/* * This file is part of the coreboot project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * MultiMediaCard (MMC) and eMMC specific support code * This code is controller independent */ #include <commonlib/storage.h> #include <delay.h> #include "mmc.h" #include "sd_mmc.h" #include "storage.h" #include <string.h> #include <timer.h> /* We pass in the cmd since otherwise the init seems to fail */ static int mmc_send_op_cond_iter(struct storage_media *media, struct mmc_command *cmd, int use_arg) { struct sd_mmc_ctrlr *ctrlr = media->ctrlr; cmd->cmdidx = MMC_CMD_SEND_OP_COND; cmd->resp_type = CARD_RSP_R3; /* Set the controller's operating conditions */ if (use_arg) { uint32_t mask = media->op_cond_response & (OCR_VOLTAGE_MASK | OCR_ACCESS_MODE); cmd->cmdarg = ctrlr->voltages & mask; /* Always request high capacity if supported by the * controller */ if (ctrlr->caps & DRVR_CAP_HC) cmd->cmdarg |= OCR_HCS; } cmd->flags = 0; int err = ctrlr->send_cmd(ctrlr, cmd, NULL); if (err) return err; media->op_cond_response = cmd->response[0]; return 0; } int mmc_send_op_cond(struct storage_media *media) { struct mmc_command cmd; int max_iters = 2; /* Ask the card for its operating conditions */ cmd.cmdarg = 0; for (int i = 0; i < max_iters; i++) { int err = mmc_send_op_cond_iter(media, &cmd, i != 0); if (err) return err; // OCR_BUSY is active low, this bit set means // "initialization complete". if (media->op_cond_response & OCR_BUSY) return 0; } return CARD_IN_PROGRESS; } int mmc_complete_op_cond(struct storage_media *media) { struct mmc_command cmd; struct stopwatch sw; stopwatch_init_msecs_expire(&sw, MMC_INIT_TIMEOUT_US_MS); while (1) { // CMD1 queries whether initialization is done. int err = mmc_send_op_cond_iter(media, &cmd, 1); if (err) return err; // OCR_BUSY means "initialization complete". if (media->op_cond_response & OCR_BUSY) break; // Check if init timeout has expired. if (stopwatch_expired(&sw)) return CARD_UNUSABLE_ERR; udelay(100); } media->version = MMC_VERSION_UNKNOWN; media->ocr = cmd.response[0]; media->high_capacity = ((media->ocr & OCR_HCS) == OCR_HCS); media->rca = 0; return 0; } int mmc_send_ext_csd(struct sd_mmc_ctrlr *ctrlr, unsigned char *ext_csd) { struct mmc_command cmd; struct mmc_data data; int rv; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = CARD_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; data.dest = (char *)ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = DATA_FLAG_READ; rv = ctrlr->send_cmd(ctrlr, &cmd, &data); if (!rv && CONFIG(SD_MMC_TRACE)) { int i, size; size = data.blocks * data.blocksize; sd_mmc_trace("\t%p ext_csd:", ctrlr); for (i = 0; i < size; i++) { if (!(i % 32)) sd_mmc_trace("\n"); sd_mmc_trace(" %2.2x", ext_csd[i]); } sd_mmc_trace("\n"); } return rv; } static int mmc_switch(struct storage_media *media, uint8_t index, uint8_t value) { struct mmc_command cmd; struct sd_mmc_ctrlr *ctrlr = media->ctrlr; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = CARD_RSP_R1b; cmd.cmdarg = ((MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8)); cmd.flags = 0; int ret = ctrlr->send_cmd(ctrlr, &cmd, NULL); /* Waiting for the ready status */ sd_mmc_send_status(media, SD_MMC_IO_RETRIES); return ret; } static void mmc_recalculate_clock(struct storage_media *media) { uint32_t clock; clock = CLOCK_26MHZ; if (media->caps & DRVR_CAP_HS) { if ((media->caps & DRVR_CAP_HS200) || (media->caps & DRVR_CAP_HS400)) clock = CLOCK_200MHZ; else if (media->caps & DRVR_CAP_HS52) clock = CLOCK_52MHZ; } SET_CLOCK(media->ctrlr, clock); } static int mmc_select_hs(struct storage_media *media) { int ret; /* Switch the MMC device into high speed mode */ ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS); if (ret) { sd_mmc_error("Timing switch to high speed failed\n"); return ret; } sdhc_debug("SDHCI switched MMC to high speed\n"); /* Increase the controller clock speed */ SET_TIMING(media->ctrlr, BUS_TIMING_MMC_HS); media->caps &= ~(DRVR_CAP_HS200 | DRVR_CAP_HS400); media->caps |= DRVR_CAP_HS52 | DRVR_CAP_HS; mmc_recalculate_clock(media); ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES); return ret; } static int mmc_send_tuning_seq(struct sd_mmc_ctrlr *ctrlr, char *buffer) { struct mmc_command cmd; struct mmc_data data; /* Request the device send the tuning sequence to the host */ cmd.cmdidx = MMC_CMD_AUTO_TUNING_SEQUENCE; cmd.resp_type = CARD_RSP_R1; cmd.cmdarg = 0; cmd.flags = CMD_FLAG_IGNORE_INHIBIT; data.dest = buffer; data.blocks = 1; data.blocksize = (ctrlr->bus_width == 8) ? 128 : 64; data.flags = DATA_FLAG_READ; return ctrlr->send_cmd(ctrlr, &cmd, &data); } static int mmc_bus_tuning(struct storage_media *media) { ALLOC_CACHE_ALIGN_BUFFER(char, buffer, 128); struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int index; int successful; /* Request the device send the tuning sequence up to 40 times */ ctrlr->tuning_start(ctrlr, 0); for (index = 0; index < 40; index++) { mmc_send_tuning_seq(ctrlr, buffer); if (ctrlr->is_tuning_complete(ctrlr, &successful)) { if (successful) return 0; break; } } sd_mmc_error("Bus tuning failed!\n"); return -1; } static int mmc_select_hs400(struct storage_media *media) { uint8_t bus_width; uint32_t caps; struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int ret; uint32_t timing; /* Switch the MMC device into high speed mode */ ret = mmc_select_hs(media); if (ret) return ret; /* Switch MMC device to 8-bit DDR with strobe */ bus_width = EXT_CSD_DDR_BUS_WIDTH_8; caps = DRVR_CAP_HS400 | DRVR_CAP_HS52 | DRVR_CAP_HS; timing = BUS_TIMING_MMC_HS400; if ((ctrlr->caps & DRVR_CAP_ENHANCED_STROBE) && (media->caps & DRVR_CAP_ENHANCED_STROBE)) { bus_width |= EXT_CSD_BUS_WIDTH_STROBE; caps |= DRVR_CAP_ENHANCED_STROBE; timing = BUS_TIMING_MMC_HS400ES; } ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, bus_width); if (ret) { sd_mmc_error("Switching bus width for HS400 failed\n"); return ret; } sdhc_debug("SDHCI switched MMC to 8-bit DDR\n"); /* Set controller to 8-bit mode */ SET_BUS_WIDTH(ctrlr, 8); media->caps |= EXT_CSD_BUS_WIDTH_8; /* Switch MMC device to HS400 */ ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400); if (ret) { sd_mmc_error("Switch to HS400 timing failed\n"); return ret; } /* Set controller to 200 MHz and use receive strobe */ SET_TIMING(ctrlr, timing); media->caps |= caps; mmc_recalculate_clock(media); ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES); return ret; } static int mmc_select_hs200(struct storage_media *media) { struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int ret; /* Switch the MMC device to 8-bit SDR */ ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8); if (ret) { sd_mmc_error("Switching bus width for HS200 failed\n"); return ret; } /* Set controller to 8-bit mode */ SET_BUS_WIDTH(ctrlr, 8); media->caps |= EXT_CSD_BUS_WIDTH_8; /* Switch to HS200 */ ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200); if (ret) { sd_mmc_error("Switch to HS200 failed\n"); return ret; } sdhc_debug("SDHCI switched MMC to 8-bit SDR\n"); /* Set controller to 200 MHz */ SET_TIMING(ctrlr, BUS_TIMING_MMC_HS200); media->caps |= DRVR_CAP_HS200 | DRVR_CAP_HS52 | DRVR_CAP_HS; mmc_recalculate_clock(media); /* Tune the receive sampling point for the bus */ if ((!ret) && (ctrlr->caps & DRVR_CAP_HS200_TUNING)) ret = mmc_bus_tuning(media); return ret; } int mmc_change_freq(struct storage_media *media) { struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int err; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, 512); media->caps = 0; /* Only version 4 supports high-speed */ if (media->version < MMC_VERSION_4) return 0; err = mmc_send_ext_csd(ctrlr, ext_csd); if (err) return err; /* Determine if the device supports enhanced strobe */ media->caps |= ext_csd[EXT_CSD_STROBE_SUPPORT] ? DRVR_CAP_ENHANCED_STROBE : 0; if ((ctrlr->caps & DRVR_CAP_HS400) && (ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS400)) err = mmc_select_hs400(media); else if ((ctrlr->caps & DRVR_CAP_HS200) && (ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS_200MHZ)) err = mmc_select_hs200(media); else err = mmc_select_hs(media); return err; } int mmc_set_bus_width(struct storage_media *media) { struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int err; int width; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE); ALLOC_CACHE_ALIGN_BUFFER(unsigned char, test_csd, EXT_CSD_SIZE); /* Set the bus width */ err = 0; for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) { /* If HS200 is switched, Bus Width has been 8-bit */ if ((media->caps & DRVR_CAP_HS200) || (media->caps & DRVR_CAP_HS400)) break; /* Set the card to use 4 bit*/ err = mmc_switch(media, EXT_CSD_BUS_WIDTH, width); if (err) continue; if (!width) { SET_BUS_WIDTH(ctrlr, 1); break; } SET_BUS_WIDTH(ctrlr, 4 * width); err = mmc_send_ext_csd(ctrlr, test_csd); if (!err && (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] == test_csd[EXT_CSD_PARTITIONING_SUPPORT]) && (ext_csd[EXT_CSD_ERASE_GROUP_DEF] == test_csd[EXT_CSD_ERASE_GROUP_DEF]) && (ext_csd[EXT_CSD_REV] == test_csd[EXT_CSD_REV]) && (ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && memcmp(&ext_csd[EXT_CSD_SEC_CNT], &test_csd[EXT_CSD_SEC_CNT], 4) == 0) { media->caps |= width; break; } } return err; } int mmc_update_capacity(struct storage_media *media) { uint64_t capacity; struct sd_mmc_ctrlr *ctrlr = media->ctrlr; int err; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE); uint32_t erase_size; uint32_t hc_erase_size; uint64_t hc_wp_size; int index; if (media->version < MMC_VERSION_4) return 0; /* check ext_csd version and capacity */ err = mmc_send_ext_csd(ctrlr, ext_csd); if (err) return err; if (ext_csd[EXT_CSD_REV] < 2) return 0; /* Determine the eMMC device information */ media->partition_config = ext_csd[EXT_CSD_PART_CONF] & EXT_CSD_PART_ACCESS_MASK; /* Determine the user partition size * * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is * more than 2GB */ capacity = (uint32_t)(ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24); capacity *= 512; if ((capacity >> 20) > 2 * 1024) media->capacity[MMC_PARTITION_USER] = capacity; /* Determine the boot parition sizes */ hc_erase_size = ext_csd[224] * 512 * KiB; capacity = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * 128 * KiB; media->capacity[MMC_PARTITION_BOOT_1] = capacity; media->capacity[MMC_PARTITION_BOOT_2] = capacity; /* Determine the RPMB size */ hc_wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE] * hc_erase_size; capacity = 128 * KiB * ext_csd[EXT_CSD_RPMB_SIZE_MULT]; media->capacity[MMC_PARTITION_RPMB] = capacity; /* Determine the general partition sizes */ capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 2] << 16) | (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 1] << 8) | ext_csd[EXT_CSD_GP_SIZE_MULT_GP0]; capacity *= hc_wp_size; media->capacity[MMC_PARTITION_GP1] = capacity; capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 2] << 16) | (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 1] << 8) | ext_csd[EXT_CSD_GP_SIZE_MULT_GP1]; capacity *= hc_wp_size; media->capacity[MMC_PARTITION_GP2] = capacity; capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 2] << 16) | (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 1] << 8) | ext_csd[EXT_CSD_GP_SIZE_MULT_GP2]; capacity *= hc_wp_size; media->capacity[MMC_PARTITION_GP3] = capacity; capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 2] << 16) | (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 1] << 8) | ext_csd[EXT_CSD_GP_SIZE_MULT_GP3]; capacity *= hc_wp_size; media->capacity[MMC_PARTITION_GP4] = capacity; /* Determine the erase size */ erase_size = (sd_mmc_extract_uint32_bits(media->csd, 81, 5) + 1) * (sd_mmc_extract_uint32_bits(media->csd, 86, 5) + 1); for (index = MMC_PARTITION_BOOT_1; index <= MMC_PARTITION_GP4; index++) { if (media->capacity[index] != 0) { /* Enable the partitions */ err = mmc_switch(media, EXT_CSD_ERASE_GROUP_DEF, EXT_CSD_PARTITION_ENABLE); if (err) { sdhc_error("Failed to enable partition access\n"); return err; } /* Use HC erase group size */ erase_size = hc_erase_size / media->write_bl_len; break; } } media->erase_blocks = erase_size; media->trim_mult = ext_csd[EXT_CSD_TRIM_MULT]; return 0; } int mmc_set_partition(struct storage_media *media, unsigned int partition_number) { uint8_t partition_config; /* Validate the partition number */ if ((partition_number > MMC_PARTITION_GP4) || (!media->capacity[partition_number])) return -1; /* Update the partition register */ partition_config = media->partition_config; partition_config &= ~EXT_CSD_PART_ACCESS_MASK; partition_config |= partition_number; /* Select the new partition */ int ret = mmc_switch(media, EXT_CSD_PART_CONF, partition_config); if (!ret) media->partition_config = partition_config; return ret; } const char *mmc_partition_name(struct storage_media *media, unsigned int partition_number) { static const char *const partition_name[8] = { "User", /* 0 */ "Boot 1", /* 1 */ "Boot 2", /* 2 */ "RPMB", /* 3 */ "GP 1", /* 4 */ "GP 2", /* 5 */ "GP 3", /* 6 */ "GP 4" /* 7 */ }; if (partition_number >= ARRAY_SIZE(partition_name)) return ""; return partition_name[partition_number]; }