/* * This file is part of the coreboot project. * * Copyright (C) 2015 Timothy Pearson , Raptor Engineering * Copyright (C) 2009 Rudolf Marek * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* How much nesting do we support? */ #define ACPIGEN_LENSTACK_SIZE 10 /* * If you need to change this, change acpigen_write_len_f and * acpigen_pop_len */ #define ACPIGEN_MAXLEN 0xfffff #include #include #include #include #include static char *gencurrent; char *len_stack[ACPIGEN_LENSTACK_SIZE]; int ltop = 0; void acpigen_write_len_f(void) { ASSERT(ltop < (ACPIGEN_LENSTACK_SIZE - 1)) len_stack[ltop++] = gencurrent; acpigen_emit_byte(0); acpigen_emit_byte(0); acpigen_emit_byte(0); } void acpigen_pop_len(void) { int len; ASSERT(ltop > 0) char *p = len_stack[--ltop]; len = gencurrent - p; ASSERT(len <= ACPIGEN_MAXLEN) /* generate store length for 0xfffff max */ p[0] = (0x80 | (len & 0xf)); p[1] = (len >> 4 & 0xff); p[2] = (len >> 12 & 0xff); } void acpigen_set_current(char *curr) { gencurrent = curr; } char *acpigen_get_current(void) { return gencurrent; } void acpigen_emit_byte(unsigned char b) { (*gencurrent++) = b; } void acpigen_emit_ext_op(uint8_t op) { acpigen_emit_byte(EXT_OP_PREFIX); acpigen_emit_byte(op); } void acpigen_emit_word(unsigned int data) { acpigen_emit_byte(data & 0xff); acpigen_emit_byte((data >> 8) & 0xff); } void acpigen_emit_dword(unsigned int data) { acpigen_emit_byte(data & 0xff); acpigen_emit_byte((data >> 8) & 0xff); acpigen_emit_byte((data >> 16) & 0xff); acpigen_emit_byte((data >> 24) & 0xff); } char *acpigen_write_package(int nr_el) { char *p; acpigen_emit_byte(PACKAGE_OP); acpigen_write_len_f(); p = acpigen_get_current(); acpigen_emit_byte(nr_el); return p; } void acpigen_write_byte(unsigned int data) { acpigen_emit_byte(BYTE_PREFIX); acpigen_emit_byte(data & 0xff); } void acpigen_write_word(unsigned int data) { acpigen_emit_byte(WORD_PREFIX); acpigen_emit_word(data); } void acpigen_write_dword(unsigned int data) { acpigen_emit_byte(DWORD_PREFIX); acpigen_emit_dword(data); } void acpigen_write_qword(uint64_t data) { acpigen_emit_byte(QWORD_PREFIX); acpigen_emit_dword(data & 0xffffffff); acpigen_emit_dword((data >> 32) & 0xffffffff); } void acpigen_write_zero(void) { acpigen_emit_byte(ZERO_OP); } void acpigen_write_one(void) { acpigen_emit_byte(ONE_OP); } void acpigen_write_ones(void) { acpigen_emit_byte(ONES_OP); } void acpigen_write_integer(uint64_t data) { if (data == 0) acpigen_write_zero(); else if (data == 1) acpigen_write_one(); else if (data <= 0xff) acpigen_write_byte((unsigned char)data); else if (data <= 0xffff) acpigen_write_word((unsigned int)data); else if (data <= 0xffffffff) acpigen_write_dword((unsigned int)data); else acpigen_write_qword(data); } void acpigen_write_name_zero(const char *name) { acpigen_write_name(name); acpigen_write_one(); } void acpigen_write_name_one(const char *name) { acpigen_write_name(name); acpigen_write_zero(); } void acpigen_write_name_byte(const char *name, uint8_t val) { acpigen_write_name(name); acpigen_write_byte(val); } void acpigen_write_name_dword(const char *name, uint32_t val) { acpigen_write_name(name); acpigen_write_dword(val); } void acpigen_write_name_qword(const char *name, uint64_t val) { acpigen_write_name(name); acpigen_write_qword(val); } void acpigen_write_name_integer(const char *name, uint64_t val) { acpigen_write_name(name); acpigen_write_integer(val); } void acpigen_write_name_string(const char *name, const char *string) { acpigen_write_name(name); acpigen_write_string(string); } void acpigen_emit_stream(const char *data, int size) { int i; for (i = 0; i < size; i++) { acpigen_emit_byte(data[i]); } } void acpigen_emit_string(const char *string) { acpigen_emit_stream(string, string ? strlen(string) : 0); acpigen_emit_byte('\0'); /* NUL */ } void acpigen_write_string(const char *string) { acpigen_emit_byte(STRING_PREFIX); acpigen_emit_string(string); } void acpigen_write_coreboot_hid(enum coreboot_acpi_ids id) { char hid[9]; /* CORExxxx */ snprintf(hid, sizeof(hid), "%.4s%04X", COREBOOT_ACPI_ID, id); acpigen_write_name_string("_HID", hid); } /* * The naming conventions for ACPI namespace names are a bit tricky as * each element has to be 4 chars wide ("All names are a fixed 32 bits.") * and "By convention, when an ASL compiler pads a name shorter than 4 * characters, it is done so with trailing underscores ('_')". * * Check sections 5.3, 18.2.2 and 18.4 of ACPI spec 3.0 for details. */ static void acpigen_emit_simple_namestring(const char *name) { int i; char ud[] = "____"; for (i = 0; i < 4; i++) { if ((name[i] == '\0') || (name[i] == '.')) { acpigen_emit_stream(ud, 4 - i); break; } else { acpigen_emit_byte(name[i]); } } } static void acpigen_emit_double_namestring(const char *name, int dotpos) { acpigen_emit_byte(DUAL_NAME_PREFIX); acpigen_emit_simple_namestring(name); acpigen_emit_simple_namestring(&name[dotpos + 1]); } static void acpigen_emit_multi_namestring(const char *name) { int count = 0; unsigned char *pathlen; acpigen_emit_byte(MULTI_NAME_PREFIX); acpigen_emit_byte(ZERO_OP); pathlen = ((unsigned char *) acpigen_get_current()) - 1; while (name[0] != '\0') { acpigen_emit_simple_namestring(name); /* find end or next entity */ while ((name[0] != '.') && (name[0] != '\0')) name++; /* forward to next */ if (name[0] == '.') name++; count++; } pathlen[0] = count; } void acpigen_emit_namestring(const char *namepath) { int dotcount = 0, i; int dotpos = 0; /* We can start with a '\'. */ if (namepath[0] == '\\') { acpigen_emit_byte('\\'); namepath++; } /* And there can be any number of '^' */ while (namepath[0] == '^') { acpigen_emit_byte('^'); namepath++; } /* If we have only \\ or only ^...^. Then we need to put a null name (0x00). */ if (namepath[0] == '\0') { acpigen_emit_byte(ZERO_OP); return; } i = 0; while (namepath[i] != '\0') { if (namepath[i] == '.') { dotcount++; dotpos = i; } i++; } if (dotcount == 0) { acpigen_emit_simple_namestring(namepath); } else if (dotcount == 1) { acpigen_emit_double_namestring(namepath, dotpos); } else { acpigen_emit_multi_namestring(namepath); } } void acpigen_write_name(const char *name) { acpigen_emit_byte(NAME_OP); acpigen_emit_namestring(name); } void acpigen_write_scope(const char *name) { acpigen_emit_byte(SCOPE_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); } void acpigen_write_processor(u8 cpuindex, u32 pblock_addr, u8 pblock_len) { /* Processor (\_PR.CPUcpuindex, cpuindex, pblock_addr, pblock_len) { */ char pscope[16]; acpigen_emit_ext_op(PROCESSOR_OP); acpigen_write_len_f(); snprintf(pscope, sizeof(pscope), "\\_PR.CP%02d", (unsigned int) cpuindex); acpigen_emit_namestring(pscope); acpigen_emit_byte(cpuindex); acpigen_emit_dword(pblock_addr); acpigen_emit_byte(pblock_len); } /* * Generate ACPI AML code for OperationRegion * Arg0: Pointer to struct opregion opreg = OPREGION(rname, space, offset, len) * where rname is region name, space is region space, offset is region offset & * len is region length. * OperationRegion(regionname, regionspace, regionoffset, regionlength) */ void acpigen_write_opregion(struct opregion *opreg) { /* OpregionOp */ acpigen_emit_ext_op(OPREGION_OP); /* NameString 4 chars only */ acpigen_emit_simple_namestring(opreg->name); /* RegionSpace */ acpigen_emit_byte(opreg->regionspace); /* RegionOffset & RegionLen, it can be byte word or double word */ acpigen_write_integer(opreg->regionoffset); acpigen_write_integer(opreg->regionlen); } static void acpigen_write_field_offset(uint32_t offset, uint32_t current_bit_pos) { uint32_t diff_bits; uint8_t i, j; uint8_t emit[4]; if (offset < current_bit_pos) { printk(BIOS_WARNING, "%s: Cannot move offset backward", __func__); return; } diff_bits = offset - current_bit_pos; /* Upper limit */ if (diff_bits > 0xFFFFFFF) { printk(BIOS_WARNING, "%s: Offset very large to encode", __func__); return; } i = 1; if (diff_bits < 0x40) { emit[0] = diff_bits & 0x3F; } else { emit[0] = diff_bits & 0xF; diff_bits >>= 4; while (diff_bits) { emit[i] = diff_bits & 0xFF; i++; diff_bits >>= 8; } } /* Update bit 7:6 : Number of bytes followed by emit[0] */ emit[0] |= (i - 1) << 6; acpigen_emit_byte(0); for (j = 0; j < i; j++) acpigen_emit_byte(emit[j]); } /* * Generate ACPI AML code for Field * Arg0: region name * Arg1: Pointer to struct fieldlist. * Arg2: no. of entries in Arg1 * Arg3: flags which indicate filed access type, lock rule & update rule. * Example with fieldlist * struct fieldlist l[] = { * FIELDLIST_OFFSET(0x84), * FIELDLIST_NAMESTR("PMCS", 2), * }; * acpigen_write_field("UART", l ,ARRAY_SIZE(l), FIELD_ANYACC | FIELD_NOLOCK | * FIELD_PRESERVE); * Output: * Field (UART, AnyAcc, NoLock, Preserve) * { * Offset (0x84), * PMCS, 2 * } */ void acpigen_write_field(const char *name, struct fieldlist *l, size_t count, uint8_t flags) { uint16_t i; uint32_t current_bit_pos = 0; /* FieldOp */ acpigen_emit_ext_op(FIELD_OP); /* Package Length */ acpigen_write_len_f(); /* NameString 4 chars only */ acpigen_emit_simple_namestring(name); /* Field Flag */ acpigen_emit_byte(flags); for (i = 0; i < count; i++) { switch (l[i].type) { case NAME_STRING: acpigen_emit_simple_namestring(l[i].name); acpigen_emit_byte(l[i].bits); current_bit_pos += l[i].bits; break; case OFFSET: acpigen_write_field_offset(l[i].bits, current_bit_pos); current_bit_pos = l[i].bits; break; default: printk(BIOS_ERR, "%s: Invalid field type 0x%X\n" , __func__, l[i].type); break; } } acpigen_pop_len(); } void acpigen_write_empty_PCT(void) { /* Name (_PCT, Package (0x02) { ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) }, ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) } }) */ static char stream[] = { 0x08, 0x5F, 0x50, 0x43, 0x54, 0x12, 0x2C, /* 00000030 "0._PCT.," */ 0x02, 0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00, /* 00000038 "........" */ 0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000040 "........" */ 0x00, 0x00, 0x00, 0x00, 0x79, 0x00, 0x11, 0x14, /* 00000048 "....y..." */ 0x0A, 0x11, 0x82, 0x0C, 0x00, 0x7F, 0x00, 0x00, /* 00000050 "........" */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000058 "........" */ 0x00, 0x79, 0x00 }; acpigen_emit_stream(stream, ARRAY_SIZE(stream)); } void acpigen_write_empty_PTC(void) { /* Name (_PTC, Package (0x02) { ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) }, ResourceTemplate () { Register (FFixedHW, 0x00, // Bit Width 0x00, // Bit Offset 0x0000000000000000, // Address ,) } }) */ acpi_addr_t addr = { .space_id = ACPI_ADDRESS_SPACE_FIXED, .bit_width = 0, .bit_offset = 0, { .resv = 0 }, .addrl = 0, .addrh = 0, }; acpigen_write_name("_PTC"); acpigen_write_package(2); /* ControlRegister */ acpigen_write_resourcetemplate_header(); acpigen_write_register(&addr); acpigen_write_resourcetemplate_footer(); /* StatusRegister */ acpigen_write_resourcetemplate_header(); acpigen_write_register(&addr); acpigen_write_resourcetemplate_footer(); acpigen_pop_len(); } static void __acpigen_write_method(const char *name, uint8_t flags) { acpigen_emit_byte(METHOD_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); acpigen_emit_byte(flags); } /* Method (name, nargs, NotSerialized) */ void acpigen_write_method(const char *name, int nargs) { __acpigen_write_method(name, (nargs & 7)); } /* Method (name, nargs, Serialized) */ void acpigen_write_method_serialized(const char *name, int nargs) { __acpigen_write_method(name, (nargs & 7) | (1 << 3)); } void acpigen_write_device(const char *name) { acpigen_emit_ext_op(DEVICE_OP); acpigen_write_len_f(); acpigen_emit_namestring(name); } void acpigen_write_STA(uint8_t status) { /* * Method (_STA, 0, NotSerialized) { Return (status) } */ acpigen_write_method("_STA", 0); acpigen_emit_byte(RETURN_OP); acpigen_write_byte(status); acpigen_pop_len(); } /* * Generates a func with max supported P-states. */ void acpigen_write_PPC(u8 nr) { /* Method (_PPC, 0, NotSerialized) { Return (nr) } */ acpigen_write_method("_PPC", 0); acpigen_emit_byte(RETURN_OP); /* arg */ acpigen_write_byte(nr); acpigen_pop_len(); } /* * Generates a func with max supported P-states saved * in the variable PPCM. */ void acpigen_write_PPC_NVS(void) { /* Method (_PPC, 0, NotSerialized) { Return (PPCM) } */ acpigen_write_method("_PPC", 0); acpigen_emit_byte(RETURN_OP); /* arg */ acpigen_emit_namestring("PPCM"); acpigen_pop_len(); } void acpigen_write_TPC(const char *gnvs_tpc_limit) { /* // Sample _TPC method Method (_TPC, 0, NotSerialized) { Return (\TLVL) } */ acpigen_write_method("_TPC", 0); acpigen_emit_byte(RETURN_OP); acpigen_emit_namestring(gnvs_tpc_limit); acpigen_pop_len(); } void acpigen_write_PRW(u32 wake, u32 level) { /* * Name (_PRW, Package () { wake, level } */ acpigen_write_name("_PRW"); acpigen_write_package(2); acpigen_write_integer(wake); acpigen_write_integer(level); acpigen_pop_len(); } void acpigen_write_PSS_package(u32 coreFreq, u32 power, u32 transLat, u32 busmLat, u32 control, u32 status) { acpigen_write_package(6); acpigen_write_dword(coreFreq); acpigen_write_dword(power); acpigen_write_dword(transLat); acpigen_write_dword(busmLat); acpigen_write_dword(control); acpigen_write_dword(status); acpigen_pop_len(); printk(BIOS_DEBUG, "PSS: %uMHz power %u control 0x%x status 0x%x\n", coreFreq, power, control, status); } void acpigen_write_PSD_package(u32 domain, u32 numprocs, PSD_coord coordtype) { acpigen_write_name("_PSD"); acpigen_write_package(1); acpigen_write_package(5); acpigen_write_byte(5); // 5 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_CST_package_entry(acpi_cstate_t *cstate) { acpigen_write_package(4); acpigen_write_resourcetemplate_header(); acpigen_write_register(&cstate->resource); acpigen_write_resourcetemplate_footer(); acpigen_write_dword(cstate->ctype); acpigen_write_dword(cstate->latency); acpigen_write_dword(cstate->power); acpigen_pop_len(); } void acpigen_write_CST_package(acpi_cstate_t *cstate, int nentries) { int i; acpigen_write_name("_CST"); acpigen_write_package(nentries+1); acpigen_write_dword(nentries); for (i = 0; i < nentries; i++) acpigen_write_CST_package_entry(cstate + i); acpigen_pop_len(); } void acpigen_write_CSD_package(u32 domain, u32 numprocs, CSD_coord coordtype, u32 index) { acpigen_write_name("_CSD"); acpigen_write_package(1); acpigen_write_package(6); acpigen_write_byte(6); // 6 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_write_dword(index); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_TSS_package(int entries, acpi_tstate_t *tstate_list) { /* Sample _TSS package with 100% and 50% duty cycles Name (_TSS, Package (0x02) { Package(){100, 1000, 0, 0x00, 0) Package(){50, 520, 0, 0x18, 0) }) */ int i; acpi_tstate_t *tstate = tstate_list; acpigen_write_name("_TSS"); acpigen_write_package(entries); for (i = 0; i < entries; i++) { acpigen_write_package(5); acpigen_write_dword(tstate->percent); acpigen_write_dword(tstate->power); acpigen_write_dword(tstate->latency); acpigen_write_dword(tstate->control); acpigen_write_dword(tstate->status); acpigen_pop_len(); tstate++; } acpigen_pop_len(); } void acpigen_write_TSD_package(u32 domain, u32 numprocs, PSD_coord coordtype) { acpigen_write_name("_TSD"); acpigen_write_package(1); acpigen_write_package(5); acpigen_write_byte(5); // 5 values acpigen_write_byte(0); // revision 0 acpigen_write_dword(domain); acpigen_write_dword(coordtype); acpigen_write_dword(numprocs); acpigen_pop_len(); acpigen_pop_len(); } void acpigen_write_mem32fixed(int readwrite, u32 base, u32 size) { /* * ACPI 4.0 section 6.4.3.4: 32-Bit Fixed Memory Range Descriptor * Byte 0: * Bit7 : 1 => big item * Bit6-0: 0000110 (0x6) => 32-bit fixed memory */ acpigen_emit_byte(0x86); /* Byte 1+2: length (0x0009) */ acpigen_emit_byte(0x09); acpigen_emit_byte(0x00); /* bit1-7 are ignored */ acpigen_emit_byte(readwrite ? 0x01 : 0x00); acpigen_emit_dword(base); acpigen_emit_dword(size); } void acpigen_write_register(acpi_addr_t *addr) { acpigen_emit_byte(0x82); /* Register Descriptor */ acpigen_emit_byte(0x0c); /* Register Length 7:0 */ acpigen_emit_byte(0x00); /* Register Length 15:8 */ acpigen_emit_byte(addr->space_id); /* Address Space ID */ acpigen_emit_byte(addr->bit_width); /* Register Bit Width */ acpigen_emit_byte(addr->bit_offset); /* Register Bit Offset */ acpigen_emit_byte(addr->resv); /* Register Access Size */ acpigen_emit_dword(addr->addrl); /* Register Address Low */ acpigen_emit_dword(addr->addrh); /* Register Address High */ } void acpigen_write_irq(u16 mask) { /* * ACPI 3.0b section 6.4.2.1: IRQ Descriptor * Byte 0: * Bit7 : 0 => small item * Bit6-3: 0100 (0x4) => IRQ port descriptor * Bit2-0: 010 (0x2) => 2 Bytes long */ acpigen_emit_byte(0x22); acpigen_emit_byte(mask & 0xff); acpigen_emit_byte((mask >> 8) & 0xff); } void acpigen_write_io16(u16 min, u16 max, u8 align, u8 len, u8 decode16) { /* * ACPI 4.0 section 6.4.2.6: I/O Port Descriptor * Byte 0: * Bit7 : 0 => small item * Bit6-3: 1000 (0x8) => I/O port descriptor * Bit2-0: 111 (0x7) => 7 Bytes long */ acpigen_emit_byte(0x47); /* Does the device decode all 16 or just 10 bits? */ /* bit1-7 are ignored */ acpigen_emit_byte(decode16 ? 0x01 : 0x00); /* minimum base address the device may be configured for */ acpigen_emit_byte(min & 0xff); acpigen_emit_byte((min >> 8) & 0xff); /* maximum base address the device may be configured for */ acpigen_emit_byte(max & 0xff); acpigen_emit_byte((max >> 8) & 0xff); /* alignment for min base */ acpigen_emit_byte(align & 0xff); acpigen_emit_byte(len & 0xff); } void acpigen_write_resourcetemplate_header(void) { /* * A ResourceTemplate() is a Buffer() with a * (Byte|Word|DWord) containing the length, followed by one or more * resource items, terminated by the end tag. * (small item 0xf, len 1) */ acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_emit_byte(WORD_PREFIX); len_stack[ltop++] = acpigen_get_current(); acpigen_emit_byte(0x00); acpigen_emit_byte(0x00); } void acpigen_write_resourcetemplate_footer(void) { char *p = len_stack[--ltop]; int len; /* * end tag (acpi 4.0 Section 6.4.2.8) * 0x79 * 0x00 is treated as a good checksum according to the spec * and is what iasl generates. */ acpigen_emit_byte(0x79); acpigen_emit_byte(0x00); len = gencurrent - p; /* patch len word */ p[0] = len & 0xff; p[1] = (len >> 8) & 0xff; /* patch len field */ acpigen_pop_len(); } static void acpigen_add_mainboard_rsvd_mem32(void *gp, struct device *dev, struct resource *res) { acpigen_write_mem32fixed(0, res->base, res->size); } static void acpigen_add_mainboard_rsvd_io(void *gp, struct device *dev, struct resource *res) { resource_t base = res->base; resource_t size = res->size; while (size > 0) { resource_t sz = size > 255 ? 255 : size; acpigen_write_io16(base, base, 0, sz, 1); size -= sz; base += sz; } } void acpigen_write_mainboard_resource_template(void) { acpigen_write_resourcetemplate_header(); /* Add reserved memory ranges. */ search_global_resources( IORESOURCE_MEM | IORESOURCE_RESERVE, IORESOURCE_MEM | IORESOURCE_RESERVE, acpigen_add_mainboard_rsvd_mem32, 0); /* Add reserved io ranges. */ search_global_resources( IORESOURCE_IO | IORESOURCE_RESERVE, IORESOURCE_IO | IORESOURCE_RESERVE, acpigen_add_mainboard_rsvd_io, 0); acpigen_write_resourcetemplate_footer(); } void acpigen_write_mainboard_resources(const char *scope, const char *name) { acpigen_write_scope(scope); acpigen_write_name(name); acpigen_write_mainboard_resource_template(); acpigen_pop_len(); } static int hex2bin(const char c) { if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return c - '0'; } void acpigen_emit_eisaid(const char *eisaid) { u32 compact = 0; /* Clamping individual values would be better but there is a disagreement over what is a valid EISA id, so accept anything and don't clamp, parent code should create a valid EISAid. */ compact |= (eisaid[0] - 'A' + 1) << 26; compact |= (eisaid[1] - 'A' + 1) << 21; compact |= (eisaid[2] - 'A' + 1) << 16; compact |= hex2bin(eisaid[3]) << 12; compact |= hex2bin(eisaid[4]) << 8; compact |= hex2bin(eisaid[5]) << 4; compact |= hex2bin(eisaid[6]); acpigen_emit_byte(0xc); acpigen_emit_byte((compact >> 24) & 0xff); acpigen_emit_byte((compact >> 16) & 0xff); acpigen_emit_byte((compact >> 8) & 0xff); acpigen_emit_byte(compact & 0xff); } /* * ToUUID(uuid) * * ACPI 6.1 Section 19.6.136 table 19-385 defines a special output * order for the bytes that make up a UUID Buffer object. * UUID byte order for input: * aabbccdd-eeff-gghh-iijj-kkllmmnnoopp * UUID byte order for output: * ddccbbaa-ffee-hhgg-iijj-kkllmmnnoopp */ #define UUID_LEN 16 void acpigen_write_uuid(const char *uuid) { uint8_t buf[UUID_LEN]; size_t i, order[UUID_LEN] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 }; /* Parse UUID string into bytes */ if (hexstrtobin(uuid, buf, UUID_LEN) < UUID_LEN) return; /* BufferOp */ acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); /* Buffer length in bytes */ acpigen_write_word(UUID_LEN); /* Output UUID in expected order */ for (i = 0; i < UUID_LEN; i++) acpigen_emit_byte(buf[order[i]]); acpigen_pop_len(); } /* * Name (_PRx, Package(One) { name }) * ... * PowerResource (name, level, order) */ void acpigen_write_power_res(const char *name, uint8_t level, uint16_t order, const char *dev_states[], size_t dev_states_count) { int i; for (i = 0; i < dev_states_count; i++) { acpigen_write_name(dev_states[i]); acpigen_write_package(1); acpigen_emit_simple_namestring(name); acpigen_pop_len(); /* Package */ } acpigen_emit_ext_op(POWER_RES_OP); acpigen_write_len_f(); acpigen_emit_simple_namestring(name); acpigen_emit_byte(level); acpigen_emit_word(order); } /* Sleep (ms) */ void acpigen_write_sleep(uint64_t sleep_ms) { acpigen_emit_ext_op(SLEEP_OP); acpigen_write_integer(sleep_ms); } void acpigen_write_store(void) { acpigen_emit_byte(STORE_OP); } /* Store (src, dst) */ void acpigen_write_store_ops(uint8_t src, uint8_t dst) { acpigen_write_store(); acpigen_emit_byte(src); acpigen_emit_byte(dst); } /* Or (arg1, arg2, res) */ void acpigen_write_or(uint8_t arg1, uint8_t arg2, uint8_t res) { acpigen_emit_byte(OR_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); acpigen_emit_byte(res); } /* And (arg1, arg2, res) */ void acpigen_write_and(uint8_t arg1, uint8_t arg2, uint8_t res) { acpigen_emit_byte(AND_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); acpigen_emit_byte(res); } /* Not (arg, res) */ void acpigen_write_not(uint8_t arg, uint8_t res) { acpigen_emit_byte(NOT_OP); acpigen_emit_byte(arg); acpigen_emit_byte(res); } /* Store (str, DEBUG) */ void acpigen_write_debug_string(const char *str) { acpigen_write_store(); acpigen_write_string(str); acpigen_emit_ext_op(DEBUG_OP); } /* Store (val, DEBUG) */ void acpigen_write_debug_integer(uint64_t val) { acpigen_write_store(); acpigen_write_integer(val); acpigen_emit_ext_op(DEBUG_OP); } /* Store (op, DEBUG) */ void acpigen_write_debug_op(uint8_t op) { acpigen_write_store(); acpigen_emit_byte(op); acpigen_emit_ext_op(DEBUG_OP); } void acpigen_write_if(void) { acpigen_emit_byte(IF_OP); acpigen_write_len_f(); } /* If (And (arg1, arg2)) */ void acpigen_write_if_and(uint8_t arg1, uint8_t arg2) { acpigen_write_if(); acpigen_emit_byte(AND_OP); acpigen_emit_byte(arg1); acpigen_emit_byte(arg2); } /* * Generates ACPI code for checking if operand1 and operand2 are equal, where, * operand1 is ACPI op and operand2 is an integer. * * If (Lequal (op, val)) */ void acpigen_write_if_lequal_op_int(uint8_t op, uint64_t val) { acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_byte(op); acpigen_write_integer(val); } void acpigen_write_else(void) { acpigen_emit_byte(ELSE_OP); acpigen_write_len_f(); } void acpigen_write_to_buffer(uint8_t src, uint8_t dst) { acpigen_emit_byte(TO_BUFFER_OP); acpigen_emit_byte(src); acpigen_emit_byte(dst); } void acpigen_write_to_integer(uint8_t src, uint8_t dst) { acpigen_emit_byte(TO_INTEGER_OP); acpigen_emit_byte(src); acpigen_emit_byte(dst); } void acpigen_write_byte_buffer(uint8_t *arr, uint8_t size) { uint8_t i; acpigen_emit_byte(BUFFER_OP); acpigen_write_len_f(); acpigen_write_byte(size); for (i = 0; i < size; i++) acpigen_emit_byte(arr[i]); acpigen_pop_len(); } void acpigen_write_return_byte_buffer(uint8_t *arr, uint8_t size) { acpigen_emit_byte(RETURN_OP); acpigen_write_byte_buffer(arr, size); } void acpigen_write_return_singleton_buffer(uint8_t arg) { acpigen_write_return_byte_buffer(&arg, 1); } void acpigen_write_return_byte(uint8_t arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_byte(arg); } void acpigen_write_return_integer(uint64_t arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_integer(arg); } void acpigen_write_return_string(const char *arg) { acpigen_emit_byte(RETURN_OP); acpigen_write_string(arg); } /* * Generate ACPI AML code for _DSM method. * This function takes as input uuid for the device, set of callbacks and * argument to pass into the callbacks. Callbacks should ensure that Local0 and * Local1 are left untouched. Use of Local2-Local7 is permitted in callbacks. * * Arguments passed into _DSM method: * Arg0 = UUID * Arg1 = Revision * Arg2 = Function index * Arg3 = Function specific arguments * * AML code generated would look like: * Method (_DSM, 4, Serialized) { * ToBuffer (Arg0, Local0) * If (LEqual (Local0, ToUUID(uuid))) { * ToInteger (Arg2, Local1) * If (LEqual (Local1, 0)) { * * } Else { * ... * If (LEqual (Local1, n)) { * * } Else { * Return (Buffer (One) { 0x0 }) * } * } * } Else { * Return (Buffer (One) { 0x0 }) * } * } */ void acpigen_write_dsm(const char *uuid, void (*callbacks[])(void *), size_t count, void *arg) { size_t i; /* Method (_DSM, 4, Serialized) */ acpigen_write_method_serialized("_DSM", 0x4); /* ToBuffer (Arg0, Local0) */ acpigen_write_to_buffer(ARG0_OP, LOCAL0_OP); /* If (LEqual (Local0, ToUUID(uuid))) */ acpigen_write_if(); acpigen_emit_byte(LEQUAL_OP); acpigen_emit_byte(LOCAL0_OP); acpigen_write_uuid(uuid); /* ToInteger (Arg2, Local1) */ acpigen_write_to_integer(ARG2_OP, LOCAL1_OP); acpigen_write_debug_op(LOCAL1_OP); for (i = 0; i < count; i++) { /* If (Lequal (Local1, i)) */ acpigen_write_if_lequal_op_int(LOCAL1_OP, i); /* Callback to write if handler. */ if (callbacks[i]) callbacks[i](arg); acpigen_pop_len(); /* If */ /* Else */ acpigen_write_else(); } /* Default case: Return (Buffer (One) { 0x0 }) */ acpigen_write_return_singleton_buffer(0x0); /* Pop lengths for all the else clauses. */ for (i = 0; i < count; i++) acpigen_pop_len(); acpigen_pop_len(); /* If (LEqual (Local0, ToUUID(uuid))) */ /* Else */ acpigen_write_else(); /* Return (Buffer (One) { 0x0 }) */ acpigen_write_return_singleton_buffer(0x0); acpigen_pop_len(); /* Else */ acpigen_pop_len(); /* Method _DSM */ } /* Soc-implemented functions -- weak definitions. */ int __attribute__((weak)) acpigen_soc_read_rx_gpio(unsigned int gpio_num) { printk(BIOS_ERR, "ERROR: %s not implemented\n", __func__); acpigen_write_debug_string("read_rx_gpio not available"); return -1; } int __attribute__((weak)) acpigen_soc_get_tx_gpio(unsigned int gpio_num) { printk(BIOS_ERR, "ERROR: %s not implemented\n", __func__); acpigen_write_debug_string("get_tx_gpio not available"); return -1; } int __attribute__((weak)) acpigen_soc_set_tx_gpio(unsigned int gpio_num) { printk(BIOS_ERR, "ERROR: %s not implemented\n", __func__); acpigen_write_debug_string("set_tx_gpio not available"); return -1; } int __attribute__((weak)) acpigen_soc_clear_tx_gpio(unsigned int gpio_num) { printk(BIOS_ERR, "ERROR: %s not implemented\n", __func__); acpigen_write_debug_string("clear_tx_gpio not available"); return -1; }