend = cores_found; } for (j = jstart; j <= jend; j++) { ap_apicid = i * (nb_cfg_54 ? (siblings + 1) : 1) + j * (nb_cfg_54 ? 1 : 64); #if CONFIG_ENABLE_APIC_EXT_ID && (CONFIG_APIC_ID_OFFSET > 0) #if !CONFIG_LIFT_BSP_APIC_ID if ((i != 0) || (j != 0)) /* except bsp */ #endif ap_apicid += CONFIG_APIC_ID_OFFSET; #endif if (ap_apicid == bsp_apicid) continue; process_ap(ap_apicid, gp); } } } static inline int lapic_remote_read(int apicid, int reg, u32 *pvalue) { int timeout; u32 status; int result; lapic_wait_icr_idle(); lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); lapic_write(LAPIC_ICR, LAPIC_DM_REMRD | (reg >> 4)); /* Extra busy check compared to lapic.h */ timeout = 0; do { status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; } while (status == LAPIC_ICR_BUSY && timeout++ < 1000); timeout = 0; do { status = lapic_read(LAPIC_ICR) & LAPIC_ICR_RR_MASK; } while (status == LAPIC_ICR_RR_INPROG && timeout++ < 1000); result = -1; if (status == LAPIC_ICR_RR_VALID) { *pvalue = lapic_read(LAPIC_RRR); result = 0; } return result; } #if CONFIG_SET_FIDVID static void init_fidvid_ap(u32 apicid, u32 nodeid, u32 coreid); #endif static inline __attribute__ ((always_inline)) void print_apicid_nodeid_coreid(u32 apicid, struct node_core_id id, const char *str) { printk(BIOS_DEBUG, "%s --- { APICID = %02x NODEID = %02x COREID = %02x} ---\n", str, apicid, id.nodeid, id.coreid); } static u32 wait_cpu_state(u32 apicid, u32 state) { u32 readback = 0; u32 timeout = 1; int loop = 4000000; while (--loop > 0) { if (lapic_remote_read(apicid, LAPIC_MSG_REG, &readback) != 0) continue; if ((readback & 0x3f) == state || (readback & 0x3f) == F10_APSTATE_RESET) { timeout = 0; break; //target cpu is in stage started } } if (timeout) { if (readback) { timeout = readback; } } return timeout; } static void wait_ap_started(u32 ap_apicid, void *gp) { u32 timeout; timeout = wait_cpu_state(ap_apicid, F10_APSTATE_STARTED); printk(BIOS_DEBUG, "* AP %02x", ap_apicid); if (timeout) { printk(BIOS_DEBUG, " timed out:%08x\n", timeout); } else { printk(BIOS_DEBUG, "started\n"); } } void wait_all_other_cores_started(u32 bsp_apicid) { // all aps other than core0 printk(BIOS_DEBUG, "started ap apicid: "); for_each_ap(bsp_apicid, 2, wait_ap_started, (void *)0); printk(BIOS_DEBUG, "\n"); } void allow_all_aps_stop(u32 bsp_apicid) { /* Called by the BSP to indicate AP can stop */ /* FIXME Do APs use this? */ // allow aps to stop use 6 bits for state lapic_write(LAPIC_MSG_REG, (bsp_apicid << 24) | F10_APSTATE_STOPPED); } static void enable_apic_ext_id(u32 node) { u32 val; val = pci_read_config32(NODE_HT(node), 0x68); val |= (HTTC_APIC_EXT_SPUR | HTTC_APIC_EXT_ID | HTTC_APIC_EXT_BRD_CST); pci_write_config32(NODE_HT(node), 0x68, val); } static void STOP_CAR_AND_CPU(void) { msr_t msr; /* Disable L2 IC to L3 connection (Only for CAR) */ msr = rdmsr(BU_CFG2); msr.lo &= ~(1 << ClLinesToNbDis); wrmsr(BU_CFG2, msr); disable_cache_as_ram(); // inline /* stop all cores except node0/core0 the bsp .... */ stop_this_cpu(); } static u32 init_cpus(u32 cpu_init_detectedx, struct sys_info *sysinfo) { u32 bsp_apicid = 0; u32 apicid; struct node_core_id id; /* Please refer to the calculations and explaination in cache_as_ram.inc before modifying these values */ uint32_t max_ap_stack_region_size = CONFIG_MAX_CPUS * CONFIG_DCACHE_AP_STACK_SIZE; uint32_t max_bsp_stack_region_size = CONFIG_DCACHE_BSP_STACK_SIZE + CONFIG_DCACHE_BSP_STACK_SLUSH; uint32_t bsp_stack_region_upper_boundary = CONFIG_DCACHE_RAM_BASE + CONFIG_DCACHE_RAM_SIZE; uint32_t bsp_stack_region_lower_boundary = bsp_stack_region_upper_boundary - max_bsp_stack_region_size; void * lower_stack_region_boundary = (void*)(bsp_stack_region_lower_boundary - max_ap_stack_region_size); if (((void*)(sysinfo + 1)) > lower_stack_region_boundary) printk(BIOS_WARNING, "sysinfo extends into stack region (sysinfo range: [%p,%p] lower stack region boundary: %p)\n", sysinfo, sysinfo + 1, lower_stack_region_boundary); /* * already set early mtrr in cache_as_ram.inc */ /* that is from initial apicid, we need nodeid and coreid later */ id = get_node_core_id_x(); /* NB_CFG MSR is shared between cores, so we need make sure core0 is done at first --- use wait_all_core0_started */ if (id.coreid == 0) { set_apicid_cpuid_lo(); /* only set it on core0 */ set_EnableCf8ExtCfg(); /* only set it on core0 */ #if CONFIG_ENABLE_APIC_EXT_ID enable_apic_ext_id(id.nodeid); #endif } enable_lapic(); #if CONFIG_ENABLE_APIC_EXT_ID && (CONFIG_APIC_ID_OFFSET > 0) u32 initial_apicid = get_initial_apicid(); #if !CONFIG_LIFT_BSP_APIC_ID if (initial_apicid != 0) // other than bsp #endif { /* use initial apic id to lift it */ u32 dword = lapic_read(LAPIC_ID); dword &= ~(0xff << 24); dword |= (((initial_apicid + CONFIG_APIC_ID_OFFSET) & 0xff) << 24); lapic_write(LAPIC_ID, dword); } #if CONFIG_LIFT_BSP_APIC_ID bsp_apicid += CONFIG_APIC_ID_OFFSET; #endif #endif /* get the apicid, it may be lifted already */ apicid = lapicid(); // show our apicid, nodeid, and coreid if (id.coreid == 0) { if (id.nodeid != 0) //all core0 except bsp print_apicid_nodeid_coreid(apicid, id, " core0: "); } else { //all other cores print_apicid_nodeid_coreid(apicid, id, " corex: "); } if (cpu_init_detectedx) { print_apicid_nodeid_coreid(apicid, id, "\n\n\nINIT detected from "); printk(BIOS_DEBUG, "\nIssuing SOFT_RESET...\n"); soft_reset(); } if (id.coreid == 0) { if (!(warm_reset_detect(id.nodeid))) //FIXME: INIT is checked above but check for more resets? distinguish_cpu_resets(id.nodeid); // Also indicates we are started } // Mark the core as started. lapic_write(LAPIC_MSG_REG, (apicid << 24) | F10_APSTATE_STARTED); if (apicid != bsp_apicid) { /* Setup each AP's cores MSRs. * This happens after HTinit. * The BSP runs this code in it's own path. */ update_microcode(cpuid_eax(1)); cpuSetAMDMSR(); #if CONFIG_SET_FIDVID #if CONFIG_LOGICAL_CPUS && CONFIG_SET_FIDVID_CORE0_ONLY // Run on all AP for proper FID/VID setup. if (id.coreid == 0) // only need set fid for core0 #endif { // check warm(bios) reset to call stage2 otherwise do stage1 if (warm_reset_detect(id.nodeid)) { printk(BIOS_DEBUG, "init_fidvid_stage2 apicid: %02x\n", apicid); init_fidvid_stage2(apicid, id.nodeid); } else { printk(BIOS_DEBUG, "init_fidvid_ap(stage1) apicid: %02x\n", apicid); init_fidvid_ap(apicid, id.nodeid, id.coreid); } } #endif /* AP is ready, configure MTRRs and go to sleep */ set_var_mtrr(0, 0x00000000, CONFIG_RAMTOP, MTRR_TYPE_WRBACK); STOP_CAR_AND_CPU(); printk(BIOS_DEBUG, "\nAP %02x should be halted but you are reading this....\n", apicid); } return bsp_apicid; } static u32 is_core0_started(u32 nodeid) { u32 htic; device_t device; device = NODE_PCI(nodeid, 0); htic = pci_read_config32(device, HT_INIT_CONTROL); htic &= HTIC_ColdR_Detect; return htic; } void wait_all_core0_started(void) { /* When core0 is started, it will distingush_cpu_resets * So wait for that to finish */ u32 i; u32 nodes = get_nodes(); printk(BIOS_DEBUG, "core0 started: "); for (i = 1; i < nodes; i++) { // skip bsp, because it is running on bsp while (!is_core0_started(i)) { } printk(BIOS_DEBUG, " %02x", i); } printk(BIOS_DEBUG, "\n"); } #if CONFIG_MAX_PHYSICAL_CPUS > 1 /** * void start_node(u32 node) * * start the core0 in node, so it can generate HT packet to feature code. * * This function starts the AP nodes core0s. wait_all_core0_started() in * romstage.c waits for all the AP to be finished before continuing * system init. */ static void start_node(u8 node) { u32 val; /* Enable routing table */ printk(BIOS_DEBUG, "Start node %02x", node); #if CONFIG_NORTHBRIDGE_AMD_AMDFAM10 /* For FAM10 support, we need to set Dram base/limit for the new node */ pci_write_config32(NODE_MP(node), 0x44, 0); pci_write_config32(NODE_MP(node), 0x40, 3); #endif /* Allow APs to make requests (ROM fetch) */ val = pci_read_config32(NODE_HT(node), 0x6c); val &= ~(1 << 1); pci_write_config32(NODE_HT(node), 0x6c, val); printk(BIOS_DEBUG, " done.\n"); } /** * static void setup_remote_node(u32 node) * * Copy the BSP Address Map to each AP. */ static void setup_remote_node(u8 node) { /* There registers can be used with F1x114_x Address Map at the same time, So must set them even 32 node */ static const u16 pci_reg[] = { /* DRAM Base/Limits Registers */ 0x44, 0x4c, 0x54, 0x5c, 0x64, 0x6c, 0x74, 0x7c, 0x40, 0x48, 0x50, 0x58, 0x60, 0x68, 0x70, 0x78, 0x144, 0x14c, 0x154, 0x15c, 0x164, 0x16c, 0x174, 0x17c, 0x140, 0x148, 0x150, 0x158, 0x160, 0x168, 0x170, 0x178, /* MMIO Base/Limits Registers */ 0x84, 0x8c, 0x94, 0x9c, 0xa4, 0xac, 0xb4, 0xbc, 0x80, 0x88, 0x90, 0x98, 0xa0, 0xa8, 0xb0, 0xb8, /* IO Base/Limits Registers */ 0xc4, 0xcc, 0xd4, 0xdc, 0xc0, 0xc8, 0xd0, 0xd8, /* Configuration Map Registers */ 0xe0, 0xe4, 0xe8, 0xec, }; u16 i; printk(BIOS_DEBUG, "setup_remote_node: %02x", node); /* copy the default resource map from node 0 */ for (i = 0; i < ARRAY_SIZE(pci_reg); i++) { u32 value; u16 reg; reg = pci_reg[i]; value = pci_read_config32(NODE_MP(0), reg); pci_write_config32(NODE_MP(node), reg, value); } printk(BIOS_DEBUG, " done\n"); } #endif /* CONFIG_MAX_PHYSICAL_CPUS > 1 */ static void AMD_Errata281(u8 node, u32 revision, u32 platform) { /* Workaround for Transaction Scheduling Conflict in * Northbridge Cross Bar. Implement XCS Token adjustment * for ganged links. Also, perform fix up for the mixed * revision case. */ u32 reg, val; u8 i; u8 mixed = 0; u8 nodes = get_nodes(); if (platform & AMD_PTYPE_SVR) { /* For each node we need to check for a "broken" node */ if (!(revision & (AMD_DR_B0 | AMD_DR_B1))) { for (i = 0; i < nodes; i++) { if (mctGetLogicalCPUID(i) & (AMD_DR_B0 | AMD_DR_B1)) { mixed = 1; break; } } } if ((revision & (AMD_DR_B0 | AMD_DR_B1)) || mixed) { /* F0X68[22:21] DsNpReqLmt0 = 01b */ val = pci_read_config32(NODE_PCI(node, 0), 0x68); val &= ~0x00600000; val |= 0x00200000; pci_write_config32(NODE_PCI(node, 0), 0x68, val); /* F3X6C */ val = pci_read_config32(NODE_PCI(node, 3), 0x6C); val &= ~0x700780F7; val |= 0x00010094; pci_write_config32(NODE_PCI(node, 3), 0x6C, val); /* F3X7C */ val = pci_read_config32(NODE_PCI(node, 3), 0x7C); val &= ~0x707FFF1F; val |= 0x00144514; pci_write_config32(NODE_PCI(node, 3), 0x7C, val); /* F3X144[3:0] RspTok = 0001b */ val = pci_read_config32(NODE_PCI(node, 3), 0x144); val &= ~0x0000000F; val |= 0x00000001; pci_write_config32(NODE_PCI(node, 3), 0x144, val); for (i = 0; i < 3; i++) { reg = 0x148 + (i * 4); val = pci_read_config32(NODE_PCI(node, 3), reg); val &= ~0x000000FF; val |= 0x000000DB; pci_write_config32(NODE_PCI(node, 3), reg, val); } } } } static void AMD_Errata298(void) { /* Workaround for L2 Eviction May Occur during operation to * set Accessed or dirty bit. */ msr_t msr; u8 i; u8 affectedRev = 0; u8 nodes = get_nodes(); /* For each core we need to check for a "broken" node */ for (i = 0; i < nodes; i++) { if (mctGetLogicalCPUID(i) & (AMD_DR_B0 | AMD_DR_B1 | AMD_DR_B2)) { affectedRev = 1; break; } } if (affectedRev) { msr = rdmsr(HWCR); msr.lo |= 0x08; /* Set TlbCacheDis bit[3] */ wrmsr(HWCR, msr); msr = rdmsr(BU_CFG); msr.lo |= 0x02; /* Set TlbForceMemTypeUc bit[1] */ wrmsr(BU_CFG, msr); msr = rdmsr(OSVW_ID_Length); msr.lo |= 0x01; /* OS Visible Workaround - MSR */ wrmsr(OSVW_ID_Length, msr); msr = rdmsr(OSVW_Status); msr.lo |= 0x01; /* OS Visible Workaround - MSR */ wrmsr(OSVW_Status, msr); } if (!affectedRev && (mctGetLogicalCPUID(0xFF) & AMD_DR_B3)) { msr = rdmsr(OSVW_ID_Length); msr.lo |= 0x01; /* OS Visible Workaround - MSR */ wrmsr(OSVW_ID_Length, msr); } } static u32 get_platform_type(void) { u32 ret = 0; switch (SYSTEM_TYPE) { case 1: ret |= AMD_PTYPE_DSK; break; case 2: ret |= AMD_PTYPE_MOB; break; case 0: ret |= AMD_PTYPE_SVR; break; default: break; } /* FIXME: add UMA support. */ /* All Fam10 are multi core */ ret |= AMD_PTYPE_MC; return ret; } static void AMD_SetupPSIVID_d(u32 platform_type, u8 node) { u32 dword; int i; msr_t msr; if (platform_type & (AMD_PTYPE_MOB | AMD_PTYPE_DSK)) { /* The following code sets the PSIVID to the lowest support P state * assuming that the VID for the lowest power state is below * the VDD voltage regulator threshold. (This also assumes that there * is a Pstate lower than P0) */ for (i = 4; i >= 0; i--) { msr = rdmsr(PS_REG_BASE + i); /* Pstate valid? */ if (msr.hi & PS_EN_MASK) { dword = pci_read_config32(NODE_PCI(i, 3), 0xA0); dword &= ~0x7F; dword |= (msr.lo >> 9) & 0x7F; pci_write_config32(NODE_PCI(i, 3), 0xA0, dword); break; } } } } /** * AMD_CpuFindCapability - Traverse PCI capability list to find host HT links. * HT Phy operations are not valid on links that aren't present, so this * prevents invalid accesses. * * Returns the offset of the link register. */ static BOOL AMD_CpuFindCapability(u8 node, u8 cap_count, u8 * offset) { u32 reg; u32 val; /* get start of CPU HT Host Capabilities */ val = pci_read_config32(NODE_PCI(node, 0), 0x34); val &= 0xFF; //reg offset of first link cap_count++; /* Traverse through the capabilities. */ do { reg = pci_read_config32(NODE_PCI(node, 0), val); /* Is the capability block a HyperTransport capability block? */ if ((reg & 0xFF) == 0x08) { /* Is the HT capability block an HT Host Capability? */ if ((reg & 0xE0000000) == (1 << 29)) cap_count--; } if (cap_count) val = (reg >> 8) & 0xFF; //update reg offset } while (cap_count && val); *offset = (u8) val; /* If requested capability found val != 0 */ if (!cap_count) return TRUE; else return FALSE; } /** * AMD_checkLinkType - Compare desired link characteristics using a logical * link type mask. * * Returns the link characteristic mask. */ static u32 AMD_checkLinkType(u8 node, u8 link, u8 regoff) { u32 val; u32 linktype = 0; /* Check connect, init and coherency */ val = pci_read_config32(NODE_PCI(node, 0), regoff + 0x18); val &= 0x1F; if (val == 3) linktype |= HTPHY_LINKTYPE_COHERENT; if (val == 7) linktype |= HTPHY_LINKTYPE_NONCOHERENT; if (linktype) { /* Check gen3 */ val = pci_read_config32(NODE_PCI(node, 0), regoff + 0x08); if (((val >> 8) & 0x0F) > 6) linktype |= HTPHY_LINKTYPE_HT3; else linktype |= HTPHY_LINKTYPE_HT1; /* Check ganged */ val = pci_read_config32(NODE_PCI(node, 0), (link << 2) + 0x170); if (val & 1) linktype |= HTPHY_LINKTYPE_GANGED; else linktype |= HTPHY_LINKTYPE_UNGANGED; } return linktype; } /** * AMD_SetHtPhyRegister - Use the HT link's HT Phy portal registers to update * a phy setting for that link. */ static void AMD_SetHtPhyRegister(u8 node, u8 link, u8 entry) { u32 phyReg; u32 phyBase; u32 val; /* Determine this link's portal */ if (link > 3) link -= 4; phyBase = ((u32) link << 3) | 0x180; /* Get the portal control register's initial value * and update it to access the desired phy register */ phyReg = pci_read_config32(NODE_PCI(node, 4), phyBase); if (fam10_htphy_default[entry].htreg > 0x1FF) { phyReg &= ~HTPHY_DIRECT_OFFSET_MASK; phyReg |= HTPHY_DIRECT_MAP; } else { phyReg &= ~HTPHY_OFFSET_MASK; } /* Now get the current phy register data * LinkPhyDone = 0, LinkPhyWrite = 0 is a read */ phyReg |= fam10_htphy_default[entry].htreg; pci_write_config32(NODE_PCI(node, 4), phyBase, phyReg); do { val = pci_read_config32(NODE_PCI(node, 4), phyBase); } while (!(val & HTPHY_IS_COMPLETE_MASK)); /* Now we have the phy register data, apply the change */ val = pci_read_config32(NODE_PCI(node, 4), phyBase + 4); val &= ~fam10_htphy_default[entry].mask; val |= fam10_htphy_default[entry].data; pci_write_config32(NODE_PCI(node, 4), phyBase + 4, val); /* write it through the portal to the phy * LinkPhyDone = 0, LinkPhyWrite = 1 is a write */ phyReg |= HTPHY_WRITE_CMD; pci_write_config32(NODE_PCI(node, 4), phyBase, phyReg); do { val = pci_read_config32(NODE_PCI(node, 4), phyBase); } while (!(val & HTPHY_IS_COMPLETE_MASK)); } void cpuSetAMDMSR(void) { /* This routine loads the CPU with default settings in fam10_msr_default * table . It must be run after Cache-As-RAM has been enabled, and * Hypertransport initialization has taken place. Also note * that it is run on the current processor only, and only for the current * processor core. */ msr_t msr; u8 i; u32 revision, platform; printk(BIOS_DEBUG, "cpuSetAMDMSR "); revision = mctGetLogicalCPUID(0xFF); platform = get_platform_type(); for (i = 0; i < ARRAY_SIZE(fam10_msr_default); i++) { if ((fam10_msr_default[i].revision & revision) && (fam10_msr_default[i].platform & platform)) { msr = rdmsr(fam10_msr_default[i].msr); msr.hi &= ~fam10_msr_default[i].mask_hi; msr.hi |= fam10_msr_default[i].data_hi; msr.lo &= ~fam10_msr_default[i].mask_lo; msr.lo |= fam10_msr_default[i].data_lo; wrmsr(fam10_msr_default[i].msr, msr); } } AMD_Errata298(); printk(BIOS_DEBUG, " done\n"); } static void cpuSetAMDPCI(u8 node) { /* This routine loads the CPU with default settings in fam10_pci_default * table . It must be run after Cache-As-RAM has been enabled, and * Hypertransport initialization has taken place. Also note * that it is run for the first core on each node */ u8 i, j; u32 revision, platform; u32 val; u8 offset; printk(BIOS_DEBUG, "cpuSetAMDPCI %02d", node); revision = mctGetLogicalCPUID(node); platform = get_platform_type(); AMD_SetupPSIVID_d(platform, node); /* Set PSIVID offset which is not table driven */ for (i = 0; i < ARRAY_SIZE(fam10_pci_default); i++) { if ((fam10_pci_default[i].revision & revision) && (fam10_pci_default[i].platform & platform)) { val = pci_read_config32(NODE_PCI(node, fam10_pci_default[i]. function), fam10_pci_default[i].offset); val &= ~fam10_pci_default[i].mask; val |= fam10_pci_default[i].data; pci_write_config32(NODE_PCI(node, fam10_pci_default[i]. function), fam10_pci_default[i].offset, val); } } for (i = 0; i < ARRAY_SIZE(fam10_htphy_default); i++) { if ((fam10_htphy_default[i].revision & revision) && (fam10_htphy_default[i].platform & platform)) { /* HT Phy settings either apply to both sublinks or have * separate registers for sublink zero and one, so there * will be two table entries. So, here we only loop * through the sublink zeros in function zero. */ for (j = 0; j < 4; j++) { if (AMD_CpuFindCapability(node, j, &offset)) { if (AMD_checkLinkType(node, j, offset) & fam10_htphy_default[i].linktype) { AMD_SetHtPhyRegister(node, j, i); } } else { /* No more capabilities, * link not present */ break; } } } } /* FIXME: add UMA support and programXbarToSriReg(); */ AMD_Errata281(node, revision, platform); /* FIXME: if the dct phy doesn't init correct it needs to reset. if (revision & (AMD_DR_B2 | AMD_DR_B3)) dctPhyDiag(); */ printk(BIOS_DEBUG, " done\n"); } #ifdef UNUSED_CODE static void cpuInitializeMCA(void) { /* Clears Machine Check Architecture (MCA) registers, which power on * containing unknown data, on currently running processor. * This routine should only be executed on initial power on (cold boot), * not across a warm reset because valid data is present at that time. */ msr_t msr; u32 reg; u8 i; if (cpuid_edx(1) & 0x4080) { /* MCE and MCA (edx[7] and edx[14]) */ msr = rdmsr(MCG_CAP); if (msr.lo & MCG_CTL_P) { /* MCG_CTL_P bit is set? */ msr.lo &= 0xFF; msr.lo--; msr.lo <<= 2; /* multiply the count by 4 */ reg = MC0_STA + msr.lo; msr.lo = msr.hi = 0; for (i = 0; i < 4; i++) { wrmsr(reg, msr); reg -= 4; /* Touch status regs for each bank */ } } } } #endif /** * finalize_node_setup() * * Do any additional post HT init * */ static void finalize_node_setup(struct sys_info *sysinfo) { u8 i; u8 nodes = get_nodes(); u32 reg; /* read Node0 F0_0x64 bit [8:10] to find out SbLink # */ reg = pci_read_config32(NODE_HT(0), 0x64); sysinfo->sblk = (reg >> 8) & 7; sysinfo->sbbusn = 0; sysinfo->nodes = nodes; sysinfo->sbdn = get_sbdn(sysinfo->sbbusn); for (i = 0; i < nodes; i++) { cpuSetAMDPCI(i); } #if CONFIG_SET_FIDVID // Prep each node for FID/VID setup. prep_fid_change(); #endif #if CONFIG_MAX_PHYSICAL_CPUS > 1 /* Skip the BSP, start at node 1 */ for (i = 1; i < nodes; i++) { setup_remote_node(i); start_node(i); } #endif } #include "fidvid.c"