/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define update_max(len, max_len, stmt) \ do { \ int tmp = stmt; \ \ max_len = MAX(max_len, tmp); \ len += tmp; \ } while (0) static u8 smbios_checksum(u8 *p, u32 length) { u8 ret = 0; while (length--) ret += *p++; return -ret; } int smbios_add_string(u8 *start, const char *str) { int i = 1; char *p = (char *)start; /* * Return 0 as required for empty strings. * See Section 6.1.3 "Text Strings" of the SMBIOS specification. */ if (*str == '\0') return 0; for (;;) { if (!*p) { strcpy(p, str); p += strlen(str); *p++ = '\0'; *p++ = '\0'; return i; } if (!strcmp(p, str)) return i; p += strlen(p)+1; i++; } } int smbios_string_table_len(u8 *start) { char *p = (char *)start; int i, len = 0; while (*p) { i = strlen(p) + 1; p += i; len += i; } if (!len) return 2; return len + 1; } int smbios_full_table_len(struct smbios_header *header, u8 *str_table_start) { return header->length + smbios_string_table_len(str_table_start); } void *smbios_carve_table(unsigned long start, u8 type, u8 length, u16 handle) { struct smbios_header *t = (struct smbios_header *)start; assert(length >= sizeof(*t)); memset(t, 0, length); t->type = type; t->length = length - 2; t->handle = handle; return t; } static int smbios_cpu_vendor(u8 *start) { if (cpu_have_cpuid()) { u32 tmp[4]; const struct cpuid_result res = cpuid(0); tmp[0] = res.ebx; tmp[1] = res.edx; tmp[2] = res.ecx; tmp[3] = 0; return smbios_add_string(start, (const char *)tmp); } else { return smbios_add_string(start, "Unknown"); } } static int smbios_processor_name(u8 *start) { u32 tmp[13]; const char *str = "Unknown Processor Name"; if (cpu_have_cpuid()) { int i; struct cpuid_result res = cpuid(0x80000000); if (res.eax >= 0x80000004) { int j = 0; for (i = 0; i < 3; i++) { res = cpuid(0x80000002 + i); tmp[j++] = res.eax; tmp[j++] = res.ebx; tmp[j++] = res.ecx; tmp[j++] = res.edx; } tmp[12] = 0; str = (const char *)tmp; } } return smbios_add_string(start, str); } /* this function will fill the corresponding manufacturer */ void smbios_fill_dimm_manufacturer_from_id(uint16_t mod_id, struct smbios_type17 *t) { const char *const manufacturer = spd_manufacturer_name(mod_id); if (manufacturer) { t->manufacturer = smbios_add_string(t->eos, manufacturer); } else { char string_buffer[256]; snprintf(string_buffer, sizeof(string_buffer), "Unknown (%x)", mod_id); t->manufacturer = smbios_add_string(t->eos, string_buffer); } } static void trim_trailing_whitespace(char *buffer, size_t buffer_size) { size_t len = strnlen(buffer, buffer_size); if (len == 0) return; for (char *p = buffer + len - 1; p >= buffer; --p) { if (*p == ' ') *p = 0; else break; } } /** This function will fill the corresponding part number */ static void smbios_fill_dimm_part_number(const char *part_number, struct smbios_type17 *t) { int invalid; size_t i, len; char trimmed_part_number[DIMM_INFO_PART_NUMBER_SIZE]; strncpy(trimmed_part_number, part_number, sizeof(trimmed_part_number)); trimmed_part_number[sizeof(trimmed_part_number) - 1] = '\0'; /* * SPD mandates that unused characters be represented with a ' '. * We don't want to publish the whitespace in the SMBIOS tables. */ trim_trailing_whitespace(trimmed_part_number, sizeof(trimmed_part_number)); len = strlen(trimmed_part_number); invalid = 0; /* assume valid */ for (i = 0; i < len; i++) { if (trimmed_part_number[i] < ' ') { invalid = 1; trimmed_part_number[i] = '*'; } } if (len == 0) { /* Null String in Part Number will have "None" instead. */ t->part_number = smbios_add_string(t->eos, "None"); } else if (invalid) { char string_buffer[sizeof(trimmed_part_number) + 10]; snprintf(string_buffer, sizeof(string_buffer), "Invalid (%s)", trimmed_part_number); t->part_number = smbios_add_string(t->eos, string_buffer); } else { t->part_number = smbios_add_string(t->eos, trimmed_part_number); } } /* Encodes the SPD serial number into hex */ static void smbios_fill_dimm_serial_number(const struct dimm_info *dimm, struct smbios_type17 *t) { char serial[9]; snprintf(serial, sizeof(serial), "%02hhx%02hhx%02hhx%02hhx", dimm->serial[0], dimm->serial[1], dimm->serial[2], dimm->serial[3]); t->serial_number = smbios_add_string(t->eos, serial); } static int create_smbios_type17_for_dimm(struct dimm_info *dimm, unsigned long *current, int *handle, int type16_handle) { struct smbios_type17 *t = smbios_carve_table(*current, SMBIOS_MEMORY_DEVICE, sizeof(*t), *handle); t->memory_type = dimm->ddr_type; if (dimm->configured_speed_mts != 0) t->clock_speed = dimm->configured_speed_mts; else t->clock_speed = dimm->ddr_frequency; if (dimm->max_speed_mts != 0) t->speed = dimm->max_speed_mts; else t->speed = dimm->ddr_frequency; if (dimm->dimm_size < 0x7fff) { t->size = dimm->dimm_size; } else { t->size = 0x7fff; t->extended_size = dimm->dimm_size & 0x7fffffff; } t->data_width = 8 * (1 << (dimm->bus_width & 0x7)); t->total_width = t->data_width + 8 * ((dimm->bus_width & 0x18) >> 3); switch (dimm->mod_type) { case SPD_RDIMM: case SPD_MINI_RDIMM: t->form_factor = MEMORY_FORMFACTOR_RIMM; break; case SPD_UDIMM: case SPD_MICRO_DIMM: case SPD_MINI_UDIMM: t->form_factor = MEMORY_FORMFACTOR_DIMM; break; case SPD_SODIMM: t->form_factor = MEMORY_FORMFACTOR_SODIMM; break; default: t->form_factor = MEMORY_FORMFACTOR_UNKNOWN; break; } smbios_fill_dimm_manufacturer_from_id(dimm->mod_id, t); smbios_fill_dimm_serial_number(dimm, t); smbios_fill_dimm_asset_tag(dimm, t); smbios_fill_dimm_locator(dimm, t); /* put '\0' in the end of data */ dimm->module_part_number[DIMM_INFO_PART_NUMBER_SIZE - 1] = '\0'; smbios_fill_dimm_part_number((char *)dimm->module_part_number, t); /* Voltage Levels */ t->configured_voltage = dimm->vdd_voltage; t->minimum_voltage = dimm->vdd_voltage; t->maximum_voltage = dimm->vdd_voltage; /* Fill in type detail */ switch (dimm->mod_type) { case SPD_RDIMM: case SPD_MINI_RDIMM: t->type_detail = MEMORY_TYPE_DETAIL_REGISTERED; break; case SPD_UDIMM: case SPD_MINI_UDIMM: t->type_detail = MEMORY_TYPE_DETAIL_UNBUFFERED; break; default: t->type_detail = MEMORY_TYPE_DETAIL_UNKNOWN; break; } /* Synchronous = 1 */ t->type_detail |= MEMORY_TYPE_DETAIL_SYNCHRONOUS; /* no handle for error information */ t->memory_error_information_handle = 0xFFFE; t->attributes = dimm->rank_per_dimm; t->phys_memory_array_handle = type16_handle; *handle += 1; return smbios_full_table_len(&t->header, t->eos); } #define VERSION_VPD "firmware_version" static const char *vpd_get_bios_version(void) { int size; const char *s; char *version; s = vpd_find(VERSION_VPD, &size, VPD_RO); if (!s) { printk(BIOS_ERR, "Find version from VPD %s failed\n", VERSION_VPD); return NULL; } version = malloc(size + 1); if (!version) { printk(BIOS_ERR, "Failed to malloc %d bytes for VPD version\n", size + 1); return NULL; } memcpy(version, s, size); version[size] = '\0'; printk(BIOS_DEBUG, "Firmware version %s from VPD %s\n", version, VERSION_VPD); return version; } static const char *get_bios_version(void) { const char *s; #define SPACES \ " " if (CONFIG(CHROMEOS)) return SPACES; if (CONFIG(VPD_SMBIOS_VERSION)) { s = vpd_get_bios_version(); if (s != NULL) return s; } s = smbios_mainboard_bios_version(); if (s != NULL) return s; if (strlen(CONFIG_LOCALVERSION) != 0) { printk(BIOS_DEBUG, "BIOS version set to CONFIG_LOCALVERSION: '%s'\n", CONFIG_LOCALVERSION); return CONFIG_LOCALVERSION; } printk(BIOS_DEBUG, "SMBIOS firmware version is set to coreboot_version: '%s'\n", coreboot_version); return coreboot_version; } static int smbios_write_type0(unsigned long *current, int handle) { struct smbios_type0 *t = smbios_carve_table(*current, SMBIOS_BIOS_INFORMATION, sizeof(*t), handle); t->vendor = smbios_add_string(t->eos, "coreboot"); t->bios_release_date = smbios_add_string(t->eos, coreboot_dmi_date); if (CONFIG(CHROMEOS_NVS)) { uintptr_t version_address = (uintptr_t)t->eos; /* SMBIOS offsets start at 1 rather than 0 */ version_address += (u32)smbios_string_table_len(t->eos) - 1; smbios_type0_bios_version(version_address); } t->bios_version = smbios_add_string(t->eos, get_bios_version()); uint32_t rom_size = CONFIG_ROM_SIZE; rom_size = MIN(CONFIG_ROM_SIZE, 16 * MiB); t->bios_rom_size = (rom_size / 65535) - 1; if (CONFIG_ROM_SIZE >= 1 * GiB) { t->extended_bios_rom_size = DIV_ROUND_UP(CONFIG_ROM_SIZE, GiB) | (1 << 14); } else { t->extended_bios_rom_size = DIV_ROUND_UP(CONFIG_ROM_SIZE, MiB); } t->system_bios_major_release = coreboot_major_revision; t->system_bios_minor_release = coreboot_minor_revision; smbios_ec_revision(&t->ec_major_release, &t->ec_minor_release); t->bios_characteristics = BIOS_CHARACTERISTICS_PCI_SUPPORTED | BIOS_CHARACTERISTICS_SELECTABLE_BOOT | BIOS_CHARACTERISTICS_UPGRADEABLE; if (CONFIG(CARDBUS_PLUGIN_SUPPORT)) t->bios_characteristics |= BIOS_CHARACTERISTICS_PC_CARD; if (CONFIG(HAVE_ACPI_TABLES)) t->bios_characteristics_ext1 = BIOS_EXT1_CHARACTERISTICS_ACPI; t->bios_characteristics_ext2 = BIOS_EXT2_CHARACTERISTICS_TARGET; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } static int get_socket_type(void) { if (CONFIG(CPU_INTEL_SLOT_1)) return 0x08; if (CONFIG(CPU_INTEL_SOCKET_MPGA604)) return 0x13; if (CONFIG(CPU_INTEL_SOCKET_LGA775)) return 0x15; if (CONFIG(XEON_SP_COMMON_BASE)) return 0x36; return 0x02; /* Unknown */ } unsigned int __weak smbios_processor_external_clock(void) { return 0; /* Unknown */ } unsigned int __weak smbios_processor_characteristics(void) { return 0; } unsigned int __weak smbios_processor_family(struct cpuid_result res) { return (res.eax > 0) ? 0x0c : 0x6; } unsigned int __weak smbios_cache_error_correction_type(u8 level) { return SMBIOS_CACHE_ERROR_CORRECTION_UNKNOWN; } unsigned int __weak smbios_cache_sram_type(void) { return SMBIOS_CACHE_SRAM_TYPE_UNKNOWN; } unsigned int __weak smbios_cache_conf_operation_mode(u8 level) { return SMBIOS_CACHE_OP_MODE_UNKNOWN; /* Unknown */ } /* Returns the processor voltage in 100mV units */ unsigned int __weak smbios_cpu_get_voltage(void) { return 0; /* Unknown */ } static size_t get_number_of_caches(size_t max_logical_cpus_sharing_cache) { size_t number_of_cpus_per_package = 0; size_t max_logical_cpus_per_package = 0; struct cpuid_result res; if (!cpu_have_cpuid()) return 1; res = cpuid(1); max_logical_cpus_per_package = (res.ebx >> 16) & 0xff; /* Check if it's last level cache */ if (max_logical_cpus_sharing_cache == max_logical_cpus_per_package) return 1; if (cpuid_get_max_func() >= 0xb) { res = cpuid_ext(0xb, 1); number_of_cpus_per_package = res.ebx & 0xff; } else { number_of_cpus_per_package = max_logical_cpus_per_package; } return number_of_cpus_per_package / max_logical_cpus_sharing_cache; } static int smbios_write_type1(unsigned long *current, int handle) { struct smbios_type1 *t = smbios_carve_table(*current, SMBIOS_SYSTEM_INFORMATION, sizeof(*t), handle); t->manufacturer = smbios_add_string(t->eos, smbios_system_manufacturer()); t->product_name = smbios_add_string(t->eos, smbios_system_product_name()); t->serial_number = smbios_add_string(t->eos, smbios_system_serial_number()); t->wakeup_type = smbios_system_wakeup_type(); t->sku = smbios_add_string(t->eos, smbios_system_sku()); t->version = smbios_add_string(t->eos, smbios_system_version()); #ifdef CONFIG_MAINBOARD_FAMILY t->family = smbios_add_string(t->eos, CONFIG_MAINBOARD_FAMILY); #endif smbios_system_set_uuid(t->uuid); const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } static int smbios_write_type2(unsigned long *current, int handle, const int chassis_handle) { struct smbios_type2 *t = smbios_carve_table(*current, SMBIOS_BOARD_INFORMATION, sizeof(*t), handle); t->manufacturer = smbios_add_string(t->eos, smbios_mainboard_manufacturer()); t->product_name = smbios_add_string(t->eos, smbios_mainboard_product_name()); t->serial_number = smbios_add_string(t->eos, smbios_mainboard_serial_number()); t->version = smbios_add_string(t->eos, smbios_mainboard_version()); t->asset_tag = smbios_add_string(t->eos, smbios_mainboard_asset_tag()); t->feature_flags = smbios_mainboard_feature_flags(); t->location_in_chassis = smbios_add_string(t->eos, smbios_mainboard_location_in_chassis()); t->board_type = smbios_mainboard_board_type(); t->chassis_handle = chassis_handle; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } static int smbios_write_type3(unsigned long *current, int handle) { struct smbios_type3 *t = smbios_carve_table(*current, SMBIOS_SYSTEM_ENCLOSURE, sizeof(*t), handle); t->manufacturer = smbios_add_string(t->eos, smbios_system_manufacturer()); t->bootup_state = SMBIOS_STATE_SAFE; t->power_supply_state = SMBIOS_STATE_SAFE; t->thermal_state = SMBIOS_STATE_SAFE; t->_type = smbios_mainboard_enclosure_type(); t->security_status = SMBIOS_STATE_SAFE; t->number_of_power_cords = smbios_chassis_power_cords(); t->asset_tag_number = smbios_add_string(t->eos, smbios_mainboard_asset_tag()); t->version = smbios_add_string(t->eos, smbios_chassis_version()); t->serial_number = smbios_add_string(t->eos, smbios_chassis_serial_number()); const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } static int smbios_write_type4(unsigned long *current, int handle) { unsigned int cpu_voltage; struct cpuid_result res; uint16_t characteristics = 0; static unsigned int cnt = 0; char buf[8]; /* Provide sane defaults even for CPU without CPUID */ res.eax = res.edx = 0; res.ebx = 0x10000; if (cpu_have_cpuid()) res = cpuid(1); struct smbios_type4 *t = smbios_carve_table(*current, SMBIOS_PROCESSOR_INFORMATION, sizeof(*t), handle); snprintf(buf, sizeof(buf), "CPU%d", cnt++); t->socket_designation = smbios_add_string(t->eos, buf); t->processor_id[0] = res.eax; t->processor_id[1] = res.edx; t->processor_manufacturer = smbios_cpu_vendor(t->eos); t->processor_version = smbios_processor_name(t->eos); t->processor_family = smbios_processor_family(res); t->processor_type = 3; /* System Processor */ /* * If CPUID leaf 11 is available, calculate "core count" by dividing * SMT_ID (logical processors in a core) by Core_ID (number of cores). * This seems to be the way to arrive to a number of cores mentioned on * ark.intel.com. */ if (cpu_have_cpuid() && cpuid_get_max_func() >= 0xb) { uint32_t leaf_b_cores = 0, leaf_b_threads = 0; res = cpuid_ext(0xb, 1); leaf_b_cores = res.ebx; res = cpuid_ext(0xb, 0); leaf_b_threads = res.ebx; /* if hyperthreading is not available, pretend this is 1 */ if (leaf_b_threads == 0) { leaf_b_threads = 1; } t->core_count2 = leaf_b_cores / leaf_b_threads; t->core_count = t->core_count2 > 0xff ? 0xff : t->core_count2; t->thread_count2 = leaf_b_cores; t->thread_count = t->thread_count2 > 0xff ? 0xff : t->thread_count2; } else { t->core_count = (res.ebx >> 16) & 0xff; t->core_count2 = t->core_count; t->thread_count2 = t->core_count2; t->thread_count = t->thread_count2; } /* Assume we enable all the cores always, capped only by MAX_CPUS */ t->core_enabled = MIN(t->core_count, CONFIG_MAX_CPUS); t->core_enabled2 = MIN(t->core_count2, CONFIG_MAX_CPUS); t->l1_cache_handle = 0xffff; t->l2_cache_handle = 0xffff; t->l3_cache_handle = 0xffff; t->serial_number = smbios_add_string(t->eos, smbios_processor_serial_number()); t->status = SMBIOS_PROCESSOR_STATUS_CPU_ENABLED | SMBIOS_PROCESSOR_STATUS_POPULATED; t->processor_upgrade = get_socket_type(); if (cpu_have_cpuid() && cpuid_get_max_func() >= 0x16) { t->current_speed = cpuid_eax(0x16); /* base frequency */ t->external_clock = cpuid_ecx(0x16); } else { t->current_speed = smbios_cpu_get_current_speed_mhz(); t->external_clock = smbios_processor_external_clock(); } /* This field identifies a capability for the system, not the processor itself. */ t->max_speed = smbios_cpu_get_max_speed_mhz(); if (cpu_have_cpuid()) { res = cpuid(1); if ((res.ecx) & BIT(5)) characteristics |= BIT(6); /* BIT6: Enhanced Virtualization */ if ((res.edx) & BIT(28)) characteristics |= BIT(4); /* BIT4: Hardware Thread */ if (((cpuid_eax(0x80000000) - 0x80000000) + 1) > 2) { res = cpuid(0x80000001); if ((res.edx) & BIT(20)) characteristics |= BIT(5); /* BIT5: Execute Protection */ } } t->processor_characteristics = characteristics | smbios_processor_characteristics(); cpu_voltage = smbios_cpu_get_voltage(); if (cpu_voltage > 0) t->voltage = 0x80 | cpu_voltage; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } /* * Write SMBIOS type 7. * Fill in some fields with constant values, as gathering the information * from CPUID is impossible. */ static int smbios_write_type7(unsigned long *current, const int handle, const u8 level, const u8 sram_type, const enum smbios_cache_associativity associativity, const enum smbios_cache_type type, const size_t max_cache_size, const size_t cache_size) { char buf[8]; struct smbios_type7 *t = smbios_carve_table(*current, SMBIOS_CACHE_INFORMATION, sizeof(*t), handle); snprintf(buf, sizeof(buf), "CACHE%x", level); t->socket_designation = smbios_add_string(t->eos, buf); t->cache_configuration = SMBIOS_CACHE_CONF_LEVEL(level) | SMBIOS_CACHE_CONF_LOCATION(0) | /* Internal */ SMBIOS_CACHE_CONF_ENABLED(1) | /* Enabled */ SMBIOS_CACHE_CONF_OPERATION_MODE(smbios_cache_conf_operation_mode(level)); if (max_cache_size < (SMBIOS_CACHE_SIZE_MASK * KiB)) { t->max_cache_size = max_cache_size / KiB; t->max_cache_size2 = t->max_cache_size; t->max_cache_size |= SMBIOS_CACHE_SIZE_UNIT_1KB; t->max_cache_size2 |= SMBIOS_CACHE_SIZE2_UNIT_1KB; } else { if (max_cache_size < (SMBIOS_CACHE_SIZE_MASK * 64 * KiB)) t->max_cache_size = max_cache_size / (64 * KiB); else t->max_cache_size = SMBIOS_CACHE_SIZE_OVERFLOW; t->max_cache_size2 = max_cache_size / (64 * KiB); t->max_cache_size |= SMBIOS_CACHE_SIZE_UNIT_64KB; t->max_cache_size2 |= SMBIOS_CACHE_SIZE2_UNIT_64KB; } if (cache_size < (SMBIOS_CACHE_SIZE_MASK * KiB)) { t->installed_size = cache_size / KiB; t->installed_size2 = t->installed_size; t->installed_size |= SMBIOS_CACHE_SIZE_UNIT_1KB; t->installed_size2 |= SMBIOS_CACHE_SIZE2_UNIT_1KB; } else { if (cache_size < (SMBIOS_CACHE_SIZE_MASK * 64 * KiB)) t->installed_size = cache_size / (64 * KiB); else t->installed_size = SMBIOS_CACHE_SIZE_OVERFLOW; t->installed_size2 = cache_size / (64 * KiB); t->installed_size |= SMBIOS_CACHE_SIZE_UNIT_64KB; t->installed_size2 |= SMBIOS_CACHE_SIZE2_UNIT_64KB; } t->associativity = associativity; t->supported_sram_type = sram_type; t->current_sram_type = sram_type; t->cache_speed = 0; /* Unknown */ t->error_correction_type = smbios_cache_error_correction_type(level); t->system_cache_type = type; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } /* Convert the associativity as integer to the SMBIOS enum if available */ static enum smbios_cache_associativity smbios_cache_associativity(const u8 num) { switch (num) { case 1: return SMBIOS_CACHE_ASSOCIATIVITY_DIRECT; case 2: return SMBIOS_CACHE_ASSOCIATIVITY_2WAY; case 4: return SMBIOS_CACHE_ASSOCIATIVITY_4WAY; case 8: return SMBIOS_CACHE_ASSOCIATIVITY_8WAY; case 12: return SMBIOS_CACHE_ASSOCIATIVITY_12WAY; case 16: return SMBIOS_CACHE_ASSOCIATIVITY_16WAY; case 20: return SMBIOS_CACHE_ASSOCIATIVITY_20WAY; case 24: return SMBIOS_CACHE_ASSOCIATIVITY_24WAY; case 32: return SMBIOS_CACHE_ASSOCIATIVITY_32WAY; case 48: return SMBIOS_CACHE_ASSOCIATIVITY_48WAY; case 64: return SMBIOS_CACHE_ASSOCIATIVITY_64WAY; case 0xff: return SMBIOS_CACHE_ASSOCIATIVITY_FULL; default: return SMBIOS_CACHE_ASSOCIATIVITY_UNKNOWN; }; } /* * Parse the "Deterministic Cache Parameters" as provided by Intel in * leaf 4 or AMD in extended leaf 0x8000001d. * * @param current Pointer to memory address to write the tables to * @param handle Pointer to handle for the tables * @param max_struct_size Pointer to maximum struct size * @param type4 Pointer to SMBIOS type 4 structure */ static int smbios_write_type7_cache_parameters(unsigned long *current, int *handle, int *max_struct_size, struct smbios_type4 *type4) { unsigned int cnt = CACHE_L1D; int len = 0; if (!cpu_have_cpuid()) return len; enum cpu_type dcache_cpuid = cpu_check_deterministic_cache_cpuid_supported(); if (dcache_cpuid == CPUID_TYPE_INVALID || dcache_cpuid == CPUID_COMMAND_UNSUPPORTED) { printk(BIOS_DEBUG, "SMBIOS: Unknown CPU or CPU doesn't support Deterministic " "Cache CPUID leaf\n"); return len; } while (1) { enum smbios_cache_associativity associativity; enum smbios_cache_type type; struct cpu_cache_info info; if (!fill_cpu_cache_info(cnt++, &info)) continue; const u8 cache_type = info.type; const u8 level = info.level; const size_t assoc = info.num_ways; const size_t cache_share = info.num_cores_shared; const size_t cache_size = info.size * get_number_of_caches(cache_share); if (!cache_type) /* No more caches in the system */ break; switch (cache_type) { case 1: type = SMBIOS_CACHE_TYPE_DATA; break; case 2: type = SMBIOS_CACHE_TYPE_INSTRUCTION; break; case 3: type = SMBIOS_CACHE_TYPE_UNIFIED; break; default: type = SMBIOS_CACHE_TYPE_UNKNOWN; break; } if (info.fully_associative) associativity = SMBIOS_CACHE_ASSOCIATIVITY_FULL; else associativity = smbios_cache_associativity(assoc); const int h = (*handle)++; update_max(len, *max_struct_size, smbios_write_type7(current, h, level, smbios_cache_sram_type(), associativity, type, cache_size, cache_size)); if (type4) { switch (level) { case 1: type4->l1_cache_handle = h; break; case 2: type4->l2_cache_handle = h; break; case 3: type4->l3_cache_handle = h; break; } } }; return len; } int smbios_write_type8(unsigned long *current, int *handle, const struct port_information *port, size_t num_ports) { unsigned int totallen = 0, i; for (i = 0; i < num_ports; i++, port++) { struct smbios_type8 *t = smbios_carve_table(*current, SMBIOS_PORT_CONNECTOR_INFORMATION, sizeof(*t), *handle); t->internal_reference_designator = smbios_add_string(t->eos, port->internal_reference_designator); t->internal_connector_type = port->internal_connector_type; t->external_reference_designator = smbios_add_string(t->eos, port->external_reference_designator); t->external_connector_type = port->external_connector_type; t->port_type = port->port_type; *handle += 1; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; totallen += len; } return totallen; } int smbios_write_type9(unsigned long *current, int *handle, const char *name, const enum misc_slot_type type, const enum slot_data_bus_bandwidth bandwidth, const enum misc_slot_usage usage, const enum misc_slot_length length, const u16 id, u8 slot_char1, u8 slot_char2, u8 bus, u8 dev_func) { struct smbios_type9 *t = smbios_carve_table(*current, SMBIOS_SYSTEM_SLOTS, sizeof(*t), *handle); t->slot_designation = smbios_add_string(t->eos, name ? name : "SLOT"); t->slot_type = type; /* TODO add slot_id supoort, will be "_SUN" for ACPI devices */ t->slot_id = id; t->slot_data_bus_width = bandwidth; t->current_usage = usage; t->slot_length = length; t->slot_characteristics_1 = slot_char1; t->slot_characteristics_2 = slot_char2; t->segment_group_number = 0; t->bus_number = bus; t->device_function_number = dev_func; t->data_bus_width = SlotDataBusWidthOther; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; *handle += 1; return len; } static int smbios_write_type11(unsigned long *current, int *handle) { struct device *dev; struct smbios_type11 *t = smbios_carve_table(*current, SMBIOS_OEM_STRINGS, sizeof(*t), *handle); for (dev = all_devices; dev; dev = dev->next) { if (dev->ops && dev->ops->get_smbios_strings) dev->ops->get_smbios_strings(dev, t); } if (t->count == 0) { memset(t, 0, sizeof(*t)); return 0; } const int len = smbios_full_table_len(&t->header, t->eos); *current += len; (*handle)++; return len; } static int smbios_write_type16(unsigned long *current, int *handle) { int i; uint64_t max_capacity; struct memory_info *meminfo; meminfo = cbmem_find(CBMEM_ID_MEMINFO); if (meminfo == NULL) return 0; /* can't find mem info in cbmem */ printk(BIOS_INFO, "Create SMBIOS type 16\n"); if (meminfo->max_capacity_mib == 0 || meminfo->number_of_devices == 0) { /* Fill in defaults if not provided */ meminfo->number_of_devices = 0; meminfo->max_capacity_mib = 0; for (i = 0; i < meminfo->dimm_cnt && i < ARRAY_SIZE(meminfo->dimm); i++) { meminfo->max_capacity_mib += meminfo->dimm[i].dimm_size; meminfo->number_of_devices += !!meminfo->dimm[i].dimm_size; } } struct smbios_type16 *t = smbios_carve_table(*current, SMBIOS_PHYS_MEMORY_ARRAY, sizeof(*t), *handle); t->location = MEMORY_ARRAY_LOCATION_SYSTEM_BOARD; t->use = MEMORY_ARRAY_USE_SYSTEM; t->memory_error_correction = meminfo->ecc_type; /* no error information handle available */ t->memory_error_information_handle = 0xFFFE; max_capacity = meminfo->max_capacity_mib; if (max_capacity * (MiB / KiB) < SMBIOS_USE_EXTENDED_MAX_CAPACITY) t->maximum_capacity = max_capacity * (MiB / KiB); else { t->maximum_capacity = SMBIOS_USE_EXTENDED_MAX_CAPACITY; t->extended_maximum_capacity = max_capacity * MiB; } t->number_of_memory_devices = meminfo->number_of_devices; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; (*handle)++; return len; } static int smbios_write_type17(unsigned long *current, int *handle, int type16) { int totallen = 0; int i; struct memory_info *meminfo; meminfo = cbmem_find(CBMEM_ID_MEMINFO); if (meminfo == NULL) return 0; /* can't find mem info in cbmem */ printk(BIOS_INFO, "Create SMBIOS type 17\n"); for (i = 0; i < meminfo->dimm_cnt && i < ARRAY_SIZE(meminfo->dimm); i++) { struct dimm_info *dimm; dimm = &meminfo->dimm[i]; /* * Windows 10 GetPhysicallyInstalledSystemMemory functions reads SMBIOS tables * type 16 and type 17. The type 17 tables need to point to a type 16 table. * Otherwise, the physical installed memory size is guessed from the system * memory map, which results in a slightly smaller value than the actual size. */ const int len = create_smbios_type17_for_dimm(dimm, current, handle, type16); *current += len; totallen += len; } return totallen; } static int smbios_write_type19(unsigned long *current, int *handle, int type16) { int i; struct memory_info *meminfo; meminfo = cbmem_find(CBMEM_ID_MEMINFO); if (meminfo == NULL) return 0; /* can't find mem info in cbmem */ struct smbios_type19 *t = smbios_carve_table(*current, SMBIOS_MEMORY_ARRAY_MAPPED_ADDRESS, sizeof(*t), *handle); t->memory_array_handle = type16; for (i = 0; i < meminfo->dimm_cnt && i < ARRAY_SIZE(meminfo->dimm); i++) { if (meminfo->dimm[i].dimm_size > 0) { t->extended_ending_address += meminfo->dimm[i].dimm_size; t->partition_width++; } } t->extended_ending_address *= MiB; /* Check if it fits into regular address */ if (t->extended_ending_address >= KiB && t->extended_ending_address < 0x40000000000ULL) { /* * FIXME: The starting address is SoC specific, but SMBIOS tables are only * exported on x86 where it's always 0. */ t->starting_address = 0; t->ending_address = t->extended_ending_address / KiB - 1; t->extended_starting_address = ~0; t->extended_ending_address = ~0; } else { t->starting_address = ~0; t->ending_address = ~0; t->extended_starting_address = 0; t->extended_ending_address--; } const int len = smbios_full_table_len(&t->header, t->eos); *current += len; *handle += 1; return len; } static int smbios_write_type20_table(unsigned long *current, int *handle, u32 addr_start, u32 addr_end, int type17_handle, int type19_handle) { struct smbios_type20 *t = smbios_carve_table(*current, SMBIOS_MEMORY_DEVICE_MAPPED_ADDRESS, sizeof(*t), *handle); t->memory_device_handle = type17_handle; t->memory_array_mapped_address_handle = type19_handle; t->addr_start = addr_start; t->addr_end = addr_end; t->partition_row_pos = 0xff; t->interleave_pos = 0xff; t->interleave_depth = 0xff; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; *handle += 1; return len; } static int smbios_write_type20(unsigned long *current, int *handle, int type17_handle, int type19_handle) { u32 start_addr = 0; int totallen = 0; int i; struct memory_info *meminfo; meminfo = cbmem_find(CBMEM_ID_MEMINFO); if (meminfo == NULL) return 0; /* can't find mem info in cbmem */ printk(BIOS_INFO, "Create SMBIOS type 20\n"); for (i = 0; i < meminfo->dimm_cnt && i < ARRAY_SIZE(meminfo->dimm); i++) { struct dimm_info *dimm; dimm = &meminfo->dimm[i]; u32 end_addr = start_addr + (dimm->dimm_size << 10) - 1; totallen += smbios_write_type20_table(current, handle, start_addr, end_addr, type17_handle, type19_handle); start_addr = end_addr + 1; } return totallen; } static int smbios_write_type32(unsigned long *current, int handle) { struct smbios_type32 *t = smbios_carve_table(*current, SMBIOS_SYSTEM_BOOT_INFORMATION, sizeof(*t), handle); const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } int smbios_write_type38(unsigned long *current, int *handle, const enum smbios_bmc_interface_type interface_type, const u8 ipmi_rev, const u8 i2c_addr, const u8 nv_addr, const u64 base_addr, const u8 base_modifier, const u8 irq) { struct smbios_type38 *t = smbios_carve_table(*current, SMBIOS_IPMI_DEVICE_INFORMATION, sizeof(*t), *handle); t->interface_type = interface_type; t->ipmi_rev = ipmi_rev; t->i2c_slave_addr = i2c_addr; t->nv_storage_addr = nv_addr; t->base_address = base_addr; t->base_address_modifier = base_modifier; t->irq = irq; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; *handle += 1; return len; } int smbios_write_type41(unsigned long *current, int *handle, const char *name, u8 instance, u16 segment, u8 bus, u8 device, u8 function, u8 device_type) { struct smbios_type41 *t = smbios_carve_table(*current, SMBIOS_ONBOARD_DEVICES_EXTENDED_INFORMATION, sizeof(*t), *handle); t->reference_designation = smbios_add_string(t->eos, name); t->device_type = device_type; t->device_status = 1; t->device_type_instance = instance; t->segment_group_number = segment; t->bus_number = bus; t->device_number = device; t->function_number = function; const int len = smbios_full_table_len(&t->header, t->eos); *current += len; *handle += 1; return len; } static int smbios_write_type127(unsigned long *current, int handle) { struct smbios_type127 *t = smbios_carve_table(*current, SMBIOS_END_OF_TABLE, sizeof(*t), handle); const int len = smbios_full_table_len(&t->header, t->eos); *current += len; return len; } /* Get the device type 41 from the dev struct */ static u8 smbios_get_device_type_from_dev(struct device *dev) { u16 pci_basesubclass = (dev->class >> 8) & 0xFFFF; switch (pci_basesubclass) { case PCI_CLASS_NOT_DEFINED: return SMBIOS_DEVICE_TYPE_OTHER; case PCI_CLASS_DISPLAY_VGA: case PCI_CLASS_DISPLAY_XGA: case PCI_CLASS_DISPLAY_3D: case PCI_CLASS_DISPLAY_OTHER: return SMBIOS_DEVICE_TYPE_VIDEO; case PCI_CLASS_STORAGE_SCSI: return SMBIOS_DEVICE_TYPE_SCSI; case PCI_CLASS_NETWORK_ETHERNET: return SMBIOS_DEVICE_TYPE_ETHERNET; case PCI_CLASS_NETWORK_TOKEN_RING: return SMBIOS_DEVICE_TYPE_TOKEN_RING; case PCI_CLASS_MULTIMEDIA_VIDEO: case PCI_CLASS_MULTIMEDIA_AUDIO: case PCI_CLASS_MULTIMEDIA_PHONE: case PCI_CLASS_MULTIMEDIA_OTHER: return SMBIOS_DEVICE_TYPE_SOUND; case PCI_CLASS_STORAGE_ATA: return SMBIOS_DEVICE_TYPE_PATA; case PCI_CLASS_STORAGE_SATA: return SMBIOS_DEVICE_TYPE_SATA; case PCI_CLASS_STORAGE_SAS: return SMBIOS_DEVICE_TYPE_SAS; default: return SMBIOS_DEVICE_TYPE_UNKNOWN; } } static int smbios_generate_type41_from_devtree(struct device *dev, int *handle, unsigned long *current) { static u8 type41_inst_cnt[SMBIOS_DEVICE_TYPE_COUNT + 1] = {}; if (dev->path.type != DEVICE_PATH_PCI) return 0; if (!dev->on_mainboard) return 0; u8 device_type = smbios_get_device_type_from_dev(dev); if (device_type == SMBIOS_DEVICE_TYPE_OTHER || device_type == SMBIOS_DEVICE_TYPE_UNKNOWN) return 0; if (device_type > SMBIOS_DEVICE_TYPE_COUNT) return 0; const char *name = get_pci_subclass_name(dev); return smbios_write_type41(current, handle, name, // name type41_inst_cnt[device_type]++, // inst 0, // segment dev->bus->secondary, //bus PCI_SLOT(dev->path.pci.devfn), // device PCI_FUNC(dev->path.pci.devfn), // func device_type); } static int smbios_generate_type9_from_devtree(struct device *dev, int *handle, unsigned long *current) { enum misc_slot_usage usage; enum slot_data_bus_bandwidth bandwidth; enum misc_slot_type type; enum misc_slot_length length; if (dev->path.type != DEVICE_PATH_PCI) return 0; if (!dev->smbios_slot_type && !dev->smbios_slot_data_width && !dev->smbios_slot_designation && !dev->smbios_slot_length) return 0; if (dev_is_active_bridge(dev)) usage = SlotUsageInUse; else if (dev->enabled) usage = SlotUsageAvailable; else usage = SlotUsageUnknown; if (dev->smbios_slot_data_width) bandwidth = dev->smbios_slot_data_width; else bandwidth = SlotDataBusWidthUnknown; if (dev->smbios_slot_type) type = dev->smbios_slot_type; else type = SlotTypeUnknown; if (dev->smbios_slot_length) length = dev->smbios_slot_length; else length = SlotLengthUnknown; return smbios_write_type9(current, handle, dev->smbios_slot_designation, type, bandwidth, usage, length, 0, 1, 0, dev->bus->secondary, dev->path.pci.devfn); } int get_smbios_data(struct device *dev, int *handle, unsigned long *current) { int len = 0; len += smbios_generate_type9_from_devtree(dev, handle, current); len += smbios_generate_type41_from_devtree(dev, handle, current); return len; } static int smbios_walk_device_tree(struct device *tree, int *handle, unsigned long *current) { struct device *dev; int len = 0; for (dev = tree; dev; dev = dev->next) { if (!dev->enabled) continue; if (dev->ops && dev->ops->get_smbios_data) { printk(BIOS_INFO, "%s (%s)\n", dev_path(dev), dev_name(dev)); len += dev->ops->get_smbios_data(dev, handle, current); } else { len += get_smbios_data(dev, handle, current); } } return len; } unsigned long smbios_write_tables(unsigned long current) { struct smbios_entry *se; struct smbios_entry30 *se3; unsigned long tables; int len = 0; int max_struct_size = 0; int handle = 0; current = ALIGN_UP(current, 16); printk(BIOS_DEBUG, "%s: %08lx\n", __func__, current); se = (struct smbios_entry *)current; current += sizeof(*se); current = ALIGN_UP(current, 16); se3 = (struct smbios_entry30 *)current; current += sizeof(*se3); current = ALIGN_UP(current, 16); tables = current; update_max(len, max_struct_size, smbios_write_type0(¤t, handle++)); update_max(len, max_struct_size, smbios_write_type1(¤t, handle++)); /* The chassis handle is the next one */ update_max(len, max_struct_size, smbios_write_type2(¤t, handle, handle + 1)); handle++; update_max(len, max_struct_size, smbios_write_type3(¤t, handle++)); struct smbios_type4 *type4 = (struct smbios_type4 *)current; update_max(len, max_struct_size, smbios_write_type4(¤t, handle++)); len += smbios_write_type7_cache_parameters(¤t, &handle, &max_struct_size, type4); update_max(len, max_struct_size, smbios_write_type11(¤t, &handle)); if (CONFIG(ELOG)) update_max(len, max_struct_size, elog_smbios_write_type15(¤t, handle++)); const int type16 = handle; update_max(len, max_struct_size, smbios_write_type16(¤t, &handle)); const int type17 = handle; update_max(len, max_struct_size, smbios_write_type17(¤t, &handle, type16)); const int type19 = handle; update_max(len, max_struct_size, smbios_write_type19(¤t, &handle, type16)); update_max(len, max_struct_size, smbios_write_type20(¤t, &handle, type17, type19)); update_max(len, max_struct_size, smbios_write_type32(¤t, handle++)); update_max(len, max_struct_size, smbios_walk_device_tree(all_devices, &handle, ¤t)); update_max(len, max_struct_size, smbios_write_type127(¤t, handle++)); /* Install SMBIOS 2.1 entry point */ memset(se, 0, sizeof(*se)); memcpy(se->anchor, "_SM_", 4); se->length = sizeof(*se); se->major_version = 3; se->minor_version = 0; se->max_struct_size = max_struct_size; se->struct_count = handle; memcpy(se->intermediate_anchor_string, "_DMI_", 5); se->struct_table_address = (u32)tables; se->struct_table_length = len; se->intermediate_checksum = smbios_checksum((u8 *)se + 0x10, sizeof(*se) - 0x10); se->checksum = smbios_checksum((u8 *)se, sizeof(*se)); /* Install SMBIOS 3.0 entry point */ memset(se3, 0, sizeof(*se3)); memcpy(se3->anchor, "_SM3_", 5); se3->length = sizeof(*se3); se3->major_version = 3; se3->minor_version = 0; se3->struct_table_address = (u64)tables; se3->struct_table_length = len; se3->checksum = smbios_checksum((u8 *)se3, sizeof(*se3)); return current; }