#include <console/console.h> #include <cpu/cpu.h> #include <arch/io.h> #include <string.h> #include <cpu/x86/mtrr.h> #include <cpu/x86/msr.h> #include <cpu/x86/lapic.h> #include <arch/cpu.h> #include <device/path.h> #include <device/device.h> #include <smp/spinlock.h> /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(uint32_t flag) { uint32_t f1, f2; asm( "pushfl\n\t" "pushfl\n\t" "popl %0\n\t" "movl %0,%1\n\t" "xorl %2,%0\n\t" "pushl %0\n\t" "popfl\n\t" "pushfl\n\t" "popl %0\n\t" "popfl\n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ static int have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } /* * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected * by the fact that they preserve the flags across the division of 5/2. * PII and PPro exhibit this behavior too, but they have cpuid available. */ /* * Perform the Cyrix 5/2 test. A Cyrix won't change * the flags, while other 486 chips will. */ static inline int test_cyrix_52div(void) { unsigned int test; __asm__ __volatile__( "sahf\n\t" /* clear flags (%eax = 0x0005) */ "div %b2\n\t" /* divide 5 by 2 */ "lahf" /* store flags into %ah */ : "=a" (test) : "0" (5), "q" (2) : "cc"); /* AH is 0x02 on Cyrix after the divide.. */ return (unsigned char) (test >> 8) == 0x02; } /* * Detect a NexGen CPU running without BIOS hypercode new enough * to have CPUID. (Thanks to Herbert Oppmann) */ static int deep_magic_nexgen_probe(void) { int ret; __asm__ __volatile__ ( " movw $0x5555, %%ax\n" " xorw %%dx,%%dx\n" " movw $2, %%cx\n" " divw %%cx\n" " movl $0, %%eax\n" " jnz 1f\n" " movl $1, %%eax\n" "1:\n" : "=a" (ret) : : "cx", "dx" ); return ret; } /* List of cpu vendor strings along with their normalized * id values. */ static struct { int vendor; const char *name; } x86_vendors[] = { { X86_VENDOR_INTEL, "GenuineIntel", }, { X86_VENDOR_CYRIX, "CyrixInstead", }, { X86_VENDOR_AMD, "AuthenticAMD", }, { X86_VENDOR_UMC, "UMC UMC UMC ", }, { X86_VENDOR_NEXGEN, "NexGenDriven", }, { X86_VENDOR_CENTAUR, "CentaurHauls", }, { X86_VENDOR_RISE, "RiseRiseRise", }, { X86_VENDOR_TRANSMETA, "GenuineTMx86", }, { X86_VENDOR_TRANSMETA, "TransmetaCPU", }, { X86_VENDOR_NSC, "Geode by NSC", }, { X86_VENDOR_SIS, "SiS SiS SiS ", }, }; static const char *x86_vendor_name[] = { [X86_VENDOR_INTEL] = "Intel", [X86_VENDOR_CYRIX] = "Cyrix", [X86_VENDOR_AMD] = "AMD", [X86_VENDOR_UMC] = "UMC", [X86_VENDOR_NEXGEN] = "NexGen", [X86_VENDOR_CENTAUR] = "Centaur", [X86_VENDOR_RISE] = "Rise", [X86_VENDOR_TRANSMETA] = "Transmeta", [X86_VENDOR_NSC] = "NSC", [X86_VENDOR_SIS] = "SiS", }; static const char *cpu_vendor_name(int vendor) { const char *name; name = "<invalid cpu vendor>"; if ((vendor < (ARRAY_SIZE(x86_vendor_name))) && (x86_vendor_name[vendor] != 0)) { name = x86_vendor_name[vendor]; } return name; } static void identify_cpu(struct device *cpu) { char vendor_name[16]; int i; vendor_name[0] = '\0'; /* Unset */ /* Find the id and vendor_name */ if (!have_cpuid_p()) { /* Its a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) { cpu->device = 0x00000400; /* 486 */ } else { cpu->device = 0x00000300; /* 386 */ } if ((cpu->device == 0x00000400) && test_cyrix_52div()) { memcpy(vendor_name, "CyrixInstead", 13); /* If we ever care we can enable cpuid here */ } /* Detect NexGen with old hypercode */ else if (deep_magic_nexgen_probe()) { memcpy(vendor_name, "NexGenDriven", 13); } } if (have_cpuid_p()) { int cpuid_level; struct cpuid_result result; result = cpuid(0x00000000); cpuid_level = result.eax; vendor_name[ 0] = (result.ebx >> 0) & 0xff; vendor_name[ 1] = (result.ebx >> 8) & 0xff; vendor_name[ 2] = (result.ebx >> 16) & 0xff; vendor_name[ 3] = (result.ebx >> 24) & 0xff; vendor_name[ 4] = (result.edx >> 0) & 0xff; vendor_name[ 5] = (result.edx >> 8) & 0xff; vendor_name[ 6] = (result.edx >> 16) & 0xff; vendor_name[ 7] = (result.edx >> 24) & 0xff; vendor_name[ 8] = (result.ecx >> 0) & 0xff; vendor_name[ 9] = (result.ecx >> 8) & 0xff; vendor_name[10] = (result.ecx >> 16) & 0xff; vendor_name[11] = (result.ecx >> 24) & 0xff; vendor_name[12] = '\0'; /* Intel-defined flags: level 0x00000001 */ if (cpuid_level >= 0x00000001) { cpu->device = cpuid_eax(0x00000001); } else { /* Have CPUID level 0 only unheard of */ cpu->device = 0x00000400; } } cpu->vendor = X86_VENDOR_UNKNOWN; for(i = 0; i < ARRAY_SIZE(x86_vendors); i++) { if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) { cpu->vendor = x86_vendors[i].vendor; break; } } } static void set_cpu_ops(struct device *cpu) { struct cpu_driver *driver; cpu->ops = 0; for (driver = cpu_drivers; driver < ecpu_drivers; driver++) { struct cpu_device_id *id; for(id = driver->id_table; id->vendor != X86_VENDOR_INVALID; id++) { if ((cpu->vendor == id->vendor) && (cpu->device == id->device)) { goto found; } } } return; found: cpu->ops = driver->ops; } void cpu_initialize(void) { /* Because we busy wait at the printk spinlock. * It is important to keep the number of printed messages * from secondary cpus to a minimum, when debugging is * disabled. */ struct device *cpu; struct cpu_info *info; struct cpuinfo_x86 c; info = cpu_info(); printk_notice("Initializing CPU #%ld\n", info->index); cpu = info->cpu; if (!cpu) { die("CPU: missing cpu device structure"); } /* Find what type of cpu we are dealing with */ identify_cpu(cpu); printk_debug("CPU: vendor %s device %x\n", cpu_vendor_name(cpu->vendor), cpu->device); get_fms(&c, cpu->device); printk_debug("CPU: family %02x, model %02x, stepping %02x\n", c.x86, c.x86_model, c.x86_mask); /* Lookup the cpu's operations */ set_cpu_ops(cpu); if(!cpu->ops) { /* mask out the stepping and try again */ cpu->device -= c.x86_mask; set_cpu_ops(cpu); cpu->device += c.x86_mask; if(!cpu->ops) die("Unknown cpu"); printk_debug("Using generic cpu ops (good)\n"); } /* Initialize the cpu */ if (cpu->ops && cpu->ops->init) { cpu->enabled = 1; cpu->initialized = 1; cpu->ops->init(cpu); } printk_info("CPU #%ld initialized\n", info->index); return; }