/* * Early initialization code for riscv * * Copyright 2015 Google Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the * GNU General Public License for more details. */ #include #include #include #include #include static uint64_t *time; static uint64_t *timecmp; static const char *const exception_names[] = { "Instruction address misaligned", "Instruction access fault", "Illegal instruction", "Breakpoint", "Load address misaligned", "Load access fault", "Store address misaligned", "Store access fault", "Environment call from U-mode", "Environment call from S-mode", "Reserved (10)", "Environment call from M-mode", "Instruction page fault", "Load page fault", "Reserved (14)", "Store page fault", }; static const char *mstatus_to_previous_mode(uintptr_t ms) { switch (ms & MSTATUS_MPP) { case 0x00000000: return "user"; case 0x00000800: return "supervisor"; case 0x00001000: return "hypervisor"; case 0x00001800: return "machine"; } return "unknown"; } static void print_trap_information(const trapframe *tf) { const char *previous_mode; bool mprv = !!(tf->status & MSTATUS_MPRV); /* Leave some space around the trap message */ printk(BIOS_DEBUG, "\n"); if (tf->cause < ARRAY_SIZE(exception_names)) printk(BIOS_DEBUG, "Exception: %s\n", exception_names[tf->cause]); else printk(BIOS_DEBUG, "Trap: Unknown cause %p\n", (void *)tf->cause); previous_mode = mstatus_to_previous_mode(read_csr(mstatus)); printk(BIOS_DEBUG, "Previous mode: %s%s\n", previous_mode, mprv? " (MPRV)":""); printk(BIOS_DEBUG, "Bad instruction pc: %p\n", (void *)tf->epc); printk(BIOS_DEBUG, "Bad address: %p\n", (void *)tf->badvaddr); printk(BIOS_DEBUG, "Stored ra: %p\n", (void*) tf->gpr[1]); printk(BIOS_DEBUG, "Stored sp: %p\n", (void*) tf->gpr[2]); } static void gettimer(void) { /* * FIXME: This hard-coded value (currently) works on spike, but we * should really read it from the device tree. */ uintptr_t clint = 0x02000000; time = (void *)(clint + 0xbff8); timecmp = (void *)(clint + 0x4000); if (!time) die("Got timer interrupt but found no timer."); if (!timecmp) die("Got timer interrupt but found no timecmp."); } static void interrupt_handler(trapframe *tf) { uint64_t cause = tf->cause & ~0x8000000000000000ULL; uint32_t msip, ssie; switch (cause) { case IRQ_M_TIMER: // The only way to reset the timer interrupt is to // write mtimecmp. But we also have to ensure the // comparison fails, for a long time, to let // supervisor interrupt handler compute a new value // and set it. Finally, it fires if mtimecmp is <= // mtime, not =, so setting mtimecmp to 0 won't work // to clear the interrupt and disable a new one. We // have to set the mtimecmp far into the future. // Akward! // // Further, maybe the platform doesn't have the // hardware or the payload never uses it. We hold off // querying some things until we are sure we need // them. What to do if we can not find them? There are // no good options. // This hart may have disabled timer interrupts. If // so, just return. Kernels should only enable timer // interrupts on one hart, and that should be hart 0 // at present, as we only search for // "core{0{0{timecmp" above. ssie = read_csr(sie); if (!(ssie & SIP_STIP)) break; if (!timecmp) gettimer(); //printk(BIOS_SPEW, "timer interrupt\n"); *timecmp = (uint64_t) -1; msip = read_csr(mip); msip |= SIP_STIP; write_csr(mip, msip); break; default: printk(BIOS_EMERG, "======================================\n"); printk(BIOS_EMERG, "coreboot: Unknown machine interrupt: 0x%llx\n", cause); printk(BIOS_EMERG, "======================================\n"); print_trap_information(tf); break; } } void trap_handler(trapframe *tf) { write_csr(mscratch, tf); if (tf->cause & 0x8000000000000000ULL) { interrupt_handler(tf); return; } switch(tf->cause) { case CAUSE_MISALIGNED_FETCH: case CAUSE_FETCH_ACCESS: case CAUSE_ILLEGAL_INSTRUCTION: case CAUSE_BREAKPOINT: case CAUSE_LOAD_ACCESS: case CAUSE_STORE_ACCESS: case CAUSE_USER_ECALL: case CAUSE_SUPERVISOR_ECALL: case CAUSE_HYPERVISOR_ECALL: case CAUSE_MACHINE_ECALL: print_trap_information(tf); break; case CAUSE_MISALIGNED_LOAD: print_trap_information(tf); handle_misaligned_load(tf); return; case CAUSE_MISALIGNED_STORE: print_trap_information(tf); handle_misaligned_store(tf); return; default: printk(BIOS_EMERG, "================================\n"); printk(BIOS_EMERG, "coreboot: can not handle a trap:\n"); printk(BIOS_EMERG, "================================\n"); print_trap_information(tf); break; } die("Can't recover from trap. Halting.\n"); } static uint32_t fetch_instruction(uintptr_t vaddr) { printk(BIOS_SPEW, "fetching instruction at 0x%016zx\n", (size_t)vaddr); return mprv_read_u32((uint32_t *) vaddr); } void handle_misaligned_load(trapframe *tf) { printk(BIOS_DEBUG, "Trapframe ptr: %p\n", tf); uintptr_t faultingInstructionAddr = tf->epc; insn_t faultingInstruction = fetch_instruction(faultingInstructionAddr); printk(BIOS_DEBUG, "Faulting instruction: 0x%x\n", faultingInstruction); insn_t widthMask = 0x7000; insn_t memWidth = (faultingInstruction & widthMask) >> 12; insn_t destMask = 0xF80; insn_t destRegister = (faultingInstruction & destMask) >> 7; printk(BIOS_DEBUG, "Width: %d bits\n", (1 << memWidth) * 8); if (memWidth == 3) { // load double, handle the issue void* badAddress = (void*) tf->badvaddr; uint64_t value = 0; for (int i = 0; i < 8; i++) { value <<= 8; value += mprv_read_u8(badAddress+i); } tf->gpr[destRegister] = value; } else { // panic, this should not have happened die("Code should not reach this path, misaligned on a non-64 bit store/load\n"); } // return to where we came from write_csr(mepc, read_csr(mepc) + 4); } void handle_misaligned_store(trapframe *tf) { printk(BIOS_DEBUG, "Trapframe ptr: %p\n", tf); uintptr_t faultingInstructionAddr = tf->epc; insn_t faultingInstruction = fetch_instruction(faultingInstructionAddr); printk(BIOS_DEBUG, "Faulting instruction: 0x%x\n", faultingInstruction); insn_t widthMask = 0x7000; insn_t memWidth = (faultingInstruction & widthMask) >> 12; insn_t srcMask = 0x1F00000; insn_t srcRegister = (faultingInstruction & srcMask) >> 20; printk(BIOS_DEBUG, "Width: %d bits\n", (1 << memWidth) * 8); if (memWidth == 3) { // store double, handle the issue void* badAddress = (void*) tf->badvaddr; uint64_t value = tf->gpr[srcRegister]; for (int i = 0; i < 8; i++) { mprv_write_u8(badAddress+i, value); value >>= 8; } } else { // panic, this should not have happened die("Code should not reach this path, misaligned on a non-64 bit store/load\n"); } // return to where we came from write_csr(mepc, read_csr(mepc) + 4); }